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ALTERNATE PROOFS OF TWO CHARACTERIZATION

THEOREMS OF MILLER AND JANKO ON 2-GROUPS, AND

SOME RELATED RESULTS

Yakov Berkovich

University of Haifa, Israel

Abstract. We study the p-groups all of whose nonabelian maximal
subgroups are decomposable in direct or central product of two groups with
specific structures.

1. Introduction

Let Θ be a group theoretical property inherited by subgroups. There are
a lot of papers where the finite non Θ-groups all of whose proper subgroups
are Θ-groups are investigated (such groups we call Θ1-groups). However, if
the property Θ is not inherited by subgroups, Θ1-groups, as a rule, do not
exist. In that case, however, one can try to classify non Θ-groups G all of
whose maximal subgroups are Θ-groups.

As Janko has reported [J1], he has classified the 2-groups all of whose
minimal nonabelian subgroups (=A1-subgroups) are ∼= Q8; this coincides with
Theorem 2.4 (in fact, in [J2] the 2-groups all of whose A1-subgroups have the
same order 8 are classified). He also noticed that his result implies the classifi-
cation of minimal non Dedekindian 2-groups (this coincides with Lemma 2.1).
Theorem 2.4 follows from Lemma 2.3, below. Our proof of Lemma 2.3 uses
Lemma 2.1.1

Recall that a group is said to be Dedekindian if all its subgroups are
normal. If G is a nonabelian Dedekindian group, then G = Q × E × A,
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1It appears that Lemma 2.1 was proved by G.A. Miller [M1] in 1907 (I learned about

this from Internet, after completing this paper). Janko’s proof of Theorem 2.4 is indepen-
dent of Lemma 2.1.
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where Q ∼= Q8, E is elementary abelian 2-group and A is abelian of odd
order (Dedekind). As follows from general definition, a p-group G is said
to be minimal nonabelian (=A1-group), if it is nonabelian but all its proper
subgroups are abelian. In this paper G is a p-group, where p is a prime.

A p-group M × E is said to be an M×-group if M is of maximal class
and E elementary abelian (we consider the group {1} as elementary abelian
p-group for every prime p). The above group is said to be an M×

3 -group if,
in addition, |M | = p3. All nonabelian epimorphic images of M×-groups are
M×-groups. Every nonabelian subgroup of M×

3 -group is also an M×

3 -group.
All nonabelian maximal subgroups of an M×-group G are M×-groups if and
only if G has an abelian subgroup of index p.

It follows from Lemma J(i) that, if G is a 2-group of maximal class and
order 2m, then it is one of the following groups: dihedral D2m , generalized
quaternion Q2m or semidihedral SD2m (m > 3). These three groups together

with M2m = 〈a, b | o(a) = 2m, o(b) = 2, ab = a1+2m−2

, m > 3〉 present the
complete list of nonabelian 2-groups of order 2m with cyclic subgroup of index
2. By Γ1 we denote the set of maximal subgroups of G.

Remark 1.1. Let a p-group G = M ×E, where M is a nonabelian group
with cyclic center and E > {1} is elementary abelian and let M1 < G have
no direct factor of order p and |M1| > p. We claim that M1 is isomorphic
to a subgroup of M . It suffices to prove that M1 ∩ E = {1}. Assume that
X ≤ M1 ∩ E is of order p. Then G = X × G0 so, by the modular law,
M1 = X × (M1 ∩ G0), a contradiction. In particular, if M1 < G is minimal
nonabelian, then M1 is isomorphic to a subgroup of G/E ∼= M .

A nonabelian 2-group G is said to be generalized dihedral if it is non-
abelian and contains a subgroup A such that all elements of the set G−A are
involutions. Then A is abelian of exponent > 2, |G : A| = 2, all subgroups
of A are G-invariant, Ω1(A) = Z(G) and G/G′ is elementary abelian since
Ω1(G) = G (Burnside). Clearly, A is characteristic in G.

We use notation which is standard for finite p-group theory (see references
[B1, B2, B3]). In Lemma J some elementary results which we use in what
follows, are gathered.

Lemma J. Let G be a nonabelian p-group.

(a) [B2, Proposition 19(a)] Let B < G be nonabelian of order p3. If
CG(B) < B, then G is of maximal class.

(b) [B1, Lemma 5.3] Suppose that E < G is such that |E′| = p, Z(E) =
Φ(E) and [G, E] = E′. Then G = E ∗ CG(E). The last equality
holds whenever E < G is either minimal nonabelian or extraspecial
and [G, E] = E′.

(c) (O. Schreier) If d(G) = 2 and |G : H | = 2, then d(H) ≤ 3.
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(d) (L. Redei [R]; see also [BJ2, Lemma 3.1.]) If G is minimal nonabelian,
then |G′| = p, d(G) = 2, |Ω1(G)| ≤ p3 so all proper subgroups of G
are of rank ≤ 3. If Ω1(G) = G, then either p > 2 and G is of order
p3 and exponent p or p = 2 and G ∼= D8. If |Ω1(G)| ≤ p2, then G is
metacyclic.

(e) (Z. Janko; see [B5, Theorem 10.28, 10.32, 10.33] and [J3]) All A1-
subgroups of a 2-group G are generated by involutions if and only if G
is generalized dihedral.

(f) [B3, Theorem 7.4(c)] If |G| > p3 and G is not of maximal class, then
the number of subgroups of maximal class and index p in G is a multiple
of p2.

(g) (Kazarin-Mann; see also [BJ2, Lemma 3.2(d)]) If |H ′| ≤ p for all
H ∈ Γ1, then |G′| ≤ p3. If, in addition, G has an abelian subgroup of
index p, then |G′| ≤ p2.

(h) (Tuan; see [I, Lemma 12.12]) If G has an abelian maximal subgroup,
then |G′| = 1

p
|G : Z(G)|. If G has two distinct abelian maximal sub-

groups, then |G′| = p.
(i) (O. Taussky) If p = 2 and |G : G′| = 4, then G is of maximal class.
(j) [B4, Remark 6.2] If G is neither cyclic nor a 2-group of maximal class,

then the number of cyclic subgroups of order pk > p in G is a multiple
of p.2

(k) [BJ2, Lemma 3.2(a)] If G′ ≤ Z(G) is of exponent p and d(G/G′) = 2,
then G is an A1-group.

(l) [B1, Theorem 6] If p > 2 and Φ(G) is cyclic, then Φ(G) ≤ Z(G).
(m) If |G′| = |Z(G)| = p, then G is extraspecial.
(n) The number of abelian members in the set Γ1 is 0, 1 or p + 1. In

particular, the number of nonabelian members in the set Γ1 is ≥ p,
unless G is an A1-group.

Remark 1.2. Let a p-group G = M×C, where M is of maximal class and
C = 〈c〉 ∼= Cpn , n > 1. We claim that G contains an A1-subgroup H of order
pn+2 with |H ∩M | = p2. Indeed, by Blackburn’s Theorem (see [B5, Theorem
9.6]), G contains a nonabelian subgroup D = 〈R, a〉 of order p3, where |R| = p2

and o(a) ≤ p2. Set u = ac; then R ∩ 〈u〉 = {1}, o(u) = o(c) = pn. We claim
that L = 〈u, R〉 is an A1-subgroup. Indeed, L is nonabelian so |L′| = p
since L′ < R, and d(L/L′) = 2 so L is an A1-subgroup of order pn+2, by
Lemma J(k). We also have |L ∩ M | = R since 〈u〉 ∩ M = {1}. If M is
not generalized quaternion, one can take from the start R ∼= Ep2 ; in that
case, L is not metacyclic since Ω1(L) ∼= Ep3 . If M is generalized quaternion,
then |Ω1(G)| = 4, so all A1-subgroups of G are metacyclic (Lemma J(d)).

2As I knew from Internet, this result was proved by G.A. Miller many years ago; see
also the part written by Miller, in [MBD]. However, in the existing literature I did not see
references on this result.
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Similarly, if 2 ≤ k < n, then G contains an A1-subgroup of order pk+2 not
contained in M .

Remark 1.3. Suppose that a group G of order 2m > 24 is not of maximal
class. Let H ∈ Γ1 be of maximal class. Then the set Γ1 has exactly four mem-
bers of maximal class (Lemma J(f)). Suppose that all nonabelian members
of the set Γ1 are M×-groups. We claim that then G itself is an M×-group.
Assume that our claim is false. Let Z < H be cyclic of index 2; then, since
|H | ≥ 16, Z is characteristic in H so normal in G. Next, G contains a normal
abelian subgroup R of type (2, 2) (Lemma J(j)); then R ∩ H = Ω1(Z). Since
A = RZ ∈ Γ1 is not an M×-group and |A| > 8, it must be abelian. Let F
be a nonabelian maximal subgroup of H . Then RF ∈ Γ1 since |RF | = |H |,
and, by hypothesis, RF is an M×-group which is not of maximal class since
|RF | ≥ 16. It follows that R = Z(RF ) (indeed, R 6≤ F since R 6≤ H). Since
R < A, we get CG(R) ≥ A(RF ) = AF = G so R = Z(G). If L < R is of
order 2 and L 6≤ H , then G = HL = H × L is an M×-group.

The following lemma is known.

Lemma 1.4. Suppose that a group G is of order p2m+1 and |G′| = p.
Then the following assertions are equivalent:

(a) G is extraspecial.
(b) G has no abelian subgroup of index pm−1.

Proof. Let G be extraspecial and let A be an abelian subgroup of G of
maximal order; then A⊳G since G′ = Z(G) < A. It follows from decomposition
of G in the central product of nonabelian subgroups of order p3 that |G : A| ≤
pm. We want to show that there we have equality. The class number of G
equals |G/G′| + p − 1 = p2m + p − 1 so that G has exactly p − 1 nonlinear
irreducibles. Since the sum of squares of degrees of nonlinear irreducibles
equals |G|− |G/G′| = p2m(p−1), it follows that the degrees of all irreducibles
equal pm. By Ito’s theorem on degrees [BZ, Theorem 7.2.7], |G : A| ≥ χ(1) =
pm so (a) ⇒ (b).

Now assume that (b) is true. Let χ ∈ Irr1(G). Then χ = λG, where
λ is a linear character of some subgroup H of index χ(1) in G. We have
G′ 6≤ ker(χ) = coreG(ker(λG)). Assuming that H is nonabelian, we get
G′ = H ′ ≤ ker(λ), a contradiction. Thus, H is abelian. Then, by (b), we get
χ(1) = |G : H | ≥ pm. We have

p2m+1 = |G| = |G : G′| +
∑

χ∈Irr1(G)

χ(1)2 ≥ p2m + |Irr1(G)|p2m

so |Irr1(G)| ≤ p−1 and, by [BZ, Lemma 3.35], G is extraspecial so (b) ⇒ (a).

Lemma 1.5. Let G be an extraspecial group of order p2m+1, m > 1, and
let M ∈ Γ1. Then M = EZ(M), where E is an extraspecial maximal subgroup
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of M and |Z(M)| = p2. If L ⊳ G is of order p2, then N = CG(L) = L ∗ E,
where E is extraspecial.

Proof. By Lemma 1.4, M is nonabelian. Since |M | = p2m, the subgroup
M is not extraspecial. It follows from Lemma J(m) that |Z(M)| > p. Let
R ≤ Z(M) be G-invariant of order p2; then CG(R) = M since R 6≤ Z(G).
On the other hand, R 6≤ Φ(G) = Φ(M) so there is a maximal subgroup E
of M such that M = ER. But M is nonabelian so is E. We have |E| =
p2m−1 = p2(m−1)+1. Assume that E has an abelian subgroup, say A, of
index pm−2; then AR is an abelian subgroup of index pm−1 in G, contrary
to Lemma 1.4. Thus, E has no abelian subgroup of index pm−2 so E is
extraspecial (Lemma 1.4). It follows from M = EZ(M) that |Z(M)| = p2.

Definition 1.6. A nonabelian p-group G is said to be

1. a Z-group provided |Z(G)| = p and G′ is cyclic.
2. a Z×-group (M×-group) provided G = U × E, where U is a Z-group

(group of maximal class) and E is elementary abelian.
3. (Z ∗ C)-group ((M∗ C)-group) provided G = A ∗ Z, a central product,

where A is a Z-group (group of maximal class), Z = Z(G) is cyclic.

The center of Z×-group (M×-group) is elementary abelian. The center
of Z ∗ C-group (M∗ C-group) is cyclic. Extraspecial p-groups and 2-groups
of maximal class are Z-groups. A Z-group G with |G′| = p is extraspecial
(Lemma J(m)). If A is a cyclic p-group of order pn > p and G the Sylow p-
subgroup of the holomorph of A, then G is a Z-group (if, in addition, p > 2,
then G is metacyclic). If p-group G = E ∗ L, where E is extraspecial and L
is a Z-group, E ∩L = Z(E), then G is a Z-group. If a Z-group G is minimal
nonabelian, then |G| = p3. If a Z-group G of order > p3 is of maximal class,
then p = 2. Clearly, the property (M∗ C) is not inherited by subgroups and
epimorphic images.

Remark 1.7. Suppose that all nonabelian maximal subgroups of a Z-
group G are Z×-groups. We claim that if |G′| > p, then G is a 2-group of
maximal class, and if |G′| = p, then G is extraspecial of exponent p, unless G is
of order p3 and exponent p2. (i) Assume that |G′| > p; then R = Ω2(G

′) ∼= Cp2

and CG(R) ∈ Γ1 is abelian. Then, by Lemma J(h), |G : G′| = p|Z(G)| = p2.
If p = 2, then G is of maximal class (Lemma J(i)). Now let p > 2. Then
G′ = Φ(G) is cyclic and so Φ(G) = Z(G) (Lemma J(l)) hence G is an A1-
group and |G′| = p, contrary to the assumption. (ii) Let |G′| = p; then
G′ = Z(G) so G is extraspecial (Lemma J(m)). However, if exp(G) > p and
|G| > p3, then the set Γ1 contains a nonabelian member which is not a Z×-
group (Lemma 1.5). Thus, if |G| > p3, then G is extraspecial of exponent p,
and every such G satisfies the hypothesis, by the same lemma.
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Remark 1.8. Suppose that all nonabelian maximal subgroups of a Z-
group G are (Z ∗C)-groups. Let G be not a 2-group of maximal class; then G
contains a normal subgroup R ∼= Ep2 (Lemma J(j)). Since the center of the Z-
group G is of order p, CG(R) ∈ Γ1 must be abelian so |G : G′| = p|Z(G)| = p2

(Lemma J(h)), and we conclude that G′ = Φ(G). If p > 2, then Φ(G) ≤ Z(G)
(Lemma J(l)) so |G| = p3. If p = 2, then G is a 2-group of maximal class
(Lemma J(l)), contrary to the assumption.

Lemma 1.9. Let G be neither abelian nor an A1-group. Suppose that all
nonabelian members of the set Γ1 are Z×-groups. Then one of the following
holds:

(a) The set Γ1 has an abelian member. Then all nonabelian members of
the set Γ1 are M×-groups for p = 2 and M×

3 -groups for p > 2.
(b) The set Γ1 has no abelian member. Then nonabelian members of the

set Γ1 are of the form E1 × E2, where E2 is elementary abelian and
E1 is extraspecial. If, in addition, G itself is a Z×-group of the form
E1 × E2, where E1 and E2 are as above, then p > 2 and exp(E1) = p,
|E1| ≥ p5.

Proof. Take a nonabelian H = M × E ∈ Γ1, where M is a Z-group
and E is elementary abelian; then M ′ = H ′ ⊳ G is cyclic. Let A ∈ Γ1 be
abelian. In that case, M ∩ A is a maximal abelian subgroup of M . Then
|M : M ′| = p|Z(M)| = p2 (Lemma J(h)) so M ′ = Φ(M) is cyclic. If p = 2,
then M is of maximal class (Lemma J(i)). If p > 2, then M ′ = Z(M)
(Lemma J(l)) so |M | = p3.

Suppose that |M ′| > p; then CG(Ω2(M
′)) = A ∈ Γ1 is abelian since its

center has exponent > p. In that case, M ∩A is a maximal abelian subgroup
of M . Arguing, as in the previous paragraph, we conclude that p = 2 and M
is of maximal class. This completes the proof of (a).

Now assume that the set Γ1 has no abelian member. Then |H ′| = |M ′| = p
for all nonabelian H ∈ Γ1 so M is extraspecial (Lemma J(m)).

Now, in addition, let G be a Z×-group and the set Γ1 has no abelian
member. Then G = M × E, where M is extraspecial of order ≥ p5 and E
elementary abelian. Let U < M be maximal; then U × E ∈ Γ1 so U is a
Z×-group. Then exp(M) = p > 2 (Remark 1.7).

Lemma 1.10. Suppose that a nonabelian p-group G has an abelian sub-
group of index p. Then the following conditions are equivalent:

(a) |Z(G)| = p.
(b) |G : G′| = p2.
(c) G is of maximal class.

Proof. By Lemma J(h), (a) and (b) are equivalent and follow from (c).
Now let (a) hold and prove (c) using induction on |G|. We have Z(G) ≤ G′

and |G : G′| = p2 (Lemma J(h)). One may assume that |G| > p3. Set
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Ḡ = G/Z(G). Then |Ḡ : Ḡ′| = p2 hence |Z(Ḡ)| = p (Lemma J(h)) and Ḡ is
of maximal class so is G since |Z(G)| = p. (It is easy to show that if G is as
in Lemma 1.10, then all nonabelian subgroups of G are of maximal class; in
particular, all A1-subgroups of G are of order p3.)

Remark 1.11. Let G be a nonabelian p-group of order > p3 and suppose
that, whenever H ≤ G is nonabelian, then |H : H ′| = p2. We claim that then
G is of maximal class with abelian subgroup of index p. Indeed, let N ⊳ G
be of index p4. Then G/N has an abelian subgroup A/N , of index p so A is
abelian, and we are done (Lemma 1.10).

Lemma 1.12. Suppose that a p-group G, which is a Z-group, contains an
abelian subgroup of index p. Then one and only one of the following holds:

(a) If p = 2, then G is of maximal class.
(b) If p > 2, then |G| = p3.

Proof. By Lemma J(h), |G : G′| = p|Z(G)| = p2 so d(G) = 2. Then G
is of maximal class if p = 2 (Lemma J(i)). Let p > 2. Then Φ(G) = G′ is
cyclic so Φ(G) ≤ Z(G) (Lemma J(l)), and we conclude that G is an A1-group
since d(G) = 2. Since |Z(G)| = p, we get |G| = p3.

Lemma 1.13. Let G be a p-group which is not of maximal class and
A, H ∈ Γ1, where A is abelian and H is of maximal class. Then |Z(G)| = p2

and G = HZ(G).

Proof. By Lemma J(f), G′ = H ′ is of index p3 in G. By Lemma J((h),
|Z(G)| = 1

p
|G : G′| = p2 so G = HZ(G), by the product formula.

Our main results are the following five theorems.

Theorem A. Suppose that all maximal subgroups of a nonabelian 2-group
G are Z×-groups. Then one of the following holds:

(a) G is an M×-group.
(b) G is minimal nonabelian.
(c) G = D ∗ C is of order 16, where D is nonabelian of order 8 and C is

cyclic of order 4.
(d) G is a generalized dihedral group of order 25 with abelian Hughes sub-

group subgroup of type (4, 4).

Theorem B. Suppose that all nonabelian maximal subgroups of a non-
abelian p-group G, p > 2, are Z×-groups. Then one of the following holds:

(a) G is an M×

3 -group.
(b) G is minimal nonabelian.
(c) G is of maximal class and order p4.
(d) G = M ∗ C is of order p4, where M is nonabelian of order p3 and C

is cyclic of order p2. We also have G = M1 ∗ C where a nonabelian
subgroup M1 of order p3 is not isomorphic with M .
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(e) G is of order p5 without abelian subgroup of index p, |G′| = p3, Z(G) <
G′ is abelian of type (p, p). If R < Z(G) is of order p, then G/R is of
maximal class.

(f) G is special of order p5, d(G) = 3.
(g) G is special of order p6 and exponent p, d(G) = 3.
(h) G = E × E0, where E0 is elementary abelian and E is extraspecial; if

|E| ≥ p5, then exp(E) = p.

Theorem C. Suppose that all nonabelian maximal subgroups of a 2-group
G are (Z ∗ C)-groups but G is not an (Z ∗ C)-group. Then one of the following
holds:

(a) G is minimal nonabelian.
(b) G = F × D, where F is nonabelian of order 8 and |D| = 2.

Theorem D. Suppose that p > 2 and all nonabelian maximal subgroups
of a nonabelian p-group G are (Z∗C)-groups. Then one of the following holds:

(a) G is minimal nonabelian.
(b) |G| = p4.

Theorem E. Let G be a nonabelian p-group of order > p4, p > 2, which
is not an A1-group. Suppose that all nonabelian maximal subgroups of G are
(M∗ C)-groups. Then G has an abelian subgroup of index p and one of the
following holds:

(a) G = M ∗C is an (M∗ C)-group, where M of order > p3 is of maximal
class with abelian subgroup of index p and C = Z(G) is cyclic of order
≤ p2.

(b) G = M × L, where M is nonabelian of order p3 and |L| = p.
(c) Z(G) is cyclic of order > p, Z(G) < Φ(G), G/Z(G) is either of maximal

class or of order p4 and class 2.

2. Proof of Theorem A

We begin with the following partial case of Theorem 2.4.

Lemma 2.1 (Miller [M1]). If G is a minimal non Dedekindian 2-group,
then G is either minimal nonabelian or ∼= Q16.

Proof. Assume that G is not an A1-group so |G| = 2m > 23. Let
H = Q × E ∈ Γ1, where Q ∼= Q8 and exp(E) ≤ 2. Suppose that E = {1};
then m = 4. If CG(Q) 6≤ Q, then G = QZ(G) so Z(G) is cyclic of order 4
since G is not Dedekindian. Then G = Q ∗ Z(G) = D ∗ Z(G), a contradiction
since D ∼= D8 is non Dedekindian. Thus, CG(Q) < Q so G is of maximal
class (Lemma J(a)); then G ∼= Q16. Next assume that |G| > 24 so E > {1}
for arbitrary choice of nonabelian H ∈ Γ1. We have H ′ = Q′ ⊳ G and H/Q′

is elementary abelian maximal subgroup of G/Q′. Assume that G/Q′ has a
nonabelian maximal subgroup F/Q′ = (Q1/Q′)×(E1/Q′). where Q1/Q′ ∼= Q8
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and exp(E1/Q′) ≤ 2. Then (Q1/Q′) ∩ (H/Q′) is maximal in Q1/Q′ so cyclic
of order 4 and elementary abelian as a subgroup of H/Q′, a contradiction.
Thus, Ḡ = G/Q′ is either abelian or minimal nonabelian.

(i) Let Ḡ be minimal nonabelian; then |G′| = 4. Since exp(H̄) = 2, we get
exp(Ḡ) = 4 and |H̄ | ≤ 8 (Lemma J(d)). Since m > 4, we get H̄ ∼= E8. Since
Ω1(Ḡ) = H̄ (Lemma J(d)), Ḡ is generated by elements of order 4 so it has
two distinct maximal subgroups Ā and B̄ of exponent 4. Then A and B are
abelian (if, for example, Ā is nonabelian, then A′ = Q′ and exp(A/A′) = 2,
a contradiction). In that case, A ∩ B = Z(G) so |G′| = 2 (Lemma J(h)), a
contradiction.

(ii) Let Ḡ be abelian; then G′ = Q′ is of order 2 so G = Q ∗ CG(Q)
(Lemma J(b)). If CG(Q) has a cyclic subgroup L of order 4, then Q ∗ L
is not Dedekindian so Q ∗ L = G. If Q ∩ L = Z(Q), then G contains a
proper subgroup ∼= D8, a contradiction. If Q ∩ L = {1}, then G = Q × L
contains an A1-subgroup B of order 16 (Remark 1.2); since B < G and
B is not Dedekindian, we get a contradiction. Thus, exp(CG(Q)) = 2 so
CG(Q) = Z(G). If Z(G) = Q′ × E1, then G = Q × E1 is Dedekindian, a final
contradiction.

A 2-group G is said to be a Q×-group if G = Q×E, where Q is generalized
quaternion and E is elementary abelian. The center of every Q×-group is
elementary abelian.

Remark 2.2. Let us show that if a 2-group G = Q × E, where Q is
generalized quaternion and exp(E) = 2, and A < G is nonabelian, then A
is a Q×-group. We use induction on |G|. Obviously, K ∈ Γ1 such that
G = K×L, where L ≤ E, is a Q×-group. One may assume that A∩E > {1}.
Let X ≤ A∩E be of order 2. Then G = X×G0 since X 6≤ Φ(G). In that case,
by the modular law, A = X × (A ∩ G0). Since G0 is a Q×-group, it follows,
by induction in G0, that A∩G0 is also a Q×-group. Then A = (A∩G0)×X
is a Q×-group, as desired. Similarly, if a 2-group G is an M×-group, then all
its nonabelian subgroups are M×-groups. In particular, all A1-subgroups of
G have the same order 8.

Lemma 2.3. Suppose that all nonabelian maximal subgroups of a non-
abelian 2-group G are Q×-groups. Then G is either a Q×- or A1-group.

Proof. Assume that G is neither minimal nonabelian nor of maximal
class (if G is of maximal class, it is generalized quaternion so a Q×-group).
We also may assume, in view of Lemma 2.1, that m > 4. Then all proper
nonabelian subgroups of G are Q×-groups, by Remark 2.2. There is a non-
abelian H = Q×E ∈ Γ1, where Q is generalized quaternion and E elementary
abelian. If E = {1}, then, by Remark 1.3, G is a Q×-group. Next we assume
that E > {1} for arbitrary choice of nonabelian H ∈ Γ1.



328 Y. BERKOVICH

In view of Lemma 2.1, one may assume that the subgroup H of the
previous paragraph is chosen so that |Q| > 23. Then H ′ = Q′ ⊳ G is cyclic of
order > 2. In that case, A = CG(Ω2(Q

′)) ∈ Γ1 is abelian since exp(Z(A)) > 2.
Since E < A, we get CG(E) ≥ HA = G so that E < Z(G) (<, since Z(Q) <
Z(G) and Z(Q) 6≤ E). It follows from |G′| > 2 that A is the unique abelian
member of the set Γ1 (Lemma J(h)). Take a nonabelian F ∈ Γ1 − {H} (F
exists, by Lemma J(n)) and assume that E 6≤ F . Then there is X ≤ E of
order 2 such that X 6≤ F . In that case, G = F × X is a Q×-group, and we
are done. Therefore, one may assume that E < Φ(G). Write Ḡ = G/E; then
Ḡ = 2|H̄ | = 2|Q| > 24. Therefore, if L ∈ Γ1 is nonabelian, then L̄ is an
M×-group since, generally speaking, E is not a direct factor of L. By the
above, Ḡ contains a maximal subgroup H̄ , which is generalized quaternion of
order > 8. In view of Lemma 1.13, the following two possibilities for Ḡ must
be considered.

(i) Let Ḡ be not of maximal class. Then Ḡ = H̄ × C̄ = Q̄ × C̄, where
|C̄| = 2 so that Ḡ is a Q×-group. Since E < Z(G) and C̄ = C/E is of order
2, the subgroup C ⊳ G is abelian and C ∩ H ≤ E ∩ H = {1} so G = Q · C is
a semidirect product with kernel C. If F < Q is nonabelian maximal, then
F · C ∈ Γ1 is a Q×-group so FC = C × F hence exp(C) = 2. Since Q is
generated by its nonabelian maximal subgroups, we get G = Q × C so that
G is a Q×-group.

(ii) Now let Ḡ be of maximal class. Then d(G) = 2 since E < Φ(G),
and hence, by Lemma J(c), we get d(F ) ≤ 3 for all F ∈ Γ1. It follows that
|E| = 2. Since E 6≤ G′ (otherwise, by Lemma J(i), G is of maximal class),
we get E ∩ G′ = {1}; then G′ is cyclic of index 8 in G and G/G′ is abelian
of type (4, 2) since d(G) = 2. Let A/G′ and B/G′ be two distinct cyclic
subgroup of order 4 in G/G′. Since abelian epimorphic images of Q×-groups
have exponent 2, it follows that A and B are abelian maximal subgroups of
G so A ∩ B = Z(G). In that case, |G′| = 2 < |H ′|, a final contradiction.

Theorem 2.4 (Janko [J2]). Suppose that every A1-subgroup of a non-
abelian 2-group G is ∼= Q8. Then G is a Q×-group.

Proof. We use induction on |G|. By induction, every proper nonabelian
subgroup of G is a Q×-group. Then, by Lemma 2.3, G is either an A1- or
Q×-group. In the first case, however, G ∼= Q8.

A 2-group G is said to be a D×-group if G = D×E, where D is dihedral
and exp(E) ≤ 2.

Proposition 2.5 (Compare with [M2]). Suppose that all nonabelian
maximal subgroups of a nonabelian 2-group G are D×-groups. Then one of
the following holds:

(a) G is minimal nonabelian.
(b) G is a D×-group.
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(c) G is a generalized dihedral group of order 25 with abelian subgroup of
type (4, 4). The group G is special, d(G) = 3.

Proof. Suppose that G is neither an A1- nor a D×-group. All A1-
subgroups of G are ∼= D8 (Remark 1.1) so, by Lemma J(e), G = C · A is a
generalized dihedral group; here |C| = 2 and A is abelian of exponent > 2
and all elements of the set G − A are involutions inverting A. Since G is
not dihedral, d(A) > 1. Let A2 ≤ A be of type (4, 4); then the nonabelian
subgroup B = C · A2 ≤ G is not a D×-group so B = G, A2 = A, and G
is as stated in (c). Thus, A has no proper subgroup of type (4, 4). Thus,
assuming that all invariants of A are > 2, we conclude that A is abelian of
type (4, 4). Assume that A is not of type (4, 4). Then A = L × A0, where
|L| = 2, |A0| > 2. In that case, G = L × G0, where G0 = C · A0 ∈ Γ1; then
G0 is a D×-group, by the above and hypothesis, so G is also D×-group. We
have Z(G) = Ω1(A) ≤ G′ (indeed, if K < A is of order 2, then K < C · U ,
where C4

∼= U < A and C · U ∼= D8 so K = (C · U)′ < G′). By Lemma J(i),
|G : G′| > 4 so Z(G) = G′ (compare orders!). It follows from Ω1(G) = G that
G′ = Φ(G), so G is special and d(G) = 3.

Lemma 2.6. Suppose that all nonabelian maximal subgroups of a non-
abelian 2-group G of order 2m are M×

3 -groups. Then one of the following
holds:

(a) G is minimal nonabelian.
(b) G is of maximal class and order 16.
(c) G = M ∗ C is the central product, where M is nonabelian of order 8

and C is cyclic of order 4, m = 4.
(d) G is generalized dihedral, m = 5, with abelian subgroup A of type (4, 4)

(as in Proposition 2.5(c)).
(e) G is an M×

3 -group.

Proof. Groups (a-e) satisfy the hypothesis. Since the lemma is true for
m ≤ 4, we assume that m > 4 and G is neither minimal nonabelian nor of
maximal class.

Let M < G be an A1-subgroup; then |M | = 8 (Remark 1.1). In that
case, M < H ∈ Γ1, where H = M × E and exp(E) = 2 since m > 4. Set
D = 〈H ′ | H ∈ Γ1〉. Then D ≤ G′ ∩ Ω1(Z(G))(≤ Φ(G)) so all maximal
subgroups of G/D are abelian. Set Ḡ = G/D. By Lemma J(n), Ω1(Ḡ) = Ḡ.
Thus, either exp(Ḡ) = 2 or G is an A1-group so ∼= D8 (Lemma J(d)).

Assume that |D| = 2; then exp(Ḡ) = 2 since m > 4, so G′ = D and
all A1-subgroups of G are normal. Let M < G be an A1-subgroup. Then
G = M ∗ CG(M) (Lemma J(b)). If C ≤ CG(M) is cyclic of order 4, then
M ∗C is not an M×-group so G = M ∗C. Since m > 4, we get M ∩C = {1}
so G = M × C. Then, by Remark 1.2, G has an A1-subgroup K of order 24

and K ∈ Γ1 is not an M×-group, a contradiction. Thus, exp(CG(M)) = 2 so
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CG(M) = Z(G). If Z(G) = Z(M) × E, then G = M × E is an M×-group. In
what follows we assume that |D| > 2.

By the above, if U < G is nonabelian of order 2n, then d(U) = n − 1.
Suppose that exp(Ḡ) = 2. Let M < G be minimal nonabelian; then there

is H = M×E ∈ Γ1, where exp(E) = 2. Since |D| > 2, there is an A1-subgroup
M1 < G such that M ′

1 6= M ′. In view of Theorem 2.4 and Proposition 2.5, one
may assume from the start that M ∼= Q8. Then M∩M1 = {1} so |〈M, M1〉| ≥
|MM1| = 26. Set U = 〈M, M1〉; then d(U) ≤ d(M) + d(M1) = 4 < 6 − 1
so U = G. We have [M, M1] > {1} (otherwise, U = M × M1 contains an
A1-subgroup of order 24, by Remark 1.2). Therefore, one of subgroups M, M1

is not normal in U . Let M is not normal in U . Then some cyclic subgroup
C1 < M1 does not normalize some cyclic subgroup C < M (of order 4). Since
U1 = 〈C, C1〉 of order ≥ 24 is generated by two elements and 2 < 4 − 1,
we get U1 = G. It follows that G is minimal nonabelian (Lemma J(k)), a
contradiction. Now let M1 is not normal in U . Then some subgroup Z < M of
order 4 does not normalize some cyclic subgroup Z1 < M1. Since V = 〈Z, Z1〉
of order ≥ 16 is two-generator, we get V = G so G is an A1-subgroup, a
contradiction.

Now we let Ḡ ∼= D8. Since D < G′, we get |G : G′| = |Ḡ : Ḡ′| = 4 so G is
of maximal class (Lemma J(i), a contradiction since |Z(G)| ≥ |D| > 2.

Remark 2.7. Suppose that a nonabelian p-group G is neither minimal
nonabelian nor of maximal class and all nonabelian members of the set Γ1

are of maximal class. Since G has a subgroup A with center of order > p, A
is abelian. By Lemma J(f), the set Γ1 has exactly p + 1 abelian members. In
that case, |G′| = p (Lemma J(h)) so cl(G) = 2 and G = MZ(G) is of order
p4, where M is nonabelian of order p3.

For p = 2, we get the following stronger result.

Lemma 2.8. Suppose that all nonabelian maximal subgroups of a non-
abelian 2-group G are M×-groups. Then one of the following holds:

(a) G is minimal nonabelian.
(b) The central product G = M ∗ C is of order 16, M is nonabelian of

order 8 and C is cyclic of order 4.
(c) G is generalized dihedral of order 25 with abelian subgroup A of type

(4, 4).
(d) G is an M×-group.

Proof. Groups (a-d) satisfy the hypothesis. All nonabelian members of
the set Γ1 are Z×-groups. By Lemma 1.9, either the set Γ1 has an abelian
member or else all its members are M×

3 -groups. In the second case, however,
the set Γ1 also has an abelian member, by Lemma 2.6. Thus, in any case, there
is abelian A ∈ Γ1. Assume that G is not an A1-group. Take a nonabelian
H = M×E ∈ Γ1, where M is of maximal class and exp(E) ≤ 2. Set |G| = 2m.
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Suppose that E = {1} and G is not of maximal class. Then, by
Lemma 1.13, G = HZ(G), where Z(G) is of order 4. If m = 4, then G is
as in (b) or (d). Let m > 4. If F < H is nonabelian maximal, then FZ(G) is
an M×-group so Z(G) is noncyclic, and we conclude that H is a direct factor
of G so G is an M×-group. In what follows we assume that E > {1} for every
choice of nonabelian H ∈ Γ1; then m > 4.

In view of Lemma 2.6, one may assume that H(= M × E) is chosen so
that |M | ≥ 16. Obviously, H has only one abelian maximal subgroup, say
A1, and E < Z(H) < A1. It follows that A ∩ H = A1 so CG(E) ≥ HA = G,
and we get E < Z(G) (< since Z(M) < Z(G) and Z(M) 6≤ E). If E 6≤ Φ(G),
then G = X × G0, where X ≤ E is of order 2 and a nonabelian G0 ∈ Γ1.
However, G0 is an M×-group so is G. Next we assume that E < Φ(G).

Suppose that Ḡ = G/E is not of maximal class. Since M ∼= M̄ = H̄ < Ḡ,
we get exp(Ḡ) = exp(M̄) = exp(M) ≥ 8. By Remark 1.3, we get Ḡ = H̄×C̄ =
M̄ × C̄, where |C̄| = 2. Also, C ⊳ G is abelian and C ∩ H = E ∩ H = {1} so
G = M ·C, a semidirect product with kernel C. As in part (i) of the proof of
Lemma 2.3, we prove that G = M × C so G is an M×-group.

Next we assume that Ḡ is of maximal class. Then d(G) = 2 since E <
Φ(G), and hence, by Lemma J(c), we get d(F ) ≤ 3 for all F ∈ Γ1 so |E| = 2.
Since E 6≤ G′ (otherwise, by Lemma J(i), G is of maximal class), we get
E ∩ G′ = {1} and so G/G′ is abelian of type (4, 2) since d(G) = 2 and
4 < |G/G′| ≤ 8. Let U/G′, V/G′ < G/G′ be distinct cyclic of order 4. Then
U, V are abelian since exp(X/X ′) = 2 for every M×-group X . We have
U ∩ V = Z(G) so |G′| = 2 (Lemma J(h)) so G is an A1-group (Lemma J(k)),
a final contradiction.

Proof of Theorem A. Set |G| = 2m. As above, we may assume that
m > 4 and G is not an A1-group.

(A) Suppose that the set Γ1 has no abelian member. Take H = M ×E ∈
Γ1, where M is a Z-group and exp(E) ≤ 2. Then, by Lemma 1.9, M is
extraspecial. Write D = 〈F ′ | F ∈ Γ1〉; then D ≤ G′ ∩ Ω1(Z(G)) and all
maximal subgroups of Ḡ = G/D are elementary abelian so exp(Ḡ) = 2.

(i) Suppose that |D| = 2 so D = G′ = Φ(G). Then, by Lemma 1.5, G is
not extraspecial so that |Z(G)| > 2. If Z(G) is noncyclic, then G = G0 × L,
where L < Z(G) is of order 2 and L 6≤ D. However, G0 ∈ Γ1 is a Z×-group
so is G. Now assume that Z(G) is cyclic; then Z(G) ∼= C4. In that case,
all members of the set Γ1, containing Z(G), must be abelian, contrary to the
assumption.

(ii) Now suppose that |D| > 2. Then there are nonabelian F, H ∈ Γ1 such
that F ′ 6= H ′. In that case, exp(F/F ′) = 2 = exp(H/H ′). Let H = M ×E be
as above; then F ′ 6≤ M so MF ′/F ′ ∼= M . The intersection (MF ′/F ′)∩(F/F ′)
is an abelian maximal subgroup of the extraspecial group MF ′/F ′ so |M | =
|MF ′/F ′| = 8 (Lemma 1.4). Since a nonabelian H ∈ Γ1 is arbitrary, G
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satisfies the hypothesis of Lemma 2.6 so there is an abelian A ∈ Γ1, contrary
to the assumption.

(B) Now let A ∈ Γ1 be abelian. Let a nonabelian H = M×E be as above.
Then M ∩A is an abelian maximal subgroup of M so, by Lemma 1.12(a), M
is of maximal class, and the result follows from Lemma 2.8.

3. Proof of Theorem B

In this section p > 2. We begin with the following

Lemma 3.1. Suppose that p > 2 and all nonabelian maximal subgroups of
a nonabelian p-group G are M×

3 -groups. Then either G is an M×

3 -group or
one of the following holds:

(a) G is minimal nonabelian.
(b) G is of maximal class and order p4.
(c) G = M ∗C = N ∗C is of order p4, where M is nonabelian of order p3

and exponent p, N ∼= Mp3 and C is cyclic of order p2.
(d) G is extraspecial of order p5 and exponent p.
(e) G is special of order p5, d(G) = 3.
(f) G is special of order p6 and exponent p, d(G) = 3.
(g) G is of order p5 without abelian subgroup of index p, |G′| = p3, Z(G) <

G′ is abelian of type (p, p). If R < Z(G) is of order p, then G/R is of
maximal class.

Proof. Groups (a-d), (f) and also groups of exponent p from parts (e)
and (g) satisfy the hypothesis (if the group of (e) is of exponent p2, it may be
an A2-group [BJ2, §5] and so does not satisfy the hypothesis). Set |G| = pm.
One may assume that G is not an A1-group so m > 3. In view of Lemma J(a),
one may also assume that m > 4. All proper nonabelian subgroups of G are
M×

3 -groups (Remark 1.1).
Let M < G be an A1-subgroup and let M < H ∈ Γ1. Then H ≤ M ∗ C,

where C = CG(M). Suppose that M ∗ C = G. If U ≤ C is cyclic of order
p2, then M ∗ U is not an M×-group. By Remark 1.2, M ∩ C = Ω1(C) so
G = M ∗ C, a contradiction since m > 4. Now let exp(C) = p. Since m > 4,
then C 6≤ M (Lemma J(a)).

Suppose that G = M ∗ C. By modular law and Remark 1.1, all maximal
subgroups of C are elementary abelian so C is either elementary abelian or
nonabelian of order p3 and exponent p. If C is elementary abelian, then
Z(G) = C = Z(M) × E, and then G = M × E is an M×

3 -group. If C
is nonabelian, then G = M ∗ C is extraspecial of order p5 and exponent p
(Lemma 1.5). Next we assume that M ∗ C < G; then M ∗ C ∈ Γ1 is an
M×

3 -group.
Set D = 〈H ′ | H ∈ Γ1〉; then D ≤ G′ ∩ Z(G) ≤ Φ(G). If M < G

is minimal nonabelian and M < H ∈ Γ1, then M ′ = H ′ ⊳ G and H/H ′ is
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elementary abelian. It follows that all maximal subgroups of Ḡ = G/D are
abelian and Ω1(Ḡ) = Ḡ (Lemma J(n)) so Ḡ is either elementary abelian or
minimal nonabelian of order p3 and exponent p since p > 2 (Lemma J(d)).
By Lemma J(g), |D| ≤ |G′| ≤ p3.

(i) Suppose that |D| = p; then Ḡ is elementary abelian since m > 4 so
D = G′ and all A1-subgroups are normal in G. Let M < G be minimal
nonabelian. Then, by Lemma J(b), G = MCG(M) and exp(CG(M)) = p
(Remark 1.2). In that case, as we have proved, G is either M×

3 -group or
extraspecial of order p5 and exponent p.

(ii) Now let |D| > p. Then there are two distinct F, H ∈ Γ1 such that
H ′ 6= F ′. The set Γ1 has at most one abelian member since |G′| ≥ |D| > p
(Lemma J(h)). In that case, H/H ′ and F/F ′ are distinct elementary abelian
so Ω1(Ḡ) = Ω1(F̄ H̄) = F̄ H̄ = Ḡ. Since p > 2 and cl(Ḡ) ≤ 2, we get exp(Ḡ) =
p. It follows that if Ḡ is minimal nonabelian, then |Ḡ| = p3 ((Lemma J(d)).

(ii1) Assume that Ḡ is an A1-group of order p3 and exponent p; then
d(G) = d(Ḡ) = 2. Since |G′ : D| = p, we get |D| = p2 and |G′| = p3 so
|G| = |D||Ḡ| = p5. Let F and H be such as in the previous paragraph. Then
F = M × H ′ = M × M ′

1 and H = M1 × F ′ = M1 × M ′, where M and M1

are nonabelian of order p3 (note that F ′H ′ ≤ Φ(G) ≤ F ∩H). Since F/H ′ <
G/H ′ is nonabelian of order p3 and d(G/H ′) = 2, it follows from Lemma J(a)
that G/H ′ is of maximal class. Similarly, G/F ′ is of maximal class. If G has an
abelian subgroup of index p, then p5 = |G| = p|G′||Z(G)| = p6 (Lemma J(h)),
a contradiction. Thus, all members of the set Γ1 are nonabelian and G is from
part (g). It is easy to check that if, in addition, exp(G) = p, then indeed G
satisfies the hypothesis, by Lemma J(d,a)).

(ii2) Now let Ḡ be elementary abelian; then G′ = D = Φ(G) and
cl(G) = 2.

Assume that exp(Z(G)) > p and let C ≤ Z(G) by cyclic of order p2.
Then all members of the set Γ1 containing C, are abelian so |G′| = p < |D|
(Lemma J(h)), a contradiction.

Thus, exp(Z(G)) = p. As above, Z(G) ≤ Φ(G) (otherwise, G is an M×

3 -
group). In that case, D ≤ Z(G) ≤ Φ(G) ≤ D so G is special. If M < G is
minimal nonabelian, then MΦ(G)/Φ(G) = MD/D ∼= M/(M ∩ D) ∼= Ep2 so
d(G) > 2.

Suppose that d(G) > 3. Then there exist distinct F̄ , H̄ > M̄ , where
F, H ∈ Γ1. Since M is a direct factor in F and H (Remark 1.1), we get
NG(M) ≥ FH = G so M ⊳ G whence all A1-subgroups are normal in G. We
have G = MCG(M) since MCG(M) ≥ FH = G. Assume that CG(M) has
an A1-subgroup N and let M ∩ N = {1}. It follows from Remark 1.2 that
exp(M) = p = exp(N) so M ∼= N . Let T < M ×N be the diagonal subgroup;
then T ∼= M is an A1-subgroup so T ⊳G. Since T ∩M = {1} = T ∩N , we get
CMN (T ) ≥ MN , a contradiction since T is nonabelian. Now let M∩N > {1};
then M ∩ N = Z(M) = Z(N). In that case, M ∗ N is extraspecial so it is
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not a subgroup of any M×

3 -group, and we conclude that G = M ∗ N . Then
|G′| = p < p2 ≤ |D|, a contradiction. Thus, N does not exist so CG(M) is
elementary abelian whence coincides with Z(G). Since G = MCG(M), we get
|G′| = p < |D|, a contradiction.

Thus, d(G) = 3. In that case, |G| = |G′||G/G′| ≤ p6. Suppose that
|G′| = p3. Then |G| = p6 and G′ = D = F ′ × H ′ × L′, where F, H, L are
A1-subgroups of G. Then exp(G/F ′H ′) = exp(G/H ′L′) = exp(G/L′F ′) = p
so, since F ′H ′ ∩ H ′L′ ∩ L′F ′ = {1}, we conclude that exp(G) = p.

Now let G be (special) of order p5 or p6, exp(G) = p, |G′| = p2 or p3,
respectively, and d(G) = 3. If M < G is an A1-subgroup (of order p3), then
the M×

3 -group MG′ = M × E (here G′ = M ′ × E) is the unique member of
the set Γ1 containing M . It follows that G satisfies the hypothesis.

Proof of Theorem B. Set |G| = pm. As above, assume that G is not
an A1-group and m > 4. By Lemma 1.5, if G is extraspecial, then exp(G) = p
and all such G satisfy the hypothesis. Next we assume that G is not extraspe-
cial. Since m > 4 and p > 2, G is not of maximal class.

(A) Let the set Γ1 have no abelian member. Then, by Lemma 1.9, each
nonabelian member H ∈ Γ1 is of the form E1 × E2, where E1 is extraspecial
and E2 is elementary abelian so |K ′| ≤ p for all K ∈ Γ1, and we get |G′| ≤ p3

(Lemma J(g)). Put

D = 〈H ′ | H ∈ Γ1〉(≤ G′ ∩ Ω1(Z(G))).

As above in similar situation, Ḡ = G/D is either elementary abelian or non-
abelian of order p3 and exponent p.

(i) Suppose that |D| = p; then Ḡ is elementary abelian since m > 4, and
we conclude that D = G′. If Z(G) = G′, then G is extraspecial (Lemma J(m),
and so exp(G) = p. Now assume that Z(G) > G′. If Z(G) contains a cyclic
subgroup of order p2, then all members of the set Γ1, containing Z(G), are
abelian, contrary to assumption. Thus, exp(Z(G)) = p. If L < Z(G) is of
order p and L 6= G′(= Φ(G)), then G = L×G0; then G is an Z×-group since
G0 is.

(ii) Suppose that |D| > p. Then there are nonabelian F, H ∈ Γ1 such
that F ′ 6= H ′ and F/F ′ is elementary abelian maximal subgroup of G/F ′.
Let H = M × E, where M is extraspecial and E is elementary abelian; then
F ′ 6≤ M so MF ′/F ′ ∼= M . The intersection (MF ′/F ′)∩ (F/F ′) is an abelian
maximal subgroup of the extraspecial group MF ′/F ′ so |M | = |MF ′/F ′| =
p3 (Lemma 1.13). Since a nonabelian H ∈ Γ1 is arbitrary, G satisfies the
hypothesis of Lemma 3.1, and we are done.

(B) Now suppose that there is abelian F ∈ Γ1. Let a nonabelian H =
M × E ∈ Γ1 be as above. Then M ∩ F is an abelian maximal subgroup of
M so, by Lemma 1.12, |M | = p3. Thus, all nonabelian members of the set Γ1

are M×

3 -groups so result follows from Lemma 3.1.
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4. Proof of Theorem C

In this section we classify the nonabelian 2-groups, all of whose nonabelian
maximal subgroups are (Z ∗ C)-groups.

The proof of the following lemma is straightforward (see also [BJ1, Ap-
pendix 16]).

Lemma 4.1. Suppose that m > 1 and G = Q ∗ C, where

Q = 〈a, b | a4 = 1, a2 = b2, ab = a−1〉 ∼= Q8

and C = 〈c0〉 ∼= C2m , Q ∩ C = Z(Q) = Ω1(C). Write d = ab, c = c2m−2

0 .
Then

(a) Ω1(G) = QΩ2(C), G has exactly seven involutions (ac, ac3, bc, bc3, dc,
dc3, a2) so exactly four cyclic subgroups of order 4.

(b) G has exactly four proper nonabelian subgroups of order 8, namely Q,
D1 = 〈a, bc〉 ∼= D8, D2 = 〈d, bc〉 ∼= D8, D3 = 〈b, dc〉 ∼= D8. It follows
that Q is characteristic in G and G = Di ∗ C (i = 1, 2, 3).

Lemma 4.2 ([BJ1, Appendix 16]). Suppose that n > 3 and G = Q ∗ C,
where

Q = 〈a, b | a2n−1

= 1, b2 = a2n−2

, ab = a−1〉 ∼= Q2n , C = 〈c〉 ∼= C4. |G| = 2n+1

Then Ω1(G) = G and the set Γ1 contains exactly four members of maximal
class, namely Q, D = 〈a, ba〉 ∼= D2n , S1 = 〈ac, abc〉 ∼= SD2n , S2 = 〈ac, bc〉 ∼=
SD2n .

Proof. Since (bc)2 = b2c2 = b2b2 = 1, we get o(bc) = 2. It follows from
abc = ab = a−1 that D = 〈a, bc〉 ∼= D2n . Next,

(abc)2 = ababc2 = ab2a−1b2 = 1, o(ac) = 2n−1,

(ac)abc = abc = a−1c2c−1 = a−1+2n−2

c−1+2n−2

= (ac)−1+2n−2

,

so that S1 = 〈ac, abc〉 ∼= SD2n . It follows from o(bc) = 2 and

(ac)bc = (ac)abc = (ac)−1+2n−2

that S2 = 〈ac, bc〉 ∼= SD2n . We have Q, D, S1, S2 ∈ Γ1 and these subgroups
are all members of maximal class in the set Γ1 (Lemma J(f)). Since, by
Lemma J(j), the set G−D contains an involution x, we get Ω1(G) ≥ 〈x, D〉 =
G.

Lemma 4.3 ([BJ1, Appendix 16]). Suppose that n > 3, m > 2 and G =
Q ∗ C, where |G| = 2m+n−1 and

Q = 〈a, b | a2n−1

= 1, b2 = a2n−2

, ab = a−1〉 ∼= Q2n , C = 〈c〉 ∼= C2m .

Then

(a) Ω1(G) = Q ∗ Ω2(C) is of order 2n+1 and contains all subgroups of G
of maximal class.
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(b) G contains exactly one subgroup, namely Q, that is ∼= Q2n , exactly
one subgroup D ∼= D2n , and exactly two subgroups, say S1 and S2,
that are isomorphic to SD2n . If M < G is of maximal class and order
2n, then G = M ∗ C. The intersections D ∩ Q and S1 ∩ S2 are cyclic,
S1 ∩ D 6= S2 ∩ D are isomorphic to D2n−1 , S1 ∩ Q 6= S2 ∩ Q are
isomorphic to Q2n−1. Next, G has no subgroup of maximal class and
order 2n+1.

Proof. Since G/Q is cyclic, we get Ω1(G) ≤ Q ∗ Ω2(C) ≤ Ω1(G)
(Lemma 4.2(a)). Let T < Q be nonabelian of order 8. Then T ′ = Ω1(Q

′) =
Ω1(C). Since Ω1(T ∗Ω2(C)) = T ∗Ω2(C) and every 2-group of maximal class,
say U , is generated by its nonabelian subgroups of order 8, we get U ≤ Ω1(G).
Next, by Lemma 4.2(b), Ω1(G) contains exactly one subgroup ∼= D2n , exactly
one subgroup Q ∼= Q2n , and exactly two subgroups ∼= SD2n . The last as-
sertion is true since cl(G) = n − 1. The rest of (b) follows from Lemma 4.2
applied to Ω1(G).

Lemma 4.4. Suppose that a 2-group G = U ∗ Z, where U is of maximal
class, Z = Z(G) = 〈c〉 is cyclic of order 2n > 2. Then

(a) All A1-subgroups of G are metacyclic and have orders ≤ 2n+1.
(b) The group G contains an A1-subgroup ∼= M2n+1 .
(c) If M < G is minimal nonabelian and M 6≤ U , then M ∩ U ∼= C4 and

M/(M ∩ U) is cyclic.
(d) G has no subgroup ∼= E8.

Proof. To prove that G contains an A1-subgroup of order 2n+1, one
may assume that |U | = 8 and n > 2. Let U = 〈a, R〉, where R < U is of
order 4, a ∈ U − R, b = ac, H = 〈b, R〉. Then R ∩ 〈b〉 = Ω1(Z) is of order
2, o(b) = o(c) = 2n so |H | = 2n+1 and H ∼= M2n+1 since cl(H) ≤ cl(G) = 2,
n > 2 and H is nonabelian.

Let H < G be an A1-subgroup such that H 6≤ U . To describe the struc-
ture of H , one may assume, in view of Lemma 4.3(b), that U is generalized
quaternion. Then HU/U is cyclic as a subgroup of G/U ∼= Z/(Z ∩ U) so
|H ∩ U | > 2 since H is nonabelian. Since H ∩ U is abelian, it is cyclic so H
is metacyclic. Assume that |H ∩ U | > 4. Then ℧1(H ∩ U) = Φ(H ∩ U) ≤
Φ(H) = Z(H) so CG(℧1(H ∩ U)) ≥ H is nonabelian, a contradiction. Thus,
|H ∩ U | = 4. Since |H/(H ∩ U)| = |HU/U | ≤ |G/U | = 2n−1 we get
|H | = |H ∩ U ||HU/U | ≤ 4 · 2n−1 = 2n+1.

Assume that G has a subgroup E ∼= E8. As above, let U be a generalized
quaternion group. Then E < Ω1(G) = U ∗ Ω2(Z) so one may assume that
|Z| = 4. In that case, E ∩ U is of exponent 2 and order 4, a contradiction
since U has no abelian subgroup of type (2, 2).

Thus, the property (M∗ C) is not inherited by nonabelian subgroups.
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Lemma 4.5. Suppose that every nonabelian maximal subgroup of a 2-group
G, |G| = 2m > 23, is an (M∗ C)-group. If G is neither A1- nor (M∗ C)-
group, then G = M × D, where M is nonabelian of order 8 and |D| = 2.

Proof. In view of Remark 2.7, one may choose a nonabelian M ∗ Z =
H ∈ Γ1 so that M is of maximal class and Z(H) = Z is cyclic of order > 2.
Assume that Z(G) is noncyclic. Then Z(G) contains a subgroup L of order
2 such that L 6≤ H so G = H × L. Since (M ∗ ℧1(Z)) × L ∈ Γ1 is neither
abelian nor (M∗ C)-group, we get a contradiction. Thus, Z(G) is cyclic.

We claim that Z(G) = Z. Indeed, by Lemma J(j), H contains a G-
invariant abelian subgroup R of type (2, 2). Then A = CG(R) ∈ Γ1 is abelian
since Z(A) is noncyclic. In that case, CG(Z) ≥ AH = G so Z ≤ Z(G). If
Z < Z(G), then G = MZ(G) is an (M∗ C)-group, contrary to the hypothesis.
Assume that F ∈ Γ1 is of maximal class. Then G = F ∗ Z(G) is an (M∗ C)-
group, a contradiction. Thus, Z(G) = Z(H) for all nonabelian H ∈ Γ1. As
above, we write Z(G) = Z. We have also proved that Z ≤ Φ(G).

If F = B ∗ Z, K = L ∗ Z ∈ Γ1 are nonabelian, then |B| = |L|. Write
Ḡ = G/Z. Then, for nonabelian F, H ∈ Γ1, F̄ ∼= H̄ is either ∼= E4 or dihedral.
Thus, either Ḡ has at least two maximal subgroups ∼= E4 (Lemma J(n)) or all
nonabelian maximal subgroups of G are dihedral. In that case, Ω1(Ḡ) = Ḡ
(of order ≥ 8) is one of the following groups: (i) D8, (ii) E8, (iii) D8×C2, (iv)
D2n , n > 3 (Proposition 2.5).

(i) Suppose that Ḡ = D8. We have d(G) = 2 since Z < Φ(G) and, if
Ū < Ḡ is cyclic of order 4, then U is abelian. Two other members of the set
Γ1, say F and H , are nonabelian. Let F = B ∗Z be as above. By Lemma 4.1,
F contains exactly one subgroup ∼= Q8 and exactly three subgroups ∼= D8 so
one may assume from the start that B ∼= Q8; then B ⊳G. If G/B is noncyclic,
then B ≤ Φ(G) since d(G) = 2 so F = B ∗ Z ≤ Φ(G), a contradiction. Thus,
G/B is cyclic so G = BZ1, where Z1 < G is cyclic. We get G′ < B. Since
G is not an A1-group, we get G′ ∼= C4 (Lemma J(k)). Thus, G/G′ is abelian
of type (2n, 2), where n > 1 since m > 4. In that case, G/G′ contains two
distinct cyclic subgroups Z1/G′ and Z2/G′ of index 2. Then the metacyclic
subgroups Z1, Z2 ∈ Γ1 must be abelian since all nonabelian members of the
set Γ1 are not metacyclic, a contradiction since the set Γ1 has only one abelian
member in view of |G′| = 4 > 2 (Lemma J(h)).

(ii) Suppose that Ḡ ∼= E8. Then G′ ≤ Z = Z(G) is cyclic and cl(G) = 2.
If x, y ∈ G, then [x, y]2 = [x, y2] = 1 so |G′| = 2 since G′ is cyclic. If F ∈ Γ1 is
nonabelian, then F = B ∗Z, where B is nonabelian of order 8. Then B′ = G′.
By Lemma J(b), G = B ∗ CG(B). We have |CG(B) : Z| = 2 so CG(B) is
abelian. Then CG(B) = Z(G) = Z, a contradiction.

(iii) Suppose that Ḡ ∼= D̄ × L̄, where D̄ ∼= D8 and |L̄| = 2. In that case,
Ḡ has exactly three abelian maximal subgroups: T̄1 of type (4, 2) and T̄2, T̄3
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of type (2, 2, 2). Then Ti, i = 1, 2, 3, are abelian since they are not (M∗ C)-
groups (indeed, if X is an (M∗ C)-group, then X/Z 6∼= T̄i, i = 1, 2, 3). In
that case, Z = Z(G) = T1 ∩ T2 has index 4 in G, a contradiction since
|G : Z| = |Ḡ| = 16.

(iv) Suppose that Ḡ = G/Z ∼= D2n , n > 3, and let |Z| = 2m, m > 1. Then
d(G) = 2 since Z < Φ(G). If T/Z < G/Z is cyclic of index 2, then T ∈ Γ1

is abelian. Therefore, by Lemma J(h), |G′| = 1
2 |G/Z| = 2n−1 ≥ 8 so T is

the unique abelian member of the set Γ1 (Lemma J(h)). If F = A ∗ Z ∈ Γ1

is nonabelian, then one may assume that A ⊳ G (Lemma 4.3). Since the set
Γ1 has exactly three members and one of them is abelian, the quotient group
G/A must be cyclic, and we conclude that G/A ∼= C2m since F/A ∼= C2m−1

is maximal in G/A. But G′ < A so G′ is cyclic, by Burnside (recall that
|G′| ≥ 8). Since G is not of maximal class, we get |G : G′| ≥ 8 (Lemma J(i)).
We have |G| = |Z||G/Z| = 2m+n so |G/G′| = 2m+1 since |G′| = 2n−1. Since
G/A ∼= C2m , it follows that G/G′ has a cyclic subgroup of index 2. Let
U/G′, V/G′ < G/G′ be distinct cyclic subgroups of index 2. Since U, V being
metacyclic, are not (M∗ C)-groups, a contradiction: G has only one abelian
maximal subgroup.

Proof of Theorem C. Assume that G is not minimal nonabelian.
Let a nonabelian H ∈ Γ1 be not of maximal class (if such H does not

exist, we are done, by Remark 2.7). Then H has a G-invariant four-subgroup
R. In that case, A = CG(R) ∈ Γ1 since R 6≤ Z(H), and A is abelian since
Z(A) is noncyclic. Let F = B ∗Z ∈ Γ1 be a (Z ∗ C)-subgroup. Then B ∩A is
an abelian maximal subgroup of B so |B : B′| = 2|Z(B)| = 4 (Lemma J(h))
whence B is of maximal class, by Lemma J(i). Thus, all nonabelian members
of the set Γ1 are (M∗ C)-groups, and the theorem follows from Lemma 4.5.

Let a 2-group G = M ∗C be an M3 ∗ C-group, where M is nonabelian of
order 8 and C is cyclic of order 2n > 22; then |G| = 2n+2. By Lemma 4.4(b),
there is in G an A1-subgroup H ∼= M2n+1 . Then H ∈ Γ1 is not an (M3 ∗ C)-
group.

5. Proof of Theorem D

In this section we classify the nonabelian p-groups, p > 2, all of whose
nonabelian maximal subgroups are (Z ∗ C)-groups.

A p-group G = A ∗ Z, where A is nonabelian of order p3 and Z = Z(G)
is cyclic, is said to be (M3 ∗ C)-group.

Lemma 5.1. If p > 2 and G is an (M3 ∗ C)-group and |Z(G)| > p, then
G = Ω1(G) ∗ Z(G), where Ω1(G) is nonabelian of order p3 and exponent p.
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Proof. Since cl(G) = 2, G is regular so we get

|Ω1(G)| = |G/℧1(G)| = |G/℧1(Z(G))| = p3, exp(Ω1(G)| = p.

By the product formula, G = Ω1(G)Z(G) so Ω1(G) is nonabelian.

Lemma 5.2. Suppose that p > 2 and all nonabelian maximal subgroups
of a nonabelian p-group G, p > 2, are (M3 ∗ C)-groups. Then G is either
minimal nonabelian or of order p4.

Proof. Set |G| = pm. As above, assume that G is not an A1-group and
m > 4.

Assume that G = U ∗ Z is an (M3 ∗ C)-group, where U = Ω1(G) is
nonabelian of order p3 and exponent p (Lemma 5.1) and Z = Z(G) is cyclic
of order > p2. Let F ∈ Γ1. If U 6≤ F , then |Ω1(F )| = p2 so F is metacyclic
so it is not an (M3 ∗ C)-group; then F is abelian. If U ≤ F , then F is an
(M3 ∗ C)-group, by the modular law. Since d(G) = 3, the set Γ1 contains
|Γ1| − 1 = p2 + p abelian members, which is impossible. Thus, G is not an
(M3 ∗ C)-group.

Assume that G is of maximal class. In that case, there is H ∈ Γ1 of
maximal class [Bla]. Then H is not an (M3 ∗ C)-group since |H | > p3, a
contradiction.

Let H = M ∗ Z ∈ Γ1, where M is nonabelian of order p3 and exponent p
and Z is cyclic of order > p (Lemma 5.1). Then H has a G-invariant subgroup
R of type (p, p) (Lemma J(j)). Since R 6≤ Z(H), we get A = CG(R) ∈ Γ1 so
A is abelian since Z(A) is noncyclic. Then CG(Z) ≥ AH = G so Z ≤ Z(G).

Suppose that Z < Z(G); then |Z(G) : Z| = p, by the product formula.
If Z(G) is cyclic, then G = M ∗ Z(G) is an (M3 ∗ C)-group, a contradiction.
Now assume that Z(G) is noncyclic. Then Z(G) = Z × L, where |L| = p.
In that case, G = H × L = (M ∗ Z) × L, and (M ∗ ℧1(Z)) × L ∈ Γ1 is
not an (M3 ∗ C)-group, a contradiction. Thus, Z(H) = Z for every choice
of H . Since, in addition, Z < A for every abelian A ∈ Γ1, it follows that
Z(G) = Z ≤ Φ(G).

Let distinct nonabelian F, H ∈ Γ1 (Lemma J(n)), where H is as above
and F = M1 ∗ Z, where M1 = Ω1(F ) is nonabelian of order p3 and exponent
p (Lemma 5.1); then M, M1 ⊳ G. Since Z ≤ Φ(G) < H and M1Z = F 6= H ,
it follows that M1 6= M . Since M1 ∩ M = M1 ∩ H , we get M1 ∩ M ∼= Ep2

so MM1 is of order p4, by the product formula. Let MM1 ≤ W ∈ Γ1; then
|Ω1(W )| ≥ p4 so W is not an (M3 ∗ C)-group, a contradiction.

Proof of Theorem D. In view of Lemma 5.2, one may assume that
|G| = pm > p4; we also assume that G is not an A1-group. Assume that there
exist H = B ∗Z, where B is a Z-group of order > p3 and Z = Z(H) is cyclic.
In that case, there is in H a G-invariant subgroup R ∼= Ep2 (Lemma J(j));
then R 6≤ Z = Z(H) so A = CG(R) ∈ Γ1 is abelian. In that case, B ∩ A is
an abelian maximal subgroup of B; then |B| = p3 (Lemma 1.12(b)), contrary
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to the assumption. Thus, all nonabelian members of the set Γ1 are (M3 ∗ C)-
groups, and the result now follows from Lemma 5.2.

6. Proof of Theorem E

If p = 2, then an (M∗ C)-group G = M ∗ C is a (Z ∗ C)-group but this
is not the case for p > 2 and |M | > p3. In this section we consider the
nonabelian p-groups, p > 2, all of whose nonabelian maximal subgroups are
(M∗ C)-groups.

Proof of Theorem E. In view of Lemma 5.2, one may assume that
cl(X) > 2 for some X ∈ Γ1; then |G| > p4.

Suppose that G is of maximal class. Let Ep2
∼= R ⊳ G; then CG(R) ∈ Γ1

is abelian. Conversely, every p-group of maximal class with abelian subgroup
of index p satisfies the hypothesis (this follows immediately from Fitting’s
Lemma). In what follows we assume that G is neither an A1-group nor of
maximal class.

Now let G = M ∗ Z(G) be an (M∗ C)-group. Then, as in the previous
paragraph, M has an abelian subgroup of index p. Assume that |Z(G)| =
pn, n > 2, and |M | > p3. Let S be a G-invariant subgroup of index p in
M ′(= G′). Then G/S ∼= (M/S)×(Z(G)/Ω1(Z(S)) so G/S contains a maximal
subgroup U/S of order pn+1 which is an A1-group (Remark 1.2). Then U ∈ Γ1

is not an (M∗ C)-group, a contradiction. Thus, if |M | > p3, then |Z(G)| ≤ p2.
Let Z(G) ∼= Cp2 . Then every member of the set Γ1, not containing Z(G), is
of the same class as G so of maximal class. If Z(G) < H ∈ Γ1 and H is
nonabelian, then H = Z(G) ∗ (H ∩ M) is an (M∗ C)-group. If |M | = p3

(then |Z(G)| > p2), then G does not satisfy the hypothesis (see the second
paragraph of the proof of Lemma 5.2). In what follows we assume that G is
not an (M∗ C)-group.

Assume that H ∈ Γ1 is of maximal class. Let Ep2
∼= R < H be G-invariant

(R exists, by Lemma J(j)). Then A = CG(R) ∈ Γ1 is abelian since the center
of (M∗ C)-group must be cyclic. In that case, either G is of maximal class or
|Z(G)| = p2 (Lemma 1.13). In the last case, as easily seen, Z(G) is cyclic and
G = HZ(G) is an (M∗ C)-group, contrary to the assumption. Thus, the set
Γ1 has no member of maximal class.

Let X = K ∗ Z ∈ Γ1, where K is of maximal class and order > p3 and
Z = Z(X) is cyclic of order > p (in view of Lemma 5.2 and the previous
paragraph, such X exists); then X ′ = K ′ ⊳ G is noncyclic of order ≥ p2 so
it contains a G-invariant subgroup R ∼= Ep2 (Lemma J(j)). In that case,
A = CG(R) ∈ Γ1 is abelian. Since Z < A, we get CG(Z) ≥ AX = G so
Z ≤ Z(G). As in the proof of Lemma 5.2, Z(G) = Z is cyclic and |Z| ≥ p2.

Take a nonabelian Y ∈ Γ1. By the previous paragraph, Z(Y ) = Z. Thus,
Z(G) < Φ(G). Since the set Γ1 has an abelian member, we get |G′| ≤ p|K ′|
(Lemma J(h)).
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Write Ḡ = G/Z; then |Ḡ| ≥ p4 and Ḡ is neither abelian nor A1-group
(indeed, X/Z is nonabelian). In that case, all nonabelian maximal subgroups
of Ḡ are of maximal class so, by Remark 2.7, Ḡ is either of maximal class or
Ḡ = K̄Z(Ḡ) is of order p4 with |Z(G)| = p2 (Remark 2.7).

7. Problems

1. Classify the p-groups G, p > 2, all of whose A1-subgroups have the
same order p3. (For the case where exp(G) > p > 2 and all A1-subgroups of G
are of order p3 and exponent p, Mann showed that then the Hughes subgroup
of G is abelian and maximal in G; see item 115 in [B5, Research Problems
and Themes I].)

2. Find the types of A1-subgroups in a group G = M1 × · · · × Mn (G =
M1 ∗ · · · ∗ Mn), where all Mi are 2-groups of maximal class.

3. Classify the 2-groups G, all of whose nonabelian maximal subgroups
are either generalized dihedral or M×-groups or (M∗ C)-groups.

4. Classify the nonabelian p-groups, p > 2, all of whose maximal sub-
groups are M×-groups.

5. Describe all A1-subgroups of a p-group G = M × C (G = M ∗ C with
M ∩ C = Ω1(C)), where M is minimal nonabelian and C is cyclic.

6. Does there exist a p-group all of whose maximal subgroups are of the
form A × B, where A and B are (i) of maximal class, (ii) extraspecial?

7. Classify the p-groups G such that, whenever H ∈ Γ1, then H ∈
{M × C, M ∗ C}, where M is minimal nonabelian and C is cyclic.

8. Study the nonabelian p-groups all of whose nonabelian maximal sub-
groups have cyclic centers.

9. Classify the p-groups all of whose maximal subgroups (nonabelian
maximal subgroups) are special.

10. Classify the p-groups all of whose maximal subgroups are nontrivial
direct (central) products.

11. Classify the 2-groups with odd number of dihedral subgroups of order
8.

12. Classify the nonabelian 2-groups G such that, whenever H ∈ Γ1 is
nonabelian, then H = MZ(H), where M is of maximal class.

13. Classify the 2-groups G containing an A1-subgroup M of order 16
such that CG(M) < M .

14. Classify the p-groups G containing a nonabelian subgroup M of order
p3 such that (i) |CG(M)| = p2, (ii) CG(M) is cyclic.

15. Study the p-groups all of whose A1-subgroups are isomorphic.
16. Classify the 2-groups all of whose nonabelian subgroups have a section

∼= Q8 (compare with Lemma 2.1).
17. Study the p-groups all of whose A1-subgroups of minimal order are

conjugate.
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18. Study the p-groups G such that |G : HG| = p for all A1-subgroups
H < G.

19. Study the p-groups all of whose A1-subgroups are metacyclic. (See
[J2]. See also [BJ3] where the 2-groups all of whose A1-subgroups are isomor-
phic with M16, are classified.)

20. Classify the 2-groups all of whose subgroups of index 4 are (i) M×-
groups, (ii) Dedekindian.
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ment. Math. Helvet. 20 (1947), 225-267.



ALTERNATE PROOFS OF THEOREMS OF MILLER AND JANKO 343

Y. Berkovich
Department of Mathematics
University of Haifa
Mount Carmel
Haifa 31905
Israel
E-mail : berkov@math.haifa.ac.il

Received : 11.1.2007.

Revised : 9.9.2007.


