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CYCLIC SUBGROUPS OF ORDER 4 IN FINITE 2-GROUPS

ZVONIMIR JANKO
University of Heidelberg, Germany

ABSTRACT. We determine completely the structure of finite 2-groups
which possess exactly six cyclic subgroups of order 4. This is an exceptional
case because in a finite 2-group is the number of cyclic subgroups of a given
order 2™ (n > 2 fixed) divisible by 4 in most cases and this solves a part
of a problem stated by Berkovich. In addition, we show that if in a finite
2-group G all cyclic subgroups of order 4 are conjugate, then G is cyclic or
dihedral. This solves a problem stated by Berkovich.

1. INTRODUCTION AND KNOWN RESULTS

For a finite 2-group G and a fixed integer n > 1 we denote with ¢, (G) the
number of cyclic subgroups of order 2. The starting point are the following
results of Y. Berkovich. Suppose that a finite 2-group G is neither cyclic nor
of maximal class. Then ¢;(G) = 3 (mod 4) and if n > 2, then ¢, (G) is even
(Berkovich [2, Theorem 1.17]). If in addition G is nonabelian and n > 3, then
¢n(G) =0 (mod 4) unless G is an La-group or a Us-group (Berkovich [1] and
[2, Corollary 18.7]).

We shall use freely the above two results and we consider here only finite
2-groups with a standard notation. In addition, a 2-group G is called an Lo-
group if Q4 (G) = E, is a four-subgroup and and G/Q1(G) is cyclic of order
> 4. We note that an La-group G is either abelian of type (2,2™), m > 3, or

G = M27n+1 = (a/,b|a2m = b2 = 1, m Z 37 ab — a1+27"71>.

A 2-group G is called a Us-group (with respect to R) if G possesses a normal
four-subgroup R such that G/R is a group of maximal class (i.e., G/R is dihe-
dral Dan, generalized quaternion Qon or semi-dihedral SDs») and whenever
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T/R is a cyclic subgroup of index 2 in G/R, then Q4 (T) = R. It is easy to
see that the four-subgroup R is uniquely determined. All Us-groups are com-
pletely classified in Janko [3, section 6]. Finally, for a 2-group G, we define
QU (G) = (x € G|o(z) =2m).

Here we shall consider the exceptional cases, where in a 2-group G we have
c2(G) = 2 (mod 4). If c2(G) = 2, then such 2-groups G are already known
(see Janko [4, Proposition 1.4, Theorems 5.1 and 5.2]). If c2(G) = 6, then
such 2-groups G are determined only in the special case where |Q3(G)| = 2%.
Such 2-groups G with |G| > 2* are determined by Janko [4, Theorem 2.1]
when |Q2(G)| = 2% (since in that case Q2(G) = Qg x C or Qa(G) = Cy x Cy)
and by Janko [3, Theorem 4.1] when |[Q3(G)| > 2%. In this paper we shall
classify 2-groups G with c2(G) = 6 and |Q5(G)| > 2*. First we show that
we must have |[Q3(G)| = 2° and we get three possibilities for the structure
of Q5(G) (Theorem 2.6). The corresponding 2-groups G are determined up
to isomorphism in Theorem 2.7. The general case, where ¢2(G) =2 (mod 4)
and co(G) > 10 is very difficult and is still open.

At the end we consider 2-groups G which possess only one conjugate
class of cyclic subgroups of order 4 and we show that in that case G has only
one cyclic subgroup of order 4 and therefore G is either cyclic or dihedral
(Theorem 3.1).

For convenience we state another known result which is of special impor-
tance in the proof of Theorem 2.6.

PROPOSITION 1.1. (see [3, Proposition 1.2]) Let K be a 2-group of order
> 23 possessing exactly two cyclic subgroups Uy, Us of order 4 and assume that
neither of them is a characteristic subgroup of K. Then one of the following
holds:

(i) K = Dg x Cy (of order 2*) with ®(K) = Uy N Uz = Cy;

(ii) K is a uniquely determined group of order 2° with ®(K) = (U1, Us) &
C4 X CQ.

2. NEW RESULTS FOR ¢2(G) =6

In what follows G will denote a 2-group with ¢2(G) = 6 and H = Q3(G)
is of order > 2%. Since H has exactly six cyclic subgroups of order 4, H is
neither cyclic nor a group of maximal class. It follows that H possesses a
G-invariant four-subgroup W (see [6, Proposition 2.19]).

LEMMA 2.1. If a cyclic subgroup V of order 4 in G normalizes another
cyclic subgroup U of order 4, then U normalizes V. and UV =2 Cy x Cy or
UV =Qs .

PROOF. First suppose U NV = {1}. Then |UV| = 2% and (UV) < U
and we have either UV = U x V 2 Cy x C4 or (UV)" = Cy in which case
UV is a metacyclic minimal nonabelian group of order 2* and exponent 4. In
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any case, ca(UV) =6 and so UV = H = Q3(G), contrary to our assumption
that |H| > 2% Thus, UNV = Cy and so [UV| = 23. In this case, U also
normalizes V' and the only possibilities are UV = Cy x Cy or UV =2 Qs. O

LEMMA 2.2. Suppose that H = Q5(G) contains a quaternion subgroup
Q = Qs. Then |H| =25 and we have the following two possibilities:
(a) H = Qs *Qs;
(b) H = Q16 * Cy.

PROOF. First we determine the structure of S = W(Q, where W is a
normal four-subgroup in H and [W N Q| < 2. Let z be an involution in
WnNZ(S). If z € @, then c2(Q x (z)) = 6 and therefore @ x (z) = Q5(G) = H,
a contradiction. Hence Q N W = (2) = Cy, |S| = 24, and [W, Q] = (). This
gives S = @Q * (v), where (v) = Cy and (v) N Q = (z). We have c2(S) = 4,
(v) = Z(S) and since all elements in S — (Q U (v)) are involutions, @ is a
unique quaternion subgroup of S and therefore @) is characteristic in S.

Assume that S is not normal in H and set K = Ny (S) so that |K : S| > 2
and |H : K| > 2. Let M be a subgroup of H containing K so that |[M : K| =2
and take an element m € M — K. Since m normalizes W, we have Q™ # @,
Q™ £ S and Q™ < K. We have |Q™NS| < 4 and so Q™ — S contains at least
four elements of order 4. Tt follows that ca(K) = 6. But Q5(G) = H and so
there are elements of order 4 in H — K, a contradiction. We have proved that
S is normal in H and so @ and Z(S) = (v) are normal in H. Since c2(S5) = 4,
we have exactly four elements of order 4 in H — S. Set C' = Cy(Q) so that
C is normal in H and |H : (QC)| < 2 (since Aut(Q) = Sy).

If there is an involution u in C'—(v), then c2(Q x (u)) = 6 and Q@ x (u) = H,
a contradiction. Hence C' is either generalized quaternion or cyclic. In the
first case (since C'— (v) can contain at most four elements of order 4), C' = Qs,
QC = Qs * Qs, c2(QC) = 6 and therefore QC = H is an extraspecial group
of order 2% (case (a) of our lemma).

We may assume that C is cyclic so that |H : (QC)| = 2 because H — S
must contain exactly four elements of order 4. Since H/C = Dg, there is
xr € H — (QC) such that 22 € C and z induces an involutory outer automor-
phism on Q. There are elements a,b € @Q such that (a,b) = Q, a® = a~! and
b* = ab.

Suppose that (z, C) is cyclic so that (x, C) = (z). If o(x) > 16, then there
are no elements of order 4 in H—(QC), a contradiction. Hence o(z) = 8 so that
we may assume that 22 = v. In this case all eight elements Iz (I € S — {(a,v))
in H — S are of order 4, a contradiction. Hence (x, C') is noncyclic.

Assume that (z,C) is abelian or (x,C) = Mam, m > 4, so that in
both cases we may assume that z is an involution centralizing (v). We
have o(xv) = o(xva) =4 and we see that co(S(z)) = 6 and so we get
H = S{z) = (Q,zv) * (v), where (Q,zv) = Q16 and H = Q14 *x C4 (case
(b) of our lemma).
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Assume that (x,C) = Qan or (x,C) = SDan. In both cases we may
assume that 22 = z and (v, x) = Qg since Qs is a subgroup of Qa» and SDan
and Qs contains the subgroup (v) of C' . But then z inverts (v) and (a) (see
above) and so all eight elements in (a,v)x from H — (QC) are of order 4, a
contradiction. Indeed, we compute for any integers i, j :

(a"vz)? = d"vxa" v x = a'v2?(a"v?)* = a'vIza v = 2.

Finally, suppose that (z,C) = Dan, n > 3, where x is an involution. But
then all elements in {(a, C)z from H — (QC') are involutions since x inverts (a)
and C and all other elements in (QC — (a,C))x from H — (QC') are elements
of order 8, a contradiction (since H — S does not contain any elements of order
4). Indeed, we set C' = (¢) and we know that b® = ab so that for any integers
i, j we compute (noting that in @ we have ba’ = a'bz* and bab = a):

(ba'dx)?* = ba'c (ba'?)” = ba'c? - aba"'c™I = a'bz'Iaba" ¢TI =
a'z'(bab)dda ¢! =a'2 - a-da e = Zla,
which is an element of order 4. Hence, all elements ba’c’z are of order 8, as
claimed. Our lemma is proved. O

In the next three lemmas we assume in addition that Qg is not a subgroup
of H.

LEMMA 2.3. Assuming that Qg is mot a subgroup of H, we have
|H : Ng(X)| <2 for each cyclic subgroup X of order 4 in H.

PROOF. Suppose that the lemma is false. Then there is a cyclic subgroup
Uy of order 4 in H such that K = Ny (U;) is of index 4 in H. Let M be a
maximal subgroup of H containing K so that |H : M| = |M : K| = 2 and let
m e M—K. Then Uy = U™ # Uy, Ny(Us) = K and so A = U1Us = Cy x Cy
and A is normal in M (Lemma 2.1). Let z € H — M so that A® # A
since cz2(A) = 2 (and so A cannot be normal in H) and A* < M. We have
ca(M) € {3,4,5} because there must exist elements of order 4 in H — M. If
c2(M) is odd, then M (of order > 2%) is of maximal class, a contradiction
(since M possesses an abelian subgroup of type (4,2)). Hence co(M) = 4.

Suppose that [M| > 24, If [Qa(M)| > 2%, then U; is normal in M (see [3,
Introduction]), contrary to the fact that Ny (U;) = K < M. Hence we must
have |Q2(M)| = 2%. In that case we may use Janko [4, Theorems 3.1, 3.3,
and 3.4] since Qg is not a subgroup of M and c2(Q2(M)) = 4. This implies
that Qo(M) is abelian of type (4,2,2) and there is a cyclic subgroup of order
4 which is normal in M. This is a contradiction since Q(M) = AA* and so
all four cyclic subgroups of order 4 in M are conjugate in H and so no one of
them could be normal in M.

We have proved that |[M| = 2% so that K = A = Ny (U;), AA* = M
is of order 2* and |H| = 2°. In this case A and A® are two distinct abelian
maximal subgroups of M which implies |Z(M)| = 4, |M’| = 2, the class of
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M is 2 and M is of exponent 4. Suppose that M is not minimal nonabelian.
Then M possesses a subgroup D = Dg and since M is not of maximal class,
we have Cpr(D) £ D (see [3, Proposition 1.9]). Since co(M) = 4, we get
M = DxC with C 2 C4 and DNC = Z(D). But DgxCy = Qs+ Cy, contrary
to our assumption. Hence M is minimal nonabelian. If M is metacyclic, then
M possesses a cyclic normal subgroup of order 4 which contradicts the fact
that all four cyclic subgroups of order 4 in M are conjugate in H. Hence M
is a uniquely determined nonmetacyclic minimal nonabelian group of order
24 and exponent 4 (see [4, Proposition 1.3]).

Since Ny (X) < M for each cyclic subgroup X of order 4 in M, there
are no elements of order 8 in H — M. It follows that H — M consists of
four elements of order 4 and 12 involutions. Set E = Q1(M) so that F is
elementary abelian of order 8, Z(M) = ®(M) = E; and Z(H) < Z(M). Let
v be an element of order 4 in H — M so that v? € E and Cg(v) & E, since
H — M contains exactly four elements of order 4 (and they are all contained
in (E(v)) — E). All eight elements in H — (M U E(v)) are involutions and
soif u € H— (M U E(v)), then u centralizes E and F' = E X (u) = Ei5. In
particular, Z(M) < E < F and so Z(M) = Z(H). Let y € M — E and we
know that all cyclic subgroups of order 4 in M are conjugate in H to (y).
But y? € ®(M) = Z(H) and so U1(M) = (y2), contrary to ®(M) = E;. Our
lemma is proved. O

LEMMA 2.4. Assuming that Qs is mot a subgroup of H, we have
|H : Ny (X)| =2 for each cyclic subgroup X of order 4 in H.

PROOF. Suppose that the lemma is false. Then there are at least two dis-
tinct cyclic subgroups Uy and Uy which are normal in H. Let {Uy, U, ..., Us}
be the set of six cyclic subgroups of H. Since each U;, i = 1,2, ...,6, normal-
izes Uy and U, it follows (Lemma 2.1) that A = (Uy,Us) = Cy x Cy and
A< Z(H) For each Uj, j =3,...,6, we have (Ul,Uj> = (Ug,Uj> = Oy x Cy
and so Uy NU; = UaNU; = Ui NU; = (2) = U1(A). Tt follows
that B = AUz = (Uy,Us, Us) is abelian of order 2* and exponent 4 with
U1(B) = (z) and so B is abelian of type (4,2,2). Since c3(B) = 4, we
nay assume that {Uy,Us,Us, Uy} is the set of cyclic subgroups of order 4
in B. Similarly, C = AU; is abelian of type (4,2,2) with U1(C) = (z) so
that {Uy, Uz, Us, U} is the set of cyclic subgroups of order 4 in C. We have
BNC = A and H = (B,C). Thus, H/A is generated with two distinct
involutions (B/A)* and (C/A)* and so H/A = E4 or H/A = Dan, n > 3.
In particular, B and C are not conjugate in H. Let t be an involution in
H — (BUC) and let v be an element of order 4 in A < Z(H). Then tv is
an element of order 4 in H — (B U C), a contradiction. Hence, all elements
in H— (BUQC) are of order > 8. This implies that B and C are normal in
H and so H = (B,C) = BC is of order 2° with two distinct abelian maxi-
mal subgroups B and C. It follows that |[H’| < 2 and so H is of class < 2.
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But H is generated by its elements of order 4 and so H is of exponent 4, a
contradiction. O

LEMMA 2.5. Assuming that Qg is mot a subgroup of H, we have
co(Ny (X)) =2 for each cyclic subgroup X of order 4 in H.

PrOOF. Let U; be a cyclic subgroup of order 4 in H so that
|H : Ng(Up)] =2 (Lemma 2.4). Set M = Ng(U) and taking an element
he H— M we get Uy = Ulh 7é Ul, NH(UQ) = M, A= <U1,U2> =~ Oy x Cy
(Lemma 2.1), and A is normal in H. Assume that M possesses a further
cyclic subgroup Us € A of order 4 so that (Uy,Us) =2 (Us, Us) = Cy x Cy and
therefore B = (U, Us, Us) is abelian of type (4,2,2). Since co(B) = 4, we
may assume that {Uy, Us,Us, Uy} is the set of all cyclic subgroups of order 4
in B. There is an element g of order 4 in H — M and since |H : Ny ({g))| = 2,
Us = (g9) and Us = (¢g*) (with an x € H — Ng({g))) give two last cyclic sub-
groups of order 4 in H which give exactly four elements of order 4 in H — M.
This implies that B = Q%(M) is normal in H and Us and Uy are conjugate in
H.

Set Hy = BUs. If ca(Hpy) = 5, then Hp is of maximal class, a contra-
diction. Hence ca(Hy) = 6 and so Hy = BUs = H. Set By = Q1(B) = Es.
Suppose BN Us = {1} so that |H : B] = 4. Since |H : Ng(Us)| = 2, Us
centralizes a four-subgroup S in By. But then all eight elements of order 4 in
S x Us lie in H — B, a contradiction. Hence BNUs = Cy and so |H : B| = 2,
|H| =25 B = M, and Ny(Us) = Ny(Us) = B. This implies that there are
no elements of order 8 in H — B and so H — B consists of four elements of
order 4 and twelve involutions.

We have |B : Np({g))| = 2, where (g) = Us and Np({g)) cannot con-
tain an element x of order 4 (otherwise, that element x would centralize Us,
contrary to the fact that Cy(x) = B). Hence Np({g)) = By. If g central-
izes By, then there are eight elements of order 4 in H — B, a contradiction.
Hence Cp(g) = Cp,(9) = Z = E4 and so Z(H) = Z. The set Byg consists
of four elements of order 4 and four involutions. Hence all eight elements in
H—(BUBy(g)) are involutions and if ¢ is one of them, then H—B = BygU Byt
and Bog N Bot = () so that ¢ must centralize By and therefore By < Z(H),
contrary to the fact that Z(H) = Z = E,4. Our lemma is proved. O

THEOREM 2.6. Let G be a 2-group with exactly siz cyclic subgroups of
order 4 and let H = Q3(G) = (x € G'|o(z) = 4) be of order > 2*. Then H is
of order 2° and we have the following three possibilities:

(a) H =2 Qs x Qg is extraspecial (of type "+7);

(b) H = Q16+ Cy with Q16 N Cy = Z(Q16);

(¢) H is a special group possessing a unique elementary abelian subgroup
E of order 2* and there is an involution t € H—E such that H = (E, t)
and Cg(t) = Z(H) =2 E,.
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PROOF. In view of Lemma 2.2, we may assume that (Jg is not a subgroup
of H and so we may use Lemmas 2.1, 2.4, and 2.5. Let U; be a cyclic subgroup
of order 4 in H. Set K = Ng(U;y) so that |[H : K| =2 and if h € H — K,
then Uy = U # Uy, A = (Uy,Us) = Q3(K) = Cy x Cy is normal in H,
Ny (Us) = K and so no one of Uy, Us is characteristic in K. Note that
|H| > 2% and so | K| > 23.

We are in a position to use Proposition 1.1 which gives that K is a uniquely
determined group of order 2° or 24. We may assume that we have the following
conjugacy classes of our six cyclic subgroups of order 4 in H: U; ~ Us,
Us ~ Uy, and Us ~ Us. Assume that |K| = 2° in which case |H| = 2°.
It follows that ®(Ng(U1)) = (U1, Usz) and similarly (since |H : Ny (Us)| =
|H : Ng(Us)| = 2), Ng(Us) = Ny(Us) = K. But then ®(Ny(Us)) =
<U3, Uv4>7 (I)(NH(U5)) = <U5, U6> and therefore CI)(H) > <[]17 Ug, Ug, U4> = 5
a contradiction.

We have proved that K = Ny (Uy) = Ny (Us) is of order 2* and then
K = Dg x Cy (Proposition 1.1(i)) and |H| = 25. The subgroup K has exactly
three abelian maximal subgroups: Fy & Fg, Fy» & Fg, and A = (Uy,Us) =
Cy x Cy, where Fy N Fy = Fy = Z(K) = E4. There are no elements of order
8 in H — K since Ng(Uy) = Ny(Uz) = K and so H — K consists of eight
elements of order 4 and eight involutions. Let r be an involution in H — K.
Then rk (k € K) is an involution if and only if k™ = k!, But U] = U,
and so the fact that H — K contains exactly eight involutions gives at once
that Ck(r) is elementary abelian of order 8 and therefore we may assume
that Cx(r) = Fi. Indeed, the fact that U] = U, implies that r neither
centralizes nor inverts any of the four elements of order 4 in K — (Fy U Fb).
Since H — K contains exactly eight involutions, it follows that r inverts (and
therefore centralizes) the element 1 and seven further involutions in K and so
in Fy U F5. Note that no involution in F; — Fy commutes with any involution
in F, — Fy (otherwise, K would be abelian!). If all these seven involutions are
not contained in Fj or in F5, then r centralizes an involution t; € F; — Fy
and an involution t; € Fy — Fy and so r centralizes t1t. But ¢; and ¢35 do
not commute and so r centralizes the element t1t5 of order 4, a contradiction.
The subgroup E = F; x (r) is a unique elementary abelian subgroup of order
16 in H and for each involution 2 € E — Fy, Ck(x) = F; and so if ¢ is an
involution in Fy — Fp, then Cg(t) = Cr (t) = Fo = Z(K) = Z(H) = E4. We
have obtained the group (c) stated in our theorem. O

THEOREM 2.7. Let G be a 2-group with exactly siz cyclic subgroups of
order 4 and let H = Q3(G) be of order > 2*. Then H is of order 2° and
we have three possibilities for the structure of H (Theorem 2.6). However, if
G > H, then H = Q6% Cy, |G : H| =2, |G| = 2%, and we have the following
two possibilities:
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(i) G has a dihedral subgroup D = (f,&| 10 =¢2 =1, f¢ = f~1) = Dy
of index 2 and an involution w € G — D so that [u,&] =1 and f* = fz,
2= f8.

(i)

G = (at|a®=t*=1,a%=20a*=v,a" =a  vu, v* =1,
[u,a] =1, ut = uz>,

where G is a Ua-group with respect to U = (u,z) = Ey, G/U = SD1g
and Z(G) = (uww) = Cy.

PROOF. For the structure of H = Q3(G) we use Theorem 2.6. We assume
in addition that G > H. If H = Qg * Qg (Theorem 2.6(a)), then we have a
contradiction by [5, Theorem 2].

Suppose that H is a special group given in Theorem 2.6(c). Let L be
a subgroup of G containing H so that |L : H| = 2. Let E be a unique
elementary abelian subgroup of order 16 in H so that H is normal in L. Let
j be an involution in H — E so that Cg(j) = Ey = Z(H) = E, is normal
in L and F = Eg x (j) = Cu(j) = Es is normal in L since 12 elements in
H— (EUF) are of order 4. Four involutions in F' — Ey form a single conjugate
class in H and so I = CL(j) covers L/H and I N H = F. Since there are no
elements of order 4 in L — H, all elements in I — F must be involutions and
therefore I 2 F16 and Eg < Z(L). Let ¢ be an involution in I — F' and consider
the subgroup J = E(i) of order 2°, where J N H = E. Again, all elements
in J — F must be involutions and so J = Es35. We get Cy (i) > (E,F) = H.
If v is an element of order 4 in H, then vt is of order 4 and vi € L — H, a
contradiction.

We have proved that H = (16 * C4 must be a group given in Theo-
rem 2.6(b). We may set H = Q x C, where

Q=0,t|=1,2=b"=2,b =01 =2Qy, C=@)=Cy v>=z,

and @ NC = (z). The subgroup Q is generated by all (five) noncentral cyclic
subgroups of order 4 in H and so Q is normal in G. Set D = Cg(Q) so
that D > C and DN H = C. If there is an involution ¢ € D — C, then
o(b%i) = 4 and b%*i ¢ H, a contradiction. Hence z is a unique involution in D.
Since co(D) = 1, D cannot be generalized quaternion and so D is cyclic. Let
d € D — C be an element of order 8. Then b* = d* = 2z and so o(bd) = 4 with
bd ¢ H, a contradiction. We have proved that D = C = Cg(Q).

The automorphism group Aut(Q) is generated by Inn(Q) = Dg and two
involutory outer automorphisms o and 3 induced by t® = tb, b* = b1,
t8 = t, b% = bz, where [a, 8] = i (the inner automorphism of @ induced by
conjugation with the element b?) and so Aut(Q)/Inn(Q) = E, (and in fact
(a, B) = Dg). The subgroup @ contains exactly two quaternion subgroups
Q; and @ and we have Q7 = Q1, Q5 = Q,, and Q¥ = Q. It follows that
G/H # {1} is elementary abelian of order < 4.
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Assume that L = Ng(Q1) > H so that |L : H| = 2. Since Q/(z) = Dg
is isomorphic to an Sp-subgroup of Aut(Q1) = Sy, it follows that Cy =
CrL(Q1) > Cand |Cy: C| =2. If y € Cp — C is an involution, then o(b*y) = 4
(because b?> € Q1) and b%y ¢ H, a contradiction. Since c2(Cp) = 1, we get
that Cyp = (¢) = Cy is cyclic with ¢! = 2. Now, ¢ normalizes (b) (since Q is
normal in G and (b) is a unique cyclic subgroup of index 2 in ()) and central-
izes (b?) = (b)NQ1, but c does not centralize (b) (otherwise, ¢ would centralize
(b, Q1) = Q, a contradiction) and so we get b = bz, (b, c)’ = (z), class of (b, ¢)
is 2, (be)* = b*c*[c, b]® = 222% =1, o(bc) = 4, and be ¢ H, a contradiction.

We have proved that |G/H| = 2, |G| = 2%, and if g € G — H, then
Q7 = Q3. In particular, Cg(t) = (t,v) = Cy x Cy and so eight elements of
order 4 in Q — (b) form a single conjugate class in G. Set T' = (b)(v) = Cs x Cy
which is normal in G and eight elements in H — (Q U T) are involutions
which form a single conjugate class in G and so if tv is one of them, then
Cg(tv) = (t,v). In particular, if # € G — H, then 2> € T. We have U =
0 (T) = (2,b%v) = E4 is normal in G, Q(T) = (b?,v) = Cy x Oy, and (b?)
and (v) are normal in G.

Suppose that there is an involution £ € G — H. Then ¢ inverts (v) and
(b?) (otherwise, & centralizes v or b? and then &v or £€b% would be an element
of order 4 in G — H, a contradiction). If b = b=z, then (£b)? = b*b = 2 and
o(£b) = 4 with &b € H, a contradiction. Hence £ inverts each element in T
and so, in particular, £ centralizes U. Since Q§ = (2, we have t& = tb’, where
i is odd. Set b?v = u and £t = f so that ¢ centralizes the involution u,

fP=ctgt =1t =) =07 o(f) = 16, f5 = (b7)" = 2,
FE= (g0 = etf =i’ = fu = [TH(f2) = fT T = f7 (£,6) = Dig

and
FU= ()P = o2t = (v b 2)E b0 = CubtbPo =
(&) (vb?)' %0 = (Et)wb 2b%v = Etv? = fz.
We have obtained the group given in part (i) of our theorem.

It remains to investigate the case, where there are no involutions in G—H.
Then 32 elements in G — H are of order 8 or 16. If all 32 elements in G — H
are of order 8, then ¢3(G) = 10 and therefore G is a Us-group (see section
1). But then G must also have elements of order 16 which is not the case.
If all 32 elements in G — H are of order 16, then ¢4(G) = 4 and ¢3(G) = 2.
Again, G is a Us-group. But a Us-group of order 26 has exactly two cyclic
subgroups of order 16, a contradiction. Hence G — H contains elements of
order 8 and 16. Since the number of cyclic subgroups of order 16 must be
even (otherwise, G would be of maximal class), it follows that G — H has
exactly 16 elements of order 16 (and so ¢4 (G) = 2) and exactly 16 elements of
order 8. Hence c3(G) = 6 and so G is a Us-group with respect to U since in
a Us-group a normal four-subgroup is unique. If R/U is a cyclic subgroup of
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index 2 in G/U, then G — R contains exactly eight involutions, eight elements
of order 4, and 16 elements of order 8. Hence G/U = SDq¢ and ®(R) = Cs.
Since H is nonmetacyclic, G is also nonmetacyclic. We have ®(G) < T and
so there are exactly three maximal subgroups of G containing 7. They are
H, R and a certain subgroup V with the property that all 16 elements in
V — T are of order 8. Since Q(V) = Qa(T) = (b%,v) =2 Cy x Cs, |V| = 25,
and V has no elements of order 16, V must be isomorphic to a group (d)
given in [4, Proposition 1.4] and so ®(V) = Q9(V) and Z(V) = Cy. We get
O(G) > (P(R),®(V)) = T and so G is 2-generated, i.e., d(G) = 2. Also,
Z(V) = Cy implies that U £ Z(V) and so Cq(U) = R (because Cg(U)
must be a maximal subgroup of G containing T" and also U £ Z(H)). Since
®(T) = (b?) and ®(V) = (b?,v) (and no involution in ®(V) — (2) could be
a square of an element in V — T because U ¢ Z(V)), there is an element
s € V — T such that s> = v. Hence, Cg(v) > (H,s) = G and so Z(G) = Cj.
We have obtained a nonmetacyclic Us-group G of order 2° with respect to
U = E4 such that G/U = SDsg, d(G) = 2, and Z(G) = Cy. It follows that
G must be isomorphic to a Us-group given in [3, Theorem 6.3(c)]. We have
obtained the group given in part (ii) of our theorem.

3. 2-GROUPS WITH ONE CONJUGACY CLASS OF CYCLIC SUBGROUPS OF
ORDER 4

THEOREM 3.1. Let G be a 2-group of exponent > 2 all of whose cyclic
subgroups of order 4 are conjugate. Then G has exactly one cyclic subgroup
of order 4 and G is either cyclic or dihedral.

PRrROOF. First suppose that G has more than one cyclic subgroup of order
4. Let U be one of them and set K = Ng(U) so that |G : K| > 2 and let
M be a maximal subgroup of G containing K. Then each cyclic subgroup of
order 4 is contained in M and if X is one of them, then Ng(X) < M (since
X is conjugate in G to U). Let x be any element in G — M. We know that x
is not of order 4 and suppose that o(z) > 8. But then 22 € M and o(z?) > 4
and so x centralizes a cyclic subgroup of order 4 in M, a contradiction. Hence
each element z in G — M is an involution and so M must be abelian and z
acts invertingly on M. But then U is normal in GG, a contradiction.

We have proved that G has a unique cyclic subgroup V = (v) of order
4 so that V is normal in G. Then our result follows by [2, Theorem 1.17].
Here we give also a direct proof. Set C' = Cg(V) and we have |G : C| < 2.
If C possesses an involution t # v?, then (tv) is a cyclic subgroup of order 4
distinct from V', a contradiction. It follows that C' has the unique involution
v? and so C is cyclic. If |G : C| = 2, then G is dihedral and we are done. 0O
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