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Abstract. The class of shape equivalences for a pair (C,K) of cat-
egories is the orthogonal of K, that is Σ = K⊥. Then Σ is internally
saturated (Σ = Σ⊤⊥). On the other hand, every internally saturated class
of morphisms Σ ⊂ Mor(C), is the class of shape equivalences for some pair
(C,K). Moreover, every class of shape equivalences Σ enjoys a calculus of
left fractions and such a fact allows one to use techniques from categories
of fractions to obtain conditions for Σ⊤ to be reflective or proreflective in
C.

1. Introduction

Shape equivalences can be defined for any pair (C,K) of categories. They
form the class Σ of morphisms of C that are orthogonal to the class of objects
of K, in symbols Σ = K⊥. Σ is always internally saturated, that is it coincides
with its double orthogonal, moreover it is true that every internally saturated
class Σ ⊂ Mor(C) is the class of shape equivalences for some pair (C,K).
It is worth noting that every internally saturated class of morphisms, hence
every class of shape equivalences enjoys a calculus of left fractions. This
suggests connections between the shape category of (C,K) and the category
of left fraction C[Σ−1]. On the other hand one is faced with the problem
of the possible existence of other objects in C, out of K, which every shape
equivalence for (C,K) is orthogonal to. This amounts to determine the internal
saturation of the class of objects of K. We do this when K is reflective or
proreflective in C, then we consider the general case. We conclude giving
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conditions for an internally saturated class K ⊂ Ob(C) to be reflective or
proreflective in C.

2. Orthogonality and Saturation

All categories considered are finitely complete and cocomplete. T will
denote the terminal object.

Let F : C → D be a functor. There are a category CF and functors
F0 : C → CF , F1 : CF → D with the following properties:

(i) F0 is the identity on objects and F1 is fully faithful,
(ii) F = F1 ◦ F0 and such a factorization is uniquely determined, up to

isomorphisms, among all factorizations of F by a functor bijective on
objects followed by a fully faithful functor.

CF is the full image of F . It has the same objects as C while CF (X, Y ) is
identified with D(F (X), F (Y )), for all X, Y ∈ Ob(C) ([10], 21.2).

The following easy lemma gives some important and useful properties of
the full image.

Lemma 2.1. Let F : C → D and G : D → E be functors.

(i) There is a unique functor T : CF → CG◦F such that T ◦ F0 = (G ◦ F )0
and (G ◦ F )1 ◦ T = G ◦ F1. If G is fully faithful, then T is an isomor-
phism.

(ii) There is a unique functor V : CG◦F → DG such that V ◦ (G ◦ F )0 =
G0 ◦ F and G1 ◦ V = (G ◦ F )1. If F is bijective on objects, then V is
an isomorphism.

If Σ ⊂ Mor(C), then C[Σ−1] denotes the category of left fractions of C
and PΣ : C → C[Σ−1] the canonical functor. Σ is externally saturated when
Σ = S(PΣ), that is, Σ is the class of all morphisms that are turned into
isomorphisms by PΣ. Equivalently, Σ is externally saturated iff Σ = S(F ),
for some functor F : C → D. We refer to [6] as a classical source on such
matters.

Proposition 2.2 ([10, page 267]). A class Σ ⊂Mor(C) has a calculus of
left fractions (CLF) whenever

(i) Σ contains all isomorphisms,
(ii) if two of the morphisms s, t, t ◦ s are in Σ, the third is also in Σ. If

v ◦ s and t ◦ v are in Σ, then v also belongs to Σ,
(iii) Σ is pushout closed,
(iv) if f ◦ s = g ◦ s, s ∈ Σ then coeq(f, g) ∈ Σ.

Σ has a terminal calculus of left fractions (TCLF) if, besides (i)-(iv), the
comma category X ↓ Σ has a terminal object, for every X ∈ Ob(C).
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When Σ has a CLF each morphism ϕ ∈ C[Σ−1](X, Y ) can be represented
as ϕ = PΣ(s)−1 ◦ PΣ(f), where s ∈ Σ. In presence of a TCLF, C[Σ−1] is also
a legitimate category.

From now on (C,K) will be a pair of categories, where K is a full subcat-
egory of C and E : K → C is the inclusion functor.

Let YK : K → [Ko, SET] denote the Yoneda embedding and let

γE : C → [Ko, SET]

be its natural extension to C, that is:

- γE(X) = C(X, E(−)),
- γE(f : X → Y ) = f∗ : C(Y, E(−)) → C(X, E(−)) is the natural

transformation defined by composition with f .

The shape category Sh(C,K) of the pair (C,K) [11] is the full image of the
functor γE , as described by the commutative diagram

C [Ko, SET]

Sh(C,K)
������*HHHHHHj

-
γE

Sh (γE)1

Then Sh(C,K) has the same objects as C and morphisms given by

Sh(C,K)(X, Y ) = Nat(C(Y, E(−)), C(X, E(−))).

The shape functor Sh : C → Sh(C,K) is the identity on objects and
Sh(f) = f∗.

The class Σ = S(Sh) of all morphisms in C that are turned into isomor-
phisms by Sh, is called the class of shape equivalences for (C,K).

Note that, by the very definition of shape equivalences, one has

Σ = K⊥ = {s ∈Mor(C)| f∗
P : C(Y, P )→ C(X, P ) is bijective for all P ∈ K},

where f∗
P is the map defined by composition with f . By a standard abuse of

notation we often denote by K the class of objects and the full subcategory
of C with these objects.
K⊥ is called the orthogonal of K. Symmetrically, the orthogonal of Σ ⊂

Mor(C) is given by

Σ⊤ = {P ∈ Ob(C)| s∗P : C(Y, P )→ C(X, P ) is bijective for all s ∈ Σ}.

K (resp. Σ) will be called internally saturated whenever K = K⊥⊤ (resp.
Σ = Σ⊤⊥) [1, 2]. It is worth noting that (−)⊥⊤ and (−)⊤⊥ are both closure
operators for the classes of morphisms and for the classes of objects of C,
respectively.
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Given morphisms f : X → Y and g : V → Z in C, we write f ↑ g to mean
that every commutative diagram

X Y-

?

�
�

��	?

f

r
d

s

V Z-
g

has a unique diagonal d : Y → V such that g ◦ d = s and d ◦ f = r.
If Σ is a class of morphisms in C, then

Σ↑ = {f ∈Mor(C)| f ↑ g, for all g ∈ Σ},

Σ↓ = {g ∈Mor(C)| g ↑ f, for all f ∈ Σ}.

The following properties are easy verified, for K,H ⊂ Ob(C) and Σ, Γ ⊂
Mor(C):

1. K ⊂ K⊥⊤ and K⊥ = K⊥⊤⊥,
2. Σ ⊂ Σ⊤⊥ and Σ⊤ = Σ⊤⊥⊤,
3. K ⊂ H ⇒ H⊥ ⊂ K⊥,
4. Σ ⊂ Γ⇒ Γ⊤ ⊂ Σ⊤,
5. (Σ ∪ Γ)⊤ = Σ⊤ ∩ Γ⊤ and Σ⊤ ∪ Γ⊤ ⊂ (Σ ∩ Γ)⊤,

6. (K ∪H)⊥ = K⊥ ∩H⊥ and K⊥ ∪H⊥ ⊂ (K ∩H)⊥,
7. (Ob(C))⊥ = Iso(C) and (Mor(C))⊤ = T.

Proposition 2.3. Let Σ = K⊥, then

(i) Σ is internally saturated,
(ii) Σ has a CLF,
(iii) Σ⊤ is closed under finite colimits.

Proof. (i) is immediate. (ii) is an easy verification of the properties of
Proposition 2.2, considering the fact that contravariant representable functors
take colimits into limits. For (iii) see [2].

Theorem 2.4. Let Σ ⊂ Mor(C). Σ is the class of shape equivalences for
a pair (C,K) if and only if it is an internally saturated class of morphisms.

Proof. The class of shape equivalences for (C,K) is given by Σ = K⊥,

so that the assertion follows from (i) of the proposition above. Conversely, if
Σ is internally saturated, then it is the class of shape equivalences for the pair
(C, Σ⊤).

Hence every shape theory determines and is determined by its class of shape
equivalences.

The following result was obtained in [1].

Corollary 2.5. An internally saturated class of morphisms is also ex-
ternally saturated.
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Let now C ⊂ E be two categories and let K ⊂ Ob(E). It makes sense to

consider the orthogonal of K with respect to E , written K⊥E , and with respect
to C, written K⊥C . Symmetrically Σ⊤E and Σ⊤C , for a class Σ ⊂ Mor(E). It
is clear that

- K⊥C ⊂ K⊥E and Σ⊤C ⊂ Σ⊤E ,
- K⊥C = K⊥E ∩Mor(C) and Σ⊤C = Σ⊤E ∩Ob(C),

moreover the following proposition holds.

Proposition 2.6.

(i) K⊥C⊤C = K⊥E⊤E ∩Ob(C), when T ∈ K
(ii) Σ⊤C⊥C = Σ⊤E⊥E ∩Mor(C),

Proof. Consider that

K⊥C⊤C = K⊥C⊤E ∩Ob(C) = (K⊥E ∩Mor(C))⊤E ∩Ob(C) ⊃

⊃ (K⊥E⊤E ∪ T) ∩Ob(C) = K⊥E⊤E ∩Ob(C),

and

K⊥C ⊂ K⊥E ⇒ K⊥E⊤C ⊂ K⊥C⊤C ⇒ K⊥E⊤E ∩Ob(C) ⊂ K⊥C⊤C .

This proves (i). The proof of (ii) goes along the same lines.

Let us denote by Pro C the category of inverse systems in C. Objects of
ProC are covariant functors of type X : I → C, where I is an essentially small
cofiltering category, denoted X = (Xi)i∈I . The category of direct systems in C
is defined by Ind C = (ProCop)op. Its objects are covariant functors X : I → C,
where I is an essentially small filtering category, also denoted X = (Xi)i∈I . A
direct system X : I → C gives an inverse system X : Iop → C, and vice-versa.
We refer to [8, 7, 5], for constructions and terminology concerning inverse and
direct systems.
Let Σ ⊂ Mor(C). A Σ−level morphism in Pro C (resp. Ind C) is a morphism

f : X → Y (resp. f : X → Y ) which belongs levelwise to Σ. Here we assume,
as it is possible [7], that X, Y are indexed over the same set and that f (resp.

f) is a natural transformation. Let us denote by ProΣ (resp. Ind Σ) the class
of Σ−level morphisms in ProC (resp. Ind C) .

Lemma 2.7.

(i) (ProK)⊥ProC = K⊥ProC .

(ii) (ProK)⊥C = K⊥C .

(iii) (IndK)⊥IndC = K⊥IndC .

(iv) (IndK)⊥C = K⊥C .

Proof. (i) From K ⊂ ProK it follows (ProK)⊥ProC ⊂ K⊥Pro C . Con-

versely, let f : X → Y , f ∈ K⊥ProC , and let P = (Pλ)λ∈Λ be an object of

ProK. f∗

Pλ

is bijective for each λ ∈ Λ, hence f∗

P
= lim
−→λ

f∗

Pλ

is bijective, so
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that f ∈ (ProK)⊥ProC . (ii) and (iv) are immediate, while the proof of (iii) is
similar to that of (i).

Proposition 2.8.

(i) K is internally saturated in C iff ProK (resp. IndK) is internally
saturated in ProC (resp. Ind C),

(ii) Σ is internally saturated in C iff ProΣ (resp. Ind Σ) is internally
saturated in ProC (resp. Ind C),

Proof. We only prove that

K = K⊥C⊤C ⇔ ProK = K⊥ProC⊤ProC ,

the other statements are proved similarly.
First of all, notice that K⊥Pro C⊤C ⊃ K⊥Pro C⊤ProC and, since K ⊂ K⊥ProC⊤ProC ,
then K ⊂ K⊥ProC⊤C . Moreover, from K⊥Pro C⊤C ⊂ K⊥C⊤C , it follows K =
K⊥Pro C⊤C . Finally

ProK = Pro (K⊥Pro C⊤C ) =

= Pro (K⊥ProC⊤ProC ∩Ob(C)) = K⊥ProC⊤ProC ∩Ob(Pro C) = K⊥ProC⊤Pro C .

The converse follows from Proposition 2.6(i).

In the sequel we shall need the following [6, 10, 1, 3]:

Theorem 2.9. Let R : C → K be left adjoint to the inclusion E : K → C
and let Σ = S(R). The following properties hold

(i) Σ has a TCLF,
(ii) the unique functor R′ : C[Σ−1] → K, such that R′ ◦ PΣ = R, is an

equivalence of categories,
(iii) K = Σ⊤ and Σ = K⊥ = (Mor(K))↑.

(iv) K = K⊥⊤, Σ = Σ⊤⊥

(v) Σ = Σ↓↑.

Notice that (ii) implies that (Σ,K) is an orthogonal pair [2], while (v)
says that (Σ, Σ↓) is a prefactorization system in C [3].

3. Categorical shape

Let (C,K) be a pair of categories as in the previous section. For each X ∈
Ob(C) let X ↓ K be the comma category of X over K and let σX : X ↓ K → K
be the codomain functor. Then one can form the category C ↓ K whose objects
are the comma categories X ↓ K, X ∈ Ob(C), and morphisms the functors
t : X ↓ K → Y ↓ K such that σY ◦ t = σX . There is an evident functor
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σ : C → C ↓ K and an isomorphism Φ : Sh(C,K) → C ↓ K which makes the
following diagram commutative

Sh
-C

C ↓ K

Sh(C,K)
HHHHHHHj

Φ
σ ?

See [4] for a complete explanation of this fact.
If E : K → C has left adjoint R : C → K, then there is, up to isomorphisms,

a decomposition

C [Ko, SET]

K
������*HHHHHHHj

-
γE

R YK

in fact, for each X ∈ Ob(C), there is a natural isomorphisms C(X, E(−)) ∼=
K(RX,−). Since YK is fully faithful, it follows that Sh(C,K) can be obtained
as the full image of R. By Lemma 2.1 there is an equivalence

Sh(C,K) ≃ K

and Σ = S(R) = S(γE) has a TCLF.
Note that the unique functor R′ : C[Σ−1] → K such that R = R′ ◦ PΣ,

being an equivalence, gives the decomposition γE = YE ◦R
′ ◦PΣ, with YE ◦R

′

fully faithful, from which one gets an isomorphism

Sh(C,K) ∼= C[Σ−1].

A more interesting case, related to classical topological shape, is when E has a
proadjoint P : C → ProK [5]. This means that, if Ẽ : ProK → ProC denotes

the inclusion of the categories of inverse systems, then Ẽ has a left adjoint
P̃ : Pro C → ProK and P is its restriction to C. P̃ can be recovered from P

as P̃ = lim
←−

ProP [11]. P is proadjoint to E iff there is a natural isomorphism

ProK(P (X),−) ∼= C(X, E(−))

for every X ∈ Ob(C).
Let L : ProK → [Ko, SET] be the Grothendieck functor which sends an

inverse system (Xi)i∈I to the colimit of representables lim
−→i

K(Xi,−). In this

case γE can be decomposed as shown

C [Ko, SET]

ProK
������*HHHHHHj

-
γE

P L
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and, since L is fully faithful, it turns out that Sh(C,K) can be obtained as
the full image of P .

If Σ̃ = S(P̃ ) then Σ = S(P ) = S(γE). From the previous observations,
one has that

- Σ̃ has a TCLF in ProC,
- there is an equivalence

Sh(ProC, ProK) ≃ ProK.

and an isomorphism

Sh(Pro C, ProK) ∼= ProC[Σ̃−1].

Lemma 3.1. Let K ⊂ C ⊂ E be categories. Then

(i) Sh(ProC, ProK) ∼= Sh(ProC,K),
(ii) Sh(C,K) ⊂ Sh(E ,K).

As a consequence of the above the shape category of (C,K) can be viewed

as the full subcategory of ProC[Σ̃−1] with objects those of C, which we write

Sh(C,K) ∼= C[Σ̃−1].

It follows that a shape morphism ϕ : X → Y is a left fraction

ϕ = PΣ̃(s)−1 ◦ PΣ̃(f),

for f : X → Z, s : Y → Z, with s ∈ Σ̃ and Z ∈ Ob(Pro C) .
Passing from the reflective to the proreflective case both Σ and K inherit

good properties:

Theorem 3.2. Let K be proreflective in C and let Σ be the class of shape
equivalences for (C,K). Then

(i) Σ has a CLF and is internally saturated w.r.t. C,
(ii) K is internally saturated w.r.t. C.

Proof. Σ̃ is internally saturated and has a CLF in ProC. By Proposi-
tion 2.2, Σ = Σ̃ ∩Mor(C) has a CLF in C. Moreover, from Proposition 2.6,
one has

Σ = Σ̃ ∩Mor(C) = Σ̃⊤Pro C⊥ProC ∩Mor(C) = Σ̃⊤C⊥C ⊃ Σ⊤C⊥C .

The proof of (ii) follows again from Proposition 2.6, since ProK is is
internally saturated w.r.t. ProC.

Assume now that K is an internally saturated class of objects of C. Recall
that under such assumptions

- Σ = K⊥ is also internally saturated,
- Σ has a CLF and, for every X ∈ Ob(C), the comma category X ↓ Σ is

filtered ([10], 19.2.3)
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Theorem 3.3. Let K ⊂ C be internally saturated and let Σ = K⊥C . K
is proreflective in C whenever the comma category X ↓ Σ is essentially small,
for all X ∈ Ob(C).

Proof. First of all note that, by Proposition 2.8, ProK (resp. IndK)
is internally saturated in ProC (resp. Ind C). For the same reason Ind Σ is
also internally saturated in Ind C, so that it has a CLF in Ind C. For each
X ∈ Ob(C), let IX denote the small final subcategory of the filtered category
X ↓ Σ. The range functor IX → X ↓ Σ → C determines a direct system
X = (Xi)i∈IX

and a structural morphism x : X → X, x ∈ Ind Σ, which
actually is a final object for X ↓ Ind Σ. From [9, 15.3, p.110] it follows that
X ∈ Σ⊤IndC , hence X ∈ IndK and Xi ∈ K, for all i ∈ IX . Dualizing, the
morphism x : X → X = (Xi)i∈IX

is an initial object in X ↓ ProΣ: for every
s : X → S, s ∈ Σ, there is an i ∈ IX and an si : Xi → S such that si ◦xi = s,
in particular si ∈ Σ. Let now f : X → K, K ∈ K. Since K = Σ⊤C , then there
is a bijection

x∗
i,K : C(Xi, K)→ C(X, K),

for all i ∈ IX . Passing to the colimit one obtains a bijection

x∗
K : ProC(X, K)→ C(X, K)

which gives the proreflectiveness of K in C.

Corollary 3.4. Let K ⊂ C be internally saturated class and let Σ = K⊥.
K is reflective in C, whenever the comma category X ↓ Σ has an in initial
object, for all X ∈ Ob(C).
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