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ALTERNATE PROOFS OF TWO CHARACTERIZATION
THEOREMS OF MILLER AND JANKO ON 2-GROUPS, AND
SOME RELATED RESULTS

YAKOV BERKOVICH
University of Haifa, Israel

ABSTRACT. We study the p-groups all of whose nonabelian maximal
subgroups are decomposable in direct or central product of two groups with
specific structures.

1. INTRODUCTION

Let © be a group theoretical property inherited by subgroups. There are
a lot of papers where the finite non ©-groups all of whose proper subgroups
are ©-groups are investigated (such groups we call ©1-groups). However, if
the property © is not inherited by subgroups, ©;-groups, as a rule, do not
exist. In that case, however, one can try to classify non ©-groups G all of
whose maximal subgroups are ©-groups.

As Janko has reported [J1], he has classified the 2-groups all of whose
minimal nonabelian subgroups (=.4;-subgroups) are = Qg; this coincides with
Theorem 2.4 (in fact, in [J2] the 2-groups all of whose 4;-subgroups have the
same order 8 are classified). He also noticed that his result implies the classifi-
cation of minimal non Dedekindian 2-groups (this coincides with Lemma 2.1).
Theorem 2.4 follows from Lemma 2.3, below. Our proof of Lemma 2.3 uses
Lemma 2.1.1

Recall that a group is said to be Dedekindian if all its subgroups are
normal. If G is a nonabelian Dedekindian group, then G = Q x E x A,
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Tt appears that Lemma 2.1 was proved by G.A. Miller [M1] in 1907 (I learned about
this from Internet, after completing this paper). Janko’s proof of Theorem 2.4 is indepen-
dent of Lemma 2.1.
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where Q = Qg, F is elementary abelian 2-group and A is abelian of odd
order (Dedekind). As follows from general definition, a p-group G is said
to be minimal nonabelian (=A;-group), if it is nonabelian but all its proper
subgroups are abelian. In this paper G is a p-group, where p is a prime.

A p-group M x E is said to be an M *-group if M is of maximal class
and F elementary abelian (we consider the group {1} as elementary abelian
p-group for every prime p). The above group is said to be an M -group if,
in addition, |[M| = p®. All nonabelian epimorphic images of M *-groups are
M *-groups. Every nonabelian subgroup of M -group is also an M3 -group.
All nonabelian maximal subgroups of an M *-group G are M *-groups if and
only if G has an abelian subgroup of index p.

It follows from Lemma J(i) that, if G is a 2-group of maximal class and
order 2™, then it is one of the following groups: dihedral Dom, generalized
quaternion Qgm or semidihedral SDam (m > 3). These three groups together
with Mym = (a,b | o(a) = 2™,0(b) = 2,a® = a'*2"”,m > 3) present the
complete list of nonabelian 2-groups of order 2™ with cyclic subgroup of index
2. By I'1 we denote the set of maximal subgroups of G.

REMARK 1.1. Let a p-group G = M x E, where M is a nonabelian group
with cyclic center and E > {1} is elementary abelian and let M; < G have
no direct factor of order p and |M;| > p. We claim that M; is isomorphic
to a subgroup of M. It suffices to prove that M; N E = {1}. Assume that
X < M;NEisof order p. Then G = X x Gy so, by the modular law,
M; = X x (M1 N Gy), a contradiction. In particular, if M; < G is minimal
nonabelian, then M is isomorphic to a subgroup of G/E = M.

A nonabelian 2-group G is said to be generalized dihedral if it is non-
abelian and contains a subgroup A such that all elements of the set G — A are
involutions. Then A is abelian of exponent > 2, |G : A| = 2, all subgroups
of A are G-invariant, Q;(A) = Z(G) and G/G’ is elementary abelian since
01 (G@) = G (Burnside). Clearly, A is characteristic in G.

We use notation which is standard for finite p-group theory (see references
[B1, B2, B3]). In Lemma J some elementary results which we use in what
follows, are gathered.

LEMMA J. Let G be a nonabelian p-group.

(a) [B2, Proposition 19(a)] Let B < G be nonabelian of order p3. If
Ca(B) < B, then G is of mazimal class.

(b) [B1, Lemma 5.3] Suppose that E < G is such that |E'| = p, Z(E) =
®(E) and [G,E] = E'. Then G = E x Cg(FE). The last equality
holds whenever E < G is either minimal nonabelian or extraspecial
and [G,E] = E'.

(¢) (0. Schreier) If d(G) =2 and |G : H| =2, then d(H) < 3.
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(d) (L. Redei [R]; see also [BJ2, Lemma 3.1.]) If G is minimal nonabelian,
then |G'| = p, d(G) = 2, |(G)| < p? so all proper subgroups of G
are of rank < 3. If Q1 (G) = G, then either p > 2 and G is of order
p? and exponent p or p = 2 and G = Dg. If | (G)| < p?, then G is
metacyclic.

(e) (Z. Janko; see [B5, Theorem 10.28, 10.32, 10.33] and [J3]) All A;-
subgroups of a 2-group G are generated by involutions if and only if G
is generalized dihedral.

(f) [B3, Theorem 7.4(c)] If |G| > p3 and G is not of mazimal class, then
the number of subgroups of maximal class and index p in G is a multiple
of p2.

(g) (Kazarin-Mann; see also [BJ2, Lemma 3.2(d)]) If |[H'| < p for all
H €Ty, then |G| < p3. If, in addition, G has an abelian subgroup of
index p, then |G'| < p?.

(h) (Tuan; see [I, Lemma 12.12]) If G has an abelian mazimal subgroup,
then |G'| = %|G : Z(@)|. If G has two distinct abelian mazimal sub-
groups, then |G'| = p.

(i) (O. Taussky) If p=2 and |G : G'| =4, then G is of maximal class.

(j) B4, Remark 6.2] If G is neither cyclic nor a 2-group of maximal class,
then the number of cyclic subgroups of order p* > p in G is a multiple
of p.2

(k) [BJ2, Lemma 3.2(a)] If G’ < Z(G) is of exponent p and d(G/G’) = 2,
then G is an Aj-group.

(1) [B1, Theorem 6] If p > 2 and ®(G) is cyclic, then ®(G) < Z(G).

(m) If |G'| = |Z(G)| = p, then G is extraspecial.

(n) The number of abelian members in the set T'y is 0,1 or p+ 1. In
particular, the number of nonabelian members in the set I'1 is > p,
unless G is an Aj-group.

REMARK 1.2. Let a p-group G = M x C, where M is of maximal class and
C = {(c) 2Cpn, n> 1. We claim that G contains an A;-subgroup H of order
p" T2 with |H N M| = p?. Indeed, by Blackburn’s Theorem (see [B5, Theorem
9.6]), G contains a nonabelian subgroup D = (R, a) of order p3, where |R| = p?
and o(a) < p?. Set u = ac; then RN (u) = {1}, o(u) = o(c) = p™. We claim
that L = (u, R) is an A;-subgroup. Indeed, L is nonabelian so |L'| = p
since L' < R, and d(L/L') = 2 so L is an A;j-subgroup of order p"*2, by
Lemma J(k). We also have |L N M| = R since (u) N M = {1}. If M is

~

not generalized quaternion, one can take from the start R = Ey2; in that

~

case, L is not metacyclic since Q1(L) = Eps. If M is generalized quaternion,
then |Q1(G)| = 4, so all A;-subgroups of G are metacyclic (Lemma J(d)).

2As T knew from Internet, this result was proved by G.A. Miller many years ago; see
also the part written by Miller, in [MBD]. However, in the existing literature I did not see
references on this result.
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Similarly, if 2 < k < n, then G contains an A;-subgroup of order p*+2 not
contained in M.

REMARK 1.3. Suppose that a group G of order 2 > 2% is not of maximal
class. Let H € I'; be of maximal class. Then the set I'; has exactly four mem-
bers of maximal class (Lemma J(f)). Suppose that all nonabelian members
of the set I'y are M *-groups. We claim that then G itself is an M *-group.
Assume that our claim is false. Let Z < H be cyclic of index 2; then, since
|H| > 16, Z is characteristic in H so normal in G. Next, G contains a normal
abelian subgroup R of type (2,2) (Lemma J(j)); then RN H = Q;(Z). Since
A = RZ €T is not an M*-group and |A| > 8, it must be abelian. Let F
be a nonabelian maximal subgroup of H. Then RF € T’y since |RF| = |H|,
and, by hypothesis, RF' is an M *-group which is not of maximal class since
|[RF| > 16. It follows that R = Z(RF') (indeed, R £ F since R £ H). Since
R < A, we get Cg(R) > A(RF) = AF =Gso R=7Z(G). I L < Ris of
order 2 and L £ H, then G = HL = H x L is an M *-group.

The following lemma is known.

LEMMA 1.4. Suppose that a group G is of order p*™*1 and |G'| = p.
Then the following assertions are equivalent:

(a) G is extraspecial.
(b) G has no abelian subgroup of index p™ 1.

PrROOF. Let G be extraspecial and let A be an abelian subgroup of G of
maximal order; then A<G since G’ = Z(G) < A. It follows from decomposition
of G in the central product of nonabelian subgroups of order p?® that |G : A| <
p™. We want to show that there we have equality. The class number of G
equals |G/G'| +p—1 = p?>™ + p— 1 so that G has exactly p — 1 nonlinear
irreducibles. Since the sum of squares of degrees of nonlinear irreducibles
equals |G| — |G/G’'| = p>™(p—1), it follows that the degrees of all irreducibles
equal p™. By Ito’s theorem on degrees [BZ, Theorem 7.2.7], |G : A| > x(1) =
p™ so (a) = (b).

Now assume that (b) is true. Let x € Irri(G). Then x = \“, where
A is a linear character of some subgroup H of index x(1) in G. We have
G' £ ker(y) = coreg(ker(\%)). Assuming that H is nonabelian, we get
G’ = H' < ker()), a contradiction. Thus, H is abelian. Then, by (b), we get
x(1) =|G: H| > p™. We have

PPT=1GI= GG Y x(D)P 2 P+ I (G)p*
x€lrr1 (G)
so |Irr1 (G)| < p—1 and, by [BZ, Lemma 3.35], G is extraspecial so (b) = (a).
O

LEMMA 1.5. Let G be an extraspecial group of order p?™*1, m > 1, and
let M €Ty. Then M = EZ(M), where E is an extraspecial mazimal subgroup
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of M and |Z(M)| = p?>. If LG is of order p?, then N = Cg(L) = L x E,
where E is extraspecial.

PROOF. By Lemma 1.4, M is nonabelian. Since |M| = p*™, the subgroup
M is not extraspecial. It follows from Lemma J(m) that |Z(M)| > p. Let
R < Z(M) be G-invariant of order p?; then Cg(R) = M since R £ Z(G).
On the other hand, R £ ®(G) = ®(M) so there is a maximal subgroup F
of M such that M = ER. But M is nonabelian so is E. We have |E| =
p?m—1 = p2(m=1+1 " Agsume that E has an abelian subgroup, say A, of
index p™~2; then AR is an abelian subgroup of index p™~! in G, contrary
to Lemma 1.4. Thus, E has no abelian subgroup of index p™~2 so E is
extraspecial (Lemma 1.4). It follows from M = EZ(M) that |Z(M)| = p.
o

DEFINITION 1.6. A nonabelian p-group G is said to be

1. a Z-group provided |Z(G)| = p and G’ is cyclic.

2. a Z*-group (M*-group) provided G = U x E, where U is a Z-group
(group of maximal class) and E is elementary abelian.

3. (Z*C)-group ((M C)-group) provided G = Ax Z, a central product,
where A is a Z-group (group of mazximal class), Z = Z(QG) is cyclic.

The center of Z*-group (M *-group) is elementary abelian. The center
of Z x C-group (M * C-group) is cyclic. Extraspecial p-groups and 2-groups
of maximal class are Z-groups. A Z-group G with |G’| = p is extraspecial
(Lemma J(m)). If A is a cyclic p-group of order p™ > p and G the Sylow p-
subgroup of the holomorph of A, then G is a Z-group (if, in addition, p > 2,
then G is metacyclic). If p-group G = E * L, where E is extraspecial and L
is a Z-group, ENL = Z(FE), then G is a Z-group. If a Z-group G is minimal
nonabelian, then |G| = p3. If a Z-group G of order > p? is of maximal class,
then p = 2. Clearly, the property (M *C) is not inherited by subgroups and
epimorphic images.

REMARK 1.7. Suppose that all nonabelian maximal subgroups of a Z-
group G are Z*-groups. We claim that if |G’| > p, then G is a 2-group of
maximal class, and if |G’| = p, then G is extraspecial of exponent p, unless G is
of order p* and exponent p?. (i) Assume that |G'| > p; then R = Q(G’) = C,e
and Cg(R) € I'y is abelian. Then, by Lemma J(h), |G : G’| = p|Z(G)| = p*.
If p = 2, then G is of maximal class (Lemma J(i)). Now let p > 2. Then
G' = ®(Q) is cyclic and so ®(G) = Z(G) (Lemma J(1)) hence G is an A;-
group and |G'| = p, contrary to the assumption. (ii) Let |G'| = p; then
G' = Z(G) so G is extraspecial (Lemma J(m)). However, if exp(G) > p and
|G| > p3, then the set I'; contains a nonabelian member which is not a Z*-
group (Lemma 1.5). Thus, if |G| > p3, then G is extraspecial of exponent p,
and every such G satisfies the hypothesis, by the same lemma.
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REMARK 1.8. Suppose that all nonabelian maximal subgroups of a Z-
group G are (Z*C)-groups. Let G be not a 2-group of maximal class; then G
contains a normal subgroup R = E,» (Lemma J(j)). Since the center of the Z-
group G is of order p, Cg(R) € 'y must be abelian so |G : G'| = p|Z(G)| = p?
(Lemma J(h)), and we conclude that G’ = ®(G). If p > 2, then ®(G) < Z(G)
(Lemma J(1)) so |G| = p3. If p = 2, then G is a 2-group of maximal class
(Lemma J(1)), contrary to the assumption.

LEMMA 1.9. Let G be neither abelian nor an Aj-group. Suppose that all
nonabelian members of the set I'y are Z*-groups. Then one of the following
holds:

(a) The set T'y has an abelian member. Then all nonabelian members of
the set T'y are M*-groups for p =2 and M3 -groups for p > 2.

(b) The set T'y has no abelian member. Then nonabelian members of the
set I'y are of the form Ey x E5, where Ey is elementary abelian and
Ey is extraspecial. If, in addition, G itself is a Z*-group of the form
Ey X Ey, where Ey and E3 are as above, then p > 2 and exp(F1) = p,
|Er| > p°.

Proor. Take a nonabelian H = M x E € T'y, where M is a Z-group
and E is elementary abelian; then M’ = H' < G is cyclic. Let A € T'; be
abelian. In that case, M N A is a maximal abelian subgroup of M. Then
|M : M'| = p|Z(M)| = p? (Lemma J(h)) so M’ = ®(M) is cyclic. If p = 2,
then M is of maximal class (Lemma J(i)). If p > 2, then M’ = Z(M)
(Lemma J(1)) so |[M| = p3.

Suppose that |M’| > p; then Cq(Q2(M’)) = A € T'y is abelian since its
center has exponent > p. In that case, M N A is a maximal abelian subgroup
of M. Arguing, as in the previous paragraph, we conclude that p = 2 and M
is of maximal class. This completes the proof of (a).

Now assume that the set I'; has no abelian member. Then |H'| = |M'| =p
for all nonabelian H € I'1 so M is extraspecial (Lemma J(m)).

Now, in addition, let G be a Z*-group and the set I'; has no abelian
member. Then G = M x E, where M is extraspecial of order > p® and E
elementary abelian. Let U < M be maximal; then U x EF € T'; so U is a
Z*-group. Then exp(M) = p > 2 (Remark 1.7). O

LEMMA 1.10. Suppose that a nonabelian p-group G has an abelian sub-
group of index p. Then the following conditions are equivalent:
(a) |Z(G)| = p.
(b) |G : G'| = p?.
(¢) G is of mazimal class.
PRrROOF. By Lemma J(h), (a) and (b) are equivalent and follow from (c).

Now let (a) hold and prove (c) using induction on |G|. We have Z(G) < G’
and |G : G'| = p? (Lemma J(h)). One may assume that |G| > p3. Set
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G = G/Z(G). Then |G : G'| = p? hence |Z(G)| = p (Lemma J(h)) and G is
of maximal class so is G since |Z(G)| = p. (It is easy to show that if G is as
in Lemma 1.10, then all nonabelian subgroups of G are of maximal class; in
particular, all Aj;-subgroups of G are of order p3.) O

REMARK 1.11. Let G be a nonabelian p-group of order > p? and suppose
that, whenever H < G is nonabelian, then |H : H'| = p?>. We claim that then
G is of maximal class with abelian subgroup of index p. Indeed, let N <G
be of index p*. Then G/N has an abelian subgroup A/N, of index p so A is
abelian, and we are done (Lemma 1.10).

LEMMA 1.12. Suppose that a p-group G, which is a Z-group, contains an
abelian subgroup of index p. Then one and only one of the following holds:
(a) If p=2, then G is of mazimal class.
(b) If p > 2, then |G| = p>.

PrOOF. By Lemma J(h), |G : G| = p|Z(G)| = p? so d(G) = 2. Then G
is of maximal class if p = 2 (Lemma J(i)). Let p > 2. Then ®(G) = G’ is
cyclic so ®(G) < Z(G) (Lemma J(1)), and we conclude that G is an A;-group
since d(G) = 2. Since |Z(G)| = p, we get |G| = p>. O

LEMMA 1.13. Let G be a p-group which is not of maximal class and
A, H €Ty, where A is abelian and H is of mazimal class. Then |Z(G)| = p?
and G = HZ(G).

PROOF. By Lemma J(f), G’ = H' is of index p? in G. By Lemma J((h),
|Z(G)| = %|G :G'| = p? so G = HZ(G), by the product formula. O

Our main results are the following five theorems.

THEOREM A. Suppose that all mazximal subgroups of a nonabelian 2-group
G are Z*-groups. Then one of the following holds:

(a) G is an M*-group.

(b) G is minimal nonabelian.

(¢) G= D xC is of order 16, where D 1is nonabelian of order 8 and C' is
cyclic of order 4.

(d) G is a generalized dihedral group of order 25 with abelian Hughes sub-
group subgroup of type (4,4).

THEOREM B. Suppose that all nonabelian maximal subgroups of a non-
abelian p-group G, p > 2, are Z*-groups. Then one of the following holds:

(a) G is an My -group.

(b) G is minimal nonabelian.

(¢) G is of mazimal class and order p*.

(d) G = M * C is of order p*, where M is nonabelian of order p* and C
is cyclic of order p?>. We also have G = M x C' where a nonabelian
subgroup M of order p3 is not isomorphic with M.
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(e) G is of order p® without abelian subgroup of index p, |G'| = p?, Z(G) <
G’ is abelian of type (p,p). If R < Z(G) is of order p, then G/R is of
maximal class.

(f) G is special of order p°, d(G) = 3.

(g) G is special of order p® and exponent p, d(G) = 3.

(h) G = E x Ey, where Ey is elementary abelian and E is extraspecial; if
|E| > p®, then exp(E) = p.

THEOREM C. Suppose that all nonabelian maximal subgroups of a 2-group
G are (Z % C)-groups but G is not an (Z * C)-group. Then one of the following
holds:

(a) G is minimal nonabelian.
(b) G =F x D, where F is nonabelian of order 8 and |D| = 2.

THEOREM D. Suppose that p > 2 and all nonabelian mazximal subgroups
of a nonabelian p-group G are (ZxC)-groups. Then one of the following holds:

(a) G is minimal nonabelian.
(b) |G| =p".

THEOREM E. Let G be a nonabelian p-group of order > p*, p > 2, which
is not an Aj-group. Suppose that all nonabelian maximal subgroups of G are
(M *C)-groups. Then G has an abelian subgroup of index p and one of the
following holds:

(a) G = M=xC is an (M *C)-group, where M of order > p® is of mazimal
class with abelian subgroup of index p and C = Z(Q) is cyclic of order
<p*.

(b) G =M x L, where M is nonabelian of order p* and |L| = p.

(¢) Z(Q) is cyclic of order > p, Z(G) < ®(G), G/Z(G) is either of mazimal
class or of order p* and class 2.

2. PROOF OF THEOREM A
We begin with the following partial case of Theorem 2.4.

LEMMA 2.1 (Miller [M1]). If G is a minimal non Dedekindian 2-group,
then G is either minimal nonabelian or = Q1.

PROOF. Assume that G is not an Aj-group so |G| = 2™ > 23, Let
H =Q x E €Ty, where @ = Qg and exp(F) < 2. Suppose that E = {1};
then m = 4. If Co(Q) £ Q, then G = QZ(G) so Z(G) is cyclic of order 4
since G is not Dedekindian. Then G = Q * Z(G) = D % Z(G), a contradiction
since D = Dg is non Dedekindian. Thus, C¢(Q) < @ so G is of maximal
class (Lemma J(a)); then G = Q6. Next assume that |G| > 2% so E > {1}
for arbitrary choice of nonabelian H € T';. We have H' = Q' <G and H/Q'
is elementary abelian maximal subgroup of G/Q’. Assume that G/Q’ has a
nonabelian maximal subgroup F/Q’ = (Q1/Q’)x (E1/Q’). where Q1/Q" = Qs
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and exp(E1/Q') < 2. Then (Q1/Q") N (H/Q') is maximal in Q1/Q’ so cyclic
of order 4 and elementary abelian as a subgroup of H/Q’, a contradiction.
Thus, G = G/Q’ is either abelian or minimal nonabelian.

(i) Let G be minimal nonabelian; then |G’| = 4. Since exp(H) = 2, we get
exp(G) = 4 and |H| < 8 (Lemma J(d)). Since m > 4, we get H = Eg. Since
01(G) = H (Lemma J(d)), G is generated by elements of order 4 so it has
two distinct maximal subgroups A and B of exponent 4. Then A and B are
abelian (if, for example, A is nonabelian, then A’ = Q' and exp(4/A’) = 2,
a contradiction). In that case, AN B = Z(G) so |G’| = 2 (Lemma J(h)), a
contradiction.

(ii) Let G be abelian; then G’ = Q' is of order 2 so G = Q * Ca(Q)
(Lemma J(b)). If Cg(Q) has a cyclic subgroup L of order 4, then @ x L
is not Dedekindian so Q@ * L = G. If Q N L = Z(Q), then G contains a
proper subgroup 2 Dg, a contradiction. If @ N L = {1}, then G = Q x L
contains an 4;-subgroup B of order 16 (Remark 1.2); since B < G and
B is not Dedekindian, we get a contradiction. Thus, exp(Cg(Q)) = 2 so
Ce(Q) =Z(G). f Z(G) = Q' x Ey, then G = @ x E; is Dedekindian, a final
contradiction. O

A 2-group G is said to be a Q*-group if G = Q X E/, where @ is generalized
quaternion and F is elementary abelian. The center of every Q*-group is
elementary abelian.

REMARK 2.2. Let us show that if a 2-group G = @ x E, where @Q is
generalized quaternion and exp(F) = 2, and A < G is nonabelian, then A
is a Q*-group. We use induction on |G|. Obviously, K € TI'; such that
G = K x L, where L < E, is a Q*-group. One may assume that ANE > {1}.
Let X < ANE be of order 2. Then G = X X Gy since X £ ®(G). In that case,
by the modular law, A = X x (AN Gp). Since Gy is a Q*-group, it follows,
by induction in Gy, that AN Gy is also a Q*-group. Then A = (ANGy) x X
is a Q@*-group, as desired. Similarly, if a 2-group G is an M *-group, then all
its nonabelian subgroups are M *-groups. In particular, all A;-subgroups of
G have the same order 8.

LEMMA 2.3. Suppose that all nonabelian mazimal subgroups of a non-
abelian 2-group G are Q* -groups. Then G is either a Q*- or Ay-group.

PRrROOF. Assume that G is neither minimal nonabelian nor of maximal
class (if G is of maximal class, it is generalized quaternion so a Q*-group).
We also may assume, in view of Lemma 2.1, that m > 4. Then all proper
nonabelian subgroups of G are Q*-groups, by Remark 2.2. There is a non-
abelian H = Q@ x E € T'1, where @ is generalized quaternion and E elementary
abelian. If £ = {1}, then, by Remark 1.3, G is a Q*-group. Next we assume
that E > {1} for arbitrary choice of nonabelian H € T';.
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In view of Lemma 2.1, one may assume that the subgroup H of the
previous paragraph is chosen so that |Q| > 23. Then H' = Q' <G is cyclic of
order > 2. In that case, A = Ce(22(Q’)) € I'y is abelian since exp(Z(A4)) > 2.
Since E < A, we get Cq(E) > HA = G so that E < Z(G) (<, since Z(Q) <
Z(G) and Z(Q) £ E). It follows from |G'| > 2 that A is the unique abelian
member of the set I'; (Lemma J(h)). Take a nonabelian F € Ty — {H} (F
exists, by Lemma J(n)) and assume that F £ F. Then there is X < E of
order 2 such that X £ F. In that case, G = F x X is a Q*-group, and we
are done. Therefore, one may assume that E < ®(G). Write G = G/FE; then
G = 2|H| = 2|Q| > 2* Therefore, if L € Ty is nonabelian, then L is an
M *-group since, generally speaking, E is not a direct factor of L. By the
above, G contains a maximal subgroup H, which is generalized quaternion of
order > 8. In view of Lemma 1.13, the following two possibilities for G must
be considered.

(i) Let G be not of maximal class. Then G = H x C = Q x C, where
|C| = 2 so that G is a Q*-group. Since E < Z(G) and C = C/E is of order
2, the subgroup C'< G is abelian and CNH < ENH ={1} so G=Q - C is
a semidirect product with kernel C. If F < @ is nonabelian maximal, then
F-C eTyisa@*group so FC = C x F hence exp(C) = 2. Since Q is
generated by its nonabelian maximal subgroups, we get G = @ x C so that
G is a Q*-group.

(ii) Now let G be of maximal class. Then d(G) = 2 since E < ®(Q),
and hence, by Lemma J(c), we get d(F) < 3 for all F € T';. It follows that
|E| = 2. Since E £ G’ (otherwise, by Lemma J(i), G is of maximal class),
we get ENG' = {1}; then G’ is cyclic of index 8 in G and G/G’ is abelian
of type (4,2) since d(G) = 2. Let A/G’ and B/G’ be two distinct cyclic
subgroup of order 4 in G/G’. Since abelian epimorphic images of Q*-groups
have exponent 2, it follows that A and B are abelian maximal subgroups of
G so AN B =7Z(G). In that case, |G'| =2 < |H'|, a final contradiction. 0O

THEOREM 2.4 (Janko [J2]). Suppose that every A;-subgroup of a non-
abelian 2-group G is = Qg. Then G is a Q> -group.

PROOF. We use induction on |G|. By induction, every proper nonabelian
subgroup of G is a @*-group. Then, by Lemma 2.3, G is either an A;- or
Q*-group. In the first case, however, G & Qs. O

A 2-group G is said to be a D*-group if G = D x E, where D is dihedral
and exp(FE) < 2.

PROPOSITION 2.5 (Compare with [M2]). Suppose that all nonabelian
mazimal subgroups of a nonabelian 2-group G are D*-groups. Then one of
the following holds:

(a) G is minimal nonabelian.
(b) G is a D*-group.
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(¢) G is a generalized dihedral group of order 2° with abelian subgroup of
type (4,4). The group G is special, d(G) = 3.

PROOF. Suppose that G is neither an A;- nor a D*-group. All A;-
subgroups of G are & Dg (Remark 1.1) so, by Lemma J(e), G = C- A is a
generalized dihedral group; here |C| = 2 and A is abelian of exponent > 2
and all elements of the set G — A are involutions inverting A. Since G is
not dihedral, d(4) > 1. Let As < A be of type (4,4); then the nonabelian
subgroup B = C - Ay < G is not a D*-group so B = G, As = A, and G
is as stated in (c). Thus, A has no proper subgroup of type (4,4). Thus,
assuming that all invariants of A are > 2, we conclude that A is abelian of
type (4,4). Assume that A is not of type (4,4). Then A = L x Ay, where
|L| = 2, |Ag| > 2. In that case, G = L x Gy, where Gy = C - Ay € T'y; then
Gy is a D*-group, by the above and hypothesis, so G is also D*-group. We
have Z(G) = Q1 (A) < G’ (indeed, if K < A is of order 2, then K < C - U,
where C4y 2 U < Aand C-U 2 Dg so K = (C-U) < G'). By Lemma J(i),
|G : G'| > 4 s0 Z(G) = G’ (compare orders!). It follows from O (G) = G that
G' = ®(G), so G is special and d(G) = 3. O

LEMMA 2.6. Suppose that all nonabelian mazimal subgroups of a non-
abelian 2-group G of order 2™ are My -groups. Then one of the following
holds:

(a) G is minimal nonabelian.

(b) G is of maximal class and order 16.

(¢c) G = M *C is the central product, where M is nonabelian of order 8
and C' is cyclic of order 4, m = 4.

(d) G is generalized dihedral, m =5, with abelian subgroup A of type (4,4)
(as in Proposition 2.5(c)).

(e) G is an M -group.

PROOF. Groups (a-e) satisfy the hypothesis. Since the lemma is true for
m < 4, we assume that m > 4 and G is neither minimal nonabelian nor of
maximal class.

Let M < G be an Aj-subgroup; then |[M| = 8 (Remark 1.1). In that
case, M < H € T';, where H = M x E and exp(E) = 2 since m > 4. Set
D= (H | HeTy). Then D < G' N (Z(G))(< ®(G)) so all maximal

subgroups of G/D are abelian. Set G = G/D. By Lemma J(n), Q;(G) = G.

Thus, either exp(G) =2 or G is an A;-group so = Dg (Lemma J(d)).
Assume that |D| = 2; then exp(G) = 2 since m > 4, so G’ = D and
all Aj-subgroups of G are normal. Let M < G be an A;-subgroup. Then
G = M * Cg(M) (Lemma J(b)). If C < Cg(M) is cyclic of order 4, then
M * C is not an M *-group so G = M x C. Since m > 4, we get M NC = {1}
so G = M x C. Then, by Remark 1.2, G has an A;-subgroup K of order 2*

and K € I'; is not an M *-group, a contradiction. Thus, exp(Cg(M)) = 2 so
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Ce(M) =72(G). ¥ Z(G) =Z(M) x E, then G = M x E is an M *-group. In
what follows we assume that |D| > 2.

By the above, if U < G is nonabelian of order 2", then d(U) =n — 1.

Suppose that exp(G) = 2. Let M < G be minimal nonabelian; then there
is H= MxFE €T'q, where exp(E) = 2. Since |D| > 2, there is an .A;-subgroup
M, < G such that M{ # M’. In view of Theorem 2.4 and Proposition 2.5, one
may assume from the start that M = Qg. Then M NM; = {1} so [(M, My)| >
IMM;| = 25. Set U = (M, M;); then d(U) < d(M) +d(M;) =4 <6—1
so U = G. We have [M,M;] > {1} (otherwise, U = M x M; contains an
Aj-subgroup of order 24, by Remark 1.2). Therefore, one of subgroups M, M;
is not normal in U. Let M is not normal in U. Then some cyclic subgroup
Cy < M; does not normalize some cyclic subgroup C' < M (of order 4). Since
Uy = (C,Cy) of order > 2% is generated by two elements and 2 < 4 — 1,
we get Uy = G. It follows that G is minimal nonabelian (Lemma J(k)), a
contradiction. Now let M is not normal in U. Then some subgroup Z < M of
order 4 does not normalize some cyclic subgroup Z; < M. Since V = (Z, Z1)
of order > 16 is two-generator, we get V = G so G is an A;j-subgroup, a
contradiction.

Now we let G 22 Dg. Since D < G/, we get |G : G'| = |G : G'| =450 G is
of maximal class (Lemma J(i), a contradiction since |Z(G)| > |D| > 2. O

REMARK 2.7. Suppose that a nonabelian p-group G is neither minimal
nonabelian nor of maximal class and all nonabelian members of the set I'y
are of maximal class. Since G has a subgroup A with center of order > p, A
is abelian. By Lemma J(f), the set I'; has exactly p + 1 abelian members. In
that case, |G’| = p (Lemma J(h)) so cl(G) = 2 and G = MZ(G) is of order
p*, where M is nonabelian of order p3.

For p = 2, we get the following stronger result.

LEMMA 2.8. Suppose that all nonabelian mazimal subgroups of a non-
abelian 2-group G are M * -groups. Then one of the following holds:

(a) G is minimal nonabelian.

(b) The central product G = M * C is of order 16, M is nonabelian of
order 8 and C' 1is cyclic of order 4.

(c) G is generalized dihedral of order 2° with abelian subgroup A of type
(4,4).

(d) G is an M*-group.

PROOF. Groups (a-d) satisfy the hypothesis. All nonabelian members of
the set I'y are Z*-groups. By Lemma 1.9, either the set I'y has an abelian
member or else all its members are M, -groups. In the second case, however,
the set I'; also has an abelian member, by Lemma 2.6. Thus, in any case, there
is abelian A € T';. Assume that G is not an A;-group. Take a nonabelian
H = M xE €T'1, where M is of maximal class and exp(E) < 2. Set |G| = 2™.
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Suppose that E = {1} and G is not of maximal class. Then, by
Lemma 1.13, G = HZ(G), where Z(G) is of order 4. If m = 4, then G is
as in (b) or (d). Let m > 4. If F < H is nonabelian maximal, then FZ(G) is
an M *-group so Z(G) is noncyclic, and we conclude that H is a direct factor
of G so G is an M *-group. In what follows we assume that E > {1} for every
choice of nonabelian H € I'y; then m > 4.

In view of Lemma 2.6, one may assume that H(= M x E) is chosen so
that |M| > 16. Obviously, H has only one abelian maximal subgroup, say
Ai, and F < Z(H) < A;. Tt follows that ANH = A; so Cq(F) > HA =G,
and we get F < Z(G) (< since Z(M) < Z(G) and Z(M) £ E). If E £ ®(G),
then G = X x Gg, where X < F is of order 2 and a nonabelian Gg € I'y.
However, Gg is an M *-group so is G. Next we assume that £ < ®(G).

Suppose that G = G/E is not of maximal class. Since M = M = H < G,
we get exp(G) = exp(M) = exp(M) > 8. By Remark 1.3, we get G = HxC =
M x C, where |C| = 2. Also, C <G is abelian and CNH = ENH = {1} so
G = M - C, a semidirect product with kernel C. As in part (i) of the proof of
Lemma 2.3, we prove that G = M x C so G is an M *-group.

Next we assume that G is of maximal class. Then d(G) = 2 since E <
®(G), and hence, by Lemma J(c), we get d(F') < 3 for all F € 'y so |E| = 2.
Since E £ G’ (otherwise, by Lemma J(i), G is of maximal class), we get
ENG = {1} and so G/G’ is abelian of type (4,2) since d(G) = 2 and
4 < |G/G'| <8. Let U/G',V/G' < G/G' be distinct cyclic of order 4. Then
U,V are abelian since exp(X/X’) = 2 for every M *-group X. We have
UNV =Z(G) so |G'| =2 (Lemma J(h)) so G is an A;-group (Lemma J(k)),
a final contradiction. O

PROOF OF THEOREM A. Set |G| = 2™. As above, we may assume that
m > 4 and G is not an A;-group.

(A) Suppose that the set T'; has no abelian member. Take H = M x E €
Iy, where M is a Z-group and exp(E) < 2. Then, by Lemma 1.9, M is
extraspecial. Write D = (F' | F € T'y); then D < G’ N Q1(Z(G)) and all
maximal subgroups of G = G/D are elementary abelian so exp(G) = 2.

(i) Suppose that |[D| =2 so D = G’ = ®(G). Then, by Lemma 1.5, G is
not extraspecial so that |Z(G)| > 2. If Z(G) is noncyclic, then G = Gy x L,
where L < Z(G) is of order 2 and L £ D. However, Gy € T'; is a Z*-group
so is G. Now assume that Z(G) is cyclic; then Z(G) = C4. In that case,
all members of the set I'1, containing Z(G), must be abelian, contrary to the
assumption.

(ii) Now suppose that |D| > 2. Then there are nonabelian F, H € I'; such
that F' # H'. In that case, exp(F/F’) =2 = exp(H/H'). Let H = M X E be
as above; then F/ £ M so MF'/F" = M. The intersection (MF'/F")N(F/F")
is an abelian maximal subgroup of the extraspecial group M F’'/F’ so |M| =
|[MF'/F'| = 8 (Lemma 1.4). Since a nonabelian H € TI'y is arbitrary, G



332 Y. BERKOVICH

satisfies the hypothesis of Lemma 2.6 so there is an abelian A € 'y, contrary
to the assumption.

(B) Now let A € 'y be abelian. Let a nonabelian H = M x E be as above.
Then M N A is an abelian maximal subgroup of M so, by Lemma 1.12(a), M
is of maximal class, and the result follows from Lemma 2.8. O

3. ProOOF orF THEOREM B
In this section p > 2. We begin with the following

LEMMA 3.1. Suppose that p > 2 and all nonabelian mazximal subgroups of
a nonabelian p-group G are M3 -groups. Then either G is an M3 -group or
one of the following holds:

(a) G is minimal nonabelian.

(b) G is of mazimal class and order p*.

(¢) G=MxC = Nx*C is of order p*, where M is nonabelian of order p>
and exponent p, N = Mys and C is cyclic of order 2.

(d) G is extraspecial of order p® and exponent p.

(e) G is special of order p°, d(G) = 3.

(f) G is special of order p® and exponent p, d(G) = 3.

(g) G is of order p°® without abelian subgroup of index p, |G’'| = p*, Z(G) <
G’ is abelian of type (p,p). If R < Z(G) is of order p, then G/R is of
maximal class.

PrOOF. Groups (a-d), (f) and also groups of exponent p from parts (e)
and (g) satisfy the hypothesis (if the group of (e) is of exponent p?, it may be
an Ag-group [BJ2, §5] and so does not satisfy the hypothesis). Set |G| = p™.
One may assume that G is not an A;-group so m > 3. In view of Lemma J(a),
one may also assume that m > 4. All proper nonabelian subgroups of G are
M -groups (Remark 1.1).

Let M < G be an Aj-subgroup and let M < H € I'y. Then H < M x C,
where C = Cg(M). Suppose that M «C = G. If U < C is cyclic of order
p?, then M x U is not an M *-group. By Remark 1.2, M N C = Q;(C) so
G = M * C, a contradiction since m > 4. Now let exp(C) = p. Since m > 4,
then C' £ M (Lemma J(a)).

Suppose that G = M * C. By modular law and Remark 1.1, all maximal
subgroups of C' are elementary abelian so C is either elementary abelian or
nonabelian of order p? and exponent p. If C is elementary abelian, then
Z(G) = C = Z(M) x E, and then G = M x E is an M3 '-group. If C
is nonabelian, then G = M * C is extraspecial of order p°® and exponent p
(Lemma 1.5). Next we assume that M « C < G; then M « C € I'7 is an
M -group.

Set D = (H' | HeTI); then D<GNZGE) < G). tM<G
is minimal nonabelian and M < H € I'y, then M’ = H' <G and H/H' is
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elementary abelian. It follows that all maximal subgroups of G = G/D are
abelian and ©;(G) = G (Lemma J(n)) so G is either elementary abelian or
minimal nonabelian of order p? and exponent p since p > 2 (Lemma J(d)).
By Lemma J(g), |D| < |G| < p3.

(i) Suppose that |D| = p; then G is elementary abelian since m > 4 so
D = @ and all Aj-subgroups are normal in G. Let M < G be minimal
nonabelian. Then, by Lemma J(b), G = MCqg(M) and exp(Cg(M)) = p
(Remark 1.2). In that case, as we have proved, G is either M -group or
extraspecial of order p® and exponent p.

(ii) Now let |D| > p. Then there are two distinct F, H € I'; such that
H' # F’. The set I'; has at most one abelian member since |G’| > |D| > p
(Lemma J(h)). In that case, H/H' and F/F’ are distinct elementary abelian
s0 0 (G) = Q(FH) = FH = G. Since p > 2 and cl(G) < 2, we get exp(G) =
p. It follows that if G’ is minimal nonabelian, then |G| = p* ((Lemma J(d)).

(ii1) Assume that G is an .A;-group of order p* and exponent p; then
d(G) = d(G) = 2. Since |G’ : D| = p, we get |D| = p? and |G'| = p? so
|G| = |D||G| = p°. Let F and H be such as in the previous paragraph. Then
F=MxH =Mx M{and H= M, x F/ = M; x M', where M and M,
are nonabelian of order p? (note that F"H' < ®(G) < FN H). Since F/H' <
G/H' is nonabelian of order p3 and d(G/H') = 2, it follows from Lemma J(a)
that G/H’ is of maximal class. Similarly, G/F’ is of maximal class. If G has an
abelian subgroup of index p, then p® = |G| = p|G’||Z(G)| = p® (Lemma J(h)),
a contradiction. Thus, all members of the set I'y are nonabelian and G is from
part (g). It is easy to check that if, in addition, exp(G) = p, then indeed G
satisfies the hypothesis, by Lemma J(d,a)).

(ii2) Now let G be elementary abelian; then G’ = D = ®(G) and
cl(G) = 2.

Assume that exp(Z(G)) > p and let C < Z(G) by cyclic of order p2.
Then all members of the set I'; containing C, are abelian so |G'| = p < |D|
(Lemma J(h)), a contradiction.

Thus, exp(Z(G)) = p. As above, Z(G) < ®(G) (otherwise, G is an M-
group). In that case, D < Z(G) < ®(G) < D so G is special. If M < G is
minimal nonabelian, then M®(G)/®(G) = MD/D = M/(M N D) = E,2 so
d(G) > 2.

Suppose that d(G) > 3. Then there exist distinct F, H > M, where
F,H € T'y. Since M is a direct factor in F' and H (Remark 1.1), we get
Ng(M) > FH = G so M < G whence all A;-subgroups are normal in G. We
have G = MCg(M) since MCg(M) > FH = G. Assume that Cg(M) has
an Aj-subgroup N and let M NN = {1}. It follows from Remark 1.2 that
exp(M)=p=exp(N)so M =2 N. Let T < M x N be the diagonal subgroup;
then T' = M is an A;-subgroup so T<G. Since TNM = {1} =TNN, we get
Cun(T) > MN, a contradiction since T is nonabelian. Now let M NN > {1};
then M NN = Z(M) = Z(N). In that case, M x N is extraspecial so it is
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not a subgroup of any M, -group, and we conclude that G = M x N. Then
|G'| = p < p? < |D|, a contradiction. Thus, N does not exist so Cg(M) is
elementary abelian whence coincides with Z(G). Since G = MCq (M), we get
|G'| = p < |D|, a contradiction.

Thus, d(G) = 3. In that case, |G| = |G’||G/G'| < p°. Suppose that
|G’'| = p3. Then |G| = p® and G’ = D = F' x H' x L', where F, H, L are
A;-subgroups of G. Then exp(G/F'H’) = exp(G/H'L’) = exp(G/L'F') =p
so, since FPH' N H'L' N L'F’" = {1}, we conclude that exp(G) = p.

Now let G be (special) of order p° or pb, exp(G) = p, |G'| = p? or p?,
respectively, and d(G) = 3. If M < G is an A;j-subgroup (of order p?), then
the M3‘-group MG’ = M x E (here G’ = M' x E) is the unique member of
the set I'; containing M. It follows that G satisfies the hypothesis. O

PROOF OF THEOREM B. Set |G| = p™. As above, assume that G is not
an A;-group and m > 4. By Lemma 1.5, if G is extraspecial, then exp(G) = p
and all such G satisfy the hypothesis. Next we assume that G is not extraspe-
cial. Since m > 4 and p > 2, G is not of maximal class.

(A) Let the set I'y have no abelian member. Then, by Lemma 1.9, each
nonabelian member H € I'y is of the form E; x E5, where E; is extraspecial
and F is elementary abelian so |[K’'| < p for all K € I'y, and we get |G| < p3
(Lemma J(g)). Put

D= (H'| HeD))(< &' NU(Z(E))).

As above in similar situation, G = G/D is either elementary abelian or non-
abelian of order p? and exponent p.

(i) Suppose that |D| = p; then G is elementary abelian since m > 4, and
we conclude that D = G'. If Z(G) = G, then G is extraspecial (Lemma J(m),
and so exp(G) = p. Now assume that Z(G) > G'. If Z(G) contains a cyclic
subgroup of order p?, then all members of the set I'y, containing Z(G), are
abelian, contrary to assumption. Thus, exp(Z(G)) = p. If L < Z(G) is of
order p and L # G'(= ®(Q)), then G = L x Gp; then G is an Z*-group since
GO is.

(ii) Suppose that |D| > p. Then there are nonabelian F, H € T'y such
that F' # H’ and F/F’ is elementary abelian maximal subgroup of G/F"’.
Let H =M x E, where M is extraspecial and FE is elementary abelian; then
F' £ M so MF'/F' =2 M. The intersection (M F’/F')N (F/F") is an abelian
maximal subgroup of the extraspecial group M F'/F' so |M| = |MF'/F'| =
p? (Lemma 1.13). Since a nonabelian H € T’y is arbitrary, G satisfies the
hypothesis of Lemma 3.1, and we are done.

(B) Now suppose that there is abelian F' € T';. Let a nonabelian H =
M x E € T'; be as above. Then M N F' is an abelian maximal subgroup of
M so, by Lemma 1.12, |M| = p3. Thus, all nonabelian members of the set 'y
are M -groups so result follows from Lemma 3.1. O
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4. PROOF OF THEOREM C

In this section we classify the nonabelian 2-groups, all of whose nonabelian
maximal subgroups are (Z x C)-groups.

The proof of the following lemma is straightforward (see also [BJ1, Ap-
pendix 16]).

LEMMA 4.1. Suppose that m > 1 and G = Q x C, where
Q=1(a,b|a*=1,a>=0%a"=a"1) = Qg
and C = (co) = Com, QN C = Z(Q) = 01 (C). Writed = ab, c = &
Then

(a) Q1(G) = QQ2(C), G has exactly seven involutions (ac,ac®, be, bc?, de,
dc®,a?) so exactly four cyclic subgroups of order 4.

(b) G has ezactly four proper nonabelian subgroups of order 8, namely @,
Dy = {a,bc) = Dg, Dy = (d,bc) = Dg, D3 = (b,dc) = Dg. It follows
that Q 1is characteristic in G and G =D; xC (i=1,2,3).

LEMMA 4.2 ([BJ1, Appendix 16]). Suppose that n > 3 and G = Q x C,
where
Q=(abla?  =1,02=0a> "a" =a") 2 Qun, C = () = Cy. |G| = 2"}
Then Q1(G) = G and the set T'y contains exactly four members of maximal
class, namely Q, D = (a,ba) = Dan, S1 = (ac, abc) = SDan, S = (ac, be) =
SDgox.

PROOF. Since (bc)? = b2c? = b?b? = 1, we get o(bc) = 2. It follows from
a’ = a® = a~! that D = (a,bc) = Dan. Next,

(abc)? = ababc® = ab*a™'bv? =1, o(ac) = 2",

; _ _ _ n—2 _ n—2
(ac)® =abc =a 1Pet = a7 12 T = (ac

so that Sy = (ac, abc) = SDgn. It follows from o(bc) = 2 and
(ac)bc _ (ac)abc _ (ac)—1+2"’2

that So = {(ac,bc) = SDan. We have @, D, S1,52 € I'1 and these subgroups
are all members of maximal class in the set I'y (Lemma J(f)). Since, by
Lemma J(j), the set G — D contains an involution z, we get Q4 (G) > (x, D) =
G. O

LeEmMA 4.3 ([BJ1, Appendix 16]). Suppose that n > 3, m > 2 and G =
Q * C, where |G| = 2™+t~ and

Q = {(a,b]| @ =102 =0 e = a ') = Qgn, C = (c) = Com.
Then

(a) Q1(G) = Q *Q(C) is of order 2L and contains all subgroups of G
of maximal class.

271.72

)—1+2"*2

)
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(b) G contains exactly one subgroup, namely Q, that is = Qan, exactly
one subgroup D = Daon, and ezxactly two subgroups, say S1 and Sa,
that are isomorphic to SDon. If M < G s of maximal class and order
2" then G = M x C. The intersections D N Q and S1 NSy are cyclic,
S1 N D # SoN D are isomorphic to Don-1, S1NQ # Sy N Q are
isomorphic to Qon—1. Next, G has no subgroup of mazximal class and
order 271,

PROOF. Since G/Q is cyclic, we get Q1(G) < @ x Q2(C) < N (G)
(Lemma 4.2(a)). Let T' < @ be nonabelian of order 8. Then 77 = Q1 (Q’) =
04 (C). Since 4 (T'*Q(C)) = T xQ2(C) and every 2-group of maximal class,
say U, is generated by its nonabelian subgroups of order 8, we get U < Q1(G).
Next, by Lemma 4.2(b), €4 (G) contains exactly one subgroup 2 Da», exactly
one subgroup @ = Qon, and exactly two subgroups & SDon. The last as-
sertion is true since cl(G) = n — 1. The rest of (b) follows from Lemma 4.2

applied to Q1(G). O

LEMMA 4.4. Suppose that a 2-group G = U * Z, where U is of mazximal
class, Z = 7Z(G) = (¢} is cyclic of order 2™ > 2. Then

(a) All A;-subgroups of G are metacyclic and have orders < 2"+1,

(b) The group G contains an A;-subgroup = Maon+t1.

(¢) If M < G is minimal nonabelian and M £ U, then M NU = Cy4 and
M/(MNU) is cyclic.

(d) G has no subgroup = Eg.

ProOF. To prove that G contains an .A;-subgroup of order 2"*!, one
may assume that |U| = 8 and n > 2. Let U = (a, R), where R < U is of
order 4, a € U — R, b = ac, H = (b,R). Then RN (b) = Q1(Z) is of order
2, 0(b) = o(c) = 2" so |H| = 2"*! and H = Mya+1 since cl(H) < cl(G) = 2,
n > 2 and H is nonabelian.

Let H < G be an A;j-subgroup such that H £ U. To describe the struc-
ture of H, one may assume, in view of Lemma 4.3(b), that U is generalized
quaternion. Then HU/U is cyclic as a subgroup of G/U = Z/(Z NU) so
|[HNU| > 2 since H is nonabelian. Since H N U is abelian, it is cyclic so H
is metacyclic. Assume that |[H NU| > 4. Then 53(HNU) = ®(HNU) <
®(H) =7Z(H) so Cq(U1(HNU)) > H is nonabelian, a contradiction. Thus,
|[HNU| = 4. Since |H/(HNU)| = |[HU/U| < |G/U| = 2" ! we get
|H| = |HNU||HU/U| < 4.2""1 = ontl,

Assume that G has a subgroup F = Eg. As above, let U be a generalized
quaternion group. Then E < Q;(G) = U * Q2(Z) so one may assume that
|Z] = 4. In that case, ENU is of exponent 2 and order 4, a contradiction
since U has no abelian subgroup of type (2, 2). O

Thus, the property (M « C) is not inherited by nonabelian subgroups.
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LEMMA 4.5. Suppose that every nonabelian mazimal subgroup of a 2-group
G, |G| = 2™ > 23, is an (M xC)-group. If G is neither Ai- nor (M xC)-
group, then G = M x D, where M is nonabelian of order 8 and |D| = 2.

PRrOOF. In view of Remark 2.7, one may choose a nonabelian M % Z =
H €Ty so that M is of maximal class and Z(H) = Z is cyclic of order > 2.
Assume that Z(G) is noncyclic. Then Z(G) contains a subgroup L of order
2 such that L £ H so G = H x L. Since (M *x U1(Z)) x L € T'y is neither
abelian nor (M * C)-group, we get a contradiction. Thus, Z(G) is cyclic.

We claim that Z(G) = Z. Indeed, by Lemma J(j), H contains a G-
invariant abelian subgroup R of type (2,2). Then A = Cg(R) € I'y is abelian
since Z(A) is noncyclic. In that case, Cq(Z) > AH = G so Z < Z(G). If
7Z < Z(G), then G = MZ(G) is an (M x* C)-group, contrary to the hypothesis.
Assume that F' € Ty is of maximal class. Then G = F % Z(G) is an (M * C)-
group, a contradiction. Thus, Z(G) = Z(H) for all nonabelian H € I';. As
above, we write Z(G) = Z. We have also proved that Z < ®(G).

If F=BxZ,K = LxZ €T’y are nonabelian, then |B| = |L|. Write
G = G/Z. Then, for nonabelian F, H € T'y, F = H is either 2 E4 or dihedral.
Thus, either G has at least two maximal subgroups = E,; (Lemma J(n)) or all
nonabelian maximal subgroups of G are dihedral. In that case, Q1(G) = G
(of order > 8) is one of the following groups: (i) Ds, (ii) Es, (iii) Dg x Ca, (iv)
Dan,n > 3 (Proposition 2.5).

(i) Suppose that G = Dg. We have d(G) = 2 since Z < ®(G) and, if
U < G is cyclic of order 4, then U is abelian. Two other members of the set
I'y, say F and H, are nonabelian. Let F' = Bx* Z be as above. By Lemma 4.1,
F contains exactly one subgroup = Qg and exactly three subgroups = Dg so
one may assume from the start that B = Qg; then B<G. If G/B is noncyclic,
then B < ®(G) since d(G) =2 so F = Bx Z < ®((G), a contradiction. Thus,
G/B is cyclic so G = BZy, where Z; < G is cyclic. We get G’ < B. Since
G is not an Aj-group, we get G’ =2 C4 (Lemma J(k)). Thus, G/G’ is abelian
of type (2",2), where n > 1 since m > 4. In that case, G/G’ contains two
distinct cyclic subgroups Z;/G’ and Z>/G’ of index 2. Then the metacyclic
subgroups 71, Z> € I'1 must be abelian since all nonabelian members of the
set I'; are not metacyclic, a contradiction since the set I'; has only one abelian
member in view of |G| =4 > 2 (Lemma J(h)).

(ii) Suppose that G' = Eg. Then G’ < Z = Z(G) is cyclic and cl(G) = 2.
If 2,y € G, then [x,y]? = [z,y?] = 1 s0 |G'| = 2 since G is cyclic. If F € Ty is
nonabelian, then F' = B Z, where B is nonabelian of order 8. Then B’ = G'.
By Lemma J(b), G = B * Cg(B). We have |Cg(B) : Z| = 2 so Cg(B) is
abelian. Then Cg(B) = Z(G) = Z, a contradiction.

(iii) Suppose that G = D x L, where D = Dg and |L| = 2. In that case,
G has exactly three abelian maximal subgroups: T} of type (4,2) and Ty, T3
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of type (2,2,2). Then T;, i = 1,2, 3, are abelian since they are not (M *C)-
groups (indeed, if X is an (M * C)-group, then X/Z % T;, i = 1,2,3). In
that case, Z = Z(G) = Ty N T, has index 4 in G, a contradiction since
|G : Z| = |G| = 16.

(iv) Suppose that G = G/Z = Dan,n > 3, and let | Z| = 2™, m > 1. Then
d(G) = 2 since Z < ®(G). If T/Z < G/Z is cyclic of index 2, then T € Ty
is abelian. Therefore, by Lemma J(h), |G| = 2|G/Z| = 2771 > 8 s0 T is
the unique abelian member of the set I'y (Lemma J(h)). If F = AxZ € I'y
is nonabelian, then one may assume that A <G (Lemma 4.3). Since the set
I'y has exactly three members and one of them is abelian, the quotient group
G/A must be cyclic, and we conclude that G/A = Cam since F/A = Com—1
is maximal in G/A. But G’ < A so G’ is cyclic, by Burnside (recall that
|G’| > 8). Since G is not of maximal class, we get |G : G'| > 8 (Lemma J(i)).
We have |G| = |Z||G/Z] = 2™ so |G/G'| = 2™+ since |G'| = 2"~ L. Since
G/A = Cam, it follows that G/G’ has a cyclic subgroup of index 2. Let
U/G', V]G < G/G' be distinct cyclic subgroups of index 2. Since U,V being
metacyclic, are not (M x C)-groups, a contradiction: G has only one abelian
maximal subgroup. O

PrOOF OF THEOREM C. Assume that G is not minimal nonabelian.
Let a nonabelian H € T'; be not of maximal class (if such H does not
exist, we are done, by Remark 2.7). Then H has a G-invariant four-subgroup
R. In that case, A = Cg(R) € T'1 since R £ Z(H), and A is abelian since
Z(A) is noncyclic. Let FF'= Bx Z €T’y be a (£ % C)-subgroup. Then BN A is
an abelian maximal subgroup of B so |B : B'| = 2|Z(B)| = 4 (Lemma J(h))
whence B is of maximal class, by Lemma J(i). Thus, all nonabelian members
of the set I'y are (M * C)-groups, and the theorem follows from Lemma 4.5.
O

Let a 2-group G = M * C be an M3 * C-group, where M is nonabelian of
order 8 and C' is cyclic of order 2" > 22; then |G| = 2"*2. By Lemma 4.4(b),
there is in G an A;j-subgroup H 2 Mgn+1. Then H € T’y is not an (M3 x C)-
group.

5. PROOF OF THEOREM D

In this section we classify the nonabelian p-groups, p > 2, all of whose
nonabelian maximal subgroups are (Z * C)-groups.

A p-group G = A x Z, where A is nonabelian of order p* and Z = Z(G)
is cyclic, is said to be (M3s * C)-group.

LEMMA 5.1. Ifp > 2 and G is an (M3 xC)-group and |Z(G)| > p, then
G = W (G) * Z(G), where Q1(G) is nonabelian of order p* and exponent p.
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PROOF. Since cl(G) = 2, G is regular so we get
Q1(G)] = |G/V1(G)| = |G/B1(Z(G))| = p°, exp(u(G)| = p.
By the product formula, G = Q1 (G)Z(G) so Q1(G) is nonabelian. O

LEMMA 5.2. Suppose that p > 2 and all nonabelian mazimal subgroups
of a nonabelian p-group G, p > 2, are (Ms * C)-groups. Then G is either
minimal nonabelian or of order p*.

PROOF. Set |G| = p™. As above, assume that G is not an .4;-group and
m > 4.

Assume that G = U x Z is an (M3 * C)-group, where U = Q1(G) is
nonabelian of order p® and exponent p (Lemma 5.1) and Z = Z(G) is cyclic
of order > p2. Let F € I';. If U £ F, then |Q1(F)| = p? so F is metacyclic
so it is not an (M3 * C)-group; then F is abelian. If U < F, then F is an
(M3 x C)-group, by the modular law. Since d(G) = 3, the set I'; contains
IT1| — 1 = p? + p abelian members, which is impossible. Thus, G is not an
(M3 * C)-group.

Assume that G is of maximal class. In that case, there is H € I'; of
maximal class [Bla]. Then H is not an (Msj * C)-group since |H| > p3, a
contradiction.

Let H = M x Z € T'y, where M is nonabelian of order p® and exponent p
and Z is cyclic of order > p (Lemma 5.1). Then H has a G-invariant subgroup
R of type (p,p) (Lemma J(j)). Since R £ Z(H), we get A = Cg(R) € T'; so
A is abelian since Z(A) is noncyclic. Then Cg(Z) > AH = G so Z < Z(G).

Suppose that Z < Z(G); then |Z(G) : Z| = p, by the product formula.
If Z(G) is cyclic, then G = M % Z(G) is an (M3 * C)-group, a contradiction.
Now assume that Z(G) is noncyclic. Then Z(G) = Z x L, where |L| = p.
In that case, G = H x L = (M x Z) X L, and (M *U1(Z)) x L € Ty is
not an (Ms * C)-group, a contradiction. Thus, Z(H) = Z for every choice
of H. Since, in addition, Z < A for every abelian A € I'y, it follows that
2(G) = Z < 9(qQ).

Let distinct nonabelian F, H € T'; (Lemma J(n)), where H is as above
and F = M; * Z, where M; = Q;(F) is nonabelian of order p® and exponent
p (Lemma 5.1); then M, M; <G. Since Z < ®(G) < H and M1Z = F # H,
it follows that My # M. Since My N M = My N H, we get M1 N M = E,.
so MM is of order p*, by the product formula. Let MM; < W & I'y; then
|Q1(W)] > p* so W is not an (M3 * C)-group, a contradiction. O

PrOOF OF THEOREM D. In view of Lemma 5.2, one may assume that
|G| = p™ > p*; we also assume that G is not an A;-group. Assume that there
exist H = B Z, where B is a Z-group of order > p? and Z = Z(H) is cyclic.
In that case, there is in H a G-invariant subgroup R = E,» (Lemma J(j));
then R £ Z = Z(H) so A = Cg(R) € I'y is abelian. In that case, BN A is
an abelian maximal subgroup of B; then |B| = p® (Lemma 1.12(b)), contrary
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to the assumption. Thus, all nonabelian members of the set I'; are (M3 C)-
groups, and the result now follows from Lemma 5.2. O

6. PROOF OF THEOREM E

If p = 2, then an (M % C)-group G = M % C is a (£ x C)-group but this
is not the case for p > 2 and |M| > p®. In this section we consider the

nonabelian p-groups, p > 2, all of whose nonabelian maximal subgroups are
(M x C)-groups.

PrOOF OF THEOREM E. In view of Lemma 5.2, one may assume that
cl(X) > 2 for some X € I'y; then |G| > p*.

Suppose that G is of maximal class. Let E,2 = R<G; then Cg(R) € Ty
is abelian. Conversely, every p-group of maximal class with abelian subgroup
of index p satisfies the hypothesis (this follows immediately from Fitting’s
Lemma). In what follows we assume that G is neither an A;-group nor of
maximal class.

Now let G = M * Z(G) be an (M x C)-group. Then, as in the previous
paragraph, M has an abelian subgroup of index p. Assume that |Z(G)| =
p*,n > 2, and |M| > p3. Let S be a G-invariant subgroup of index p in
M'(=G’). Then G/S = (M/S)x(Z(G)/(Z(S)) so G/S contains a maximal
subgroup U/S of order p" ! which is an A;-group (Remark 1.2). Then U € T’y
is not an (M * C)-group, a contradiction. Thus, if [M| > p?, then |Z(G)| < p%.
Let Z(G) = C,2. Then every member of the set I'1, not containing Z(G), is
of the same class as G so of maximal class. If Z(G) < H € I'; and H is
nonabelian, then H = Z(G) * (H N M) is an (M *C)-group. If |[M| = p?
(then |Z(G)| > p?), then G does not satisfy the hypothesis (see the second
paragraph of the proof of Lemma 5.2). In what follows we assume that G is
not an (M * C)-group.

Assume that H € I'; is of maximal class. Let E» = R < H be G-invariant
(R exists, by Lemma J(j)). Then A = Cg(R) € T'; is abelian since the center
of (M x C)-group must be cyclic. In that case, either G is of maximal class or
|Z(G)| = p? (Lemma 1.13). In the last case, as easily seen, Z(G) is cyclic and
G = HZ(G) is an (M « C)-group, contrary to the assumption. Thus, the set
I'; has no member of maximal class.

Let X = K x Z € I'y, where K is of maximal class and order > p? and
Z = Z(X) is cyclic of order > p (in view of Lemma 5.2 and the previous
paragraph, such X exists); then X’ = K’ <G is noncyclic of order > p? so
it contains a G-invariant subgroup R = E,. (Lemma J(j)). In that case,
A = Cg(R) € T'; is abelian. Since Z < A, we get Cq(Z) > AX = G so
Z <7Z(G). As in the proof of Lemma 5.2, Z(G) = Z is cyclic and |Z| > p?.

Take a nonabelian Y € T';. By the previous paragraph, Z(Y') = Z. Thus,
Z(G) < ®(G). Since the set I'; has an abelian member, we get |G'| < p| K|
(Lemma J(h)).
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Write G = G/Z; then |G| > p* and G is neither abelian nor A;-group
(indeed, X/Z is nonabelian). In that case, all nonabelian maximal subgroups
of G are of maximal class so, by Remark 2.7, G is either of maximal class or
G = KZ(Q) is of order p* with |Z(G)| = p? (Remark 2.7). O

7. PROBLEMS

1. Classify the p-groups G, p > 2, all of whose A;-subgroups have the
same order p®. (For the case where exp(G) > p > 2 and all A;-subgroups of G
are of order p® and exponent p, Mann showed that then the Hughes subgroup
of G is abelian and maximal in Gj; see item 115 in [B5, Research Problems
and Themes I].)

2. Find the types of A;-subgroups in a group G = My x --- x M,, (G =
My % -+ % M,), where all M; are 2-groups of maximal class.

3. Classify the 2-groups G, all of whose nonabelian maximal subgroups
are either generalized dihedral or M *-groups or (M * C)-groups.

4. Classify the nonabelian p-groups, p > 2, all of whose maximal sub-
groups are M *-groups.

5. Describe all A;-subgroups of a p-group G = M x C (G = M x C with
MNC =0Q(C)), where M is minimal nonabelian and C is cyclic.

6. Does there exist a p-group all of whose maximal subgroups are of the
form A x B, where A and B are (i) of maximal class, (ii) extraspecial?

7. Classify the p-groups G such that, whenever H € I'y, then H €
{M x C, M % C}, where M is minimal nonabelian and C' is cyclic.

8. Study the nonabelian p-groups all of whose nonabelian maximal sub-
groups have cyclic centers.

9. Classify the p-groups all of whose maximal subgroups (nonabelian
maximal subgroups) are special.

10. Classify the p-groups all of whose maximal subgroups are nontrivial
direct (central) products.

11. Classify the 2-groups with odd number of dihedral subgroups of order
8.

12. Classify the nonabelian 2-groups G such that, whenever H € I'; is
nonabelian, then H = MZ(H ), where M is of maximal class.

13. Classify the 2-groups G containing an Aj-subgroup M of order 16
such that Cq(M) < M.

14. Classify the p-groups G containing a nonabelian subgroup M of order
p3 such that (i) |Cq(M)| = p?, (ii) Ca(M) is cyclic.

15. Study the p-groups all of whose A;-subgroups are isomorphic.

16. Classify the 2-groups all of whose nonabelian subgroups have a section
>~ Qs (compare with Lemma 2.1).

17. Study the p-groups all of whose 4;-subgroups of minimal order are
conjugate.
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18. Study the p-groups G such that |G : HY| = p for all A;-subgroups
H < G.

19. Study the p-groups all of whose A;-subgroups are metacyclic. (See
[J2]. See also [BJ3] where the 2-groups all of whose .4;-subgroups are isomor-
phic with Mg, are classified.)

20. Classify the 2-groups all of whose subgroups of index 4 are (i) M *-
groups, (ii) Dedekindian.
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