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CYCLIC SUBGROUPS OF ORDER 4 IN FINITE 2-GROUPS

Zvonimir Janko

University of Heidelberg, Germany

Abstract. We determine completely the structure of finite 2-groups
which possess exactly six cyclic subgroups of order 4. This is an exceptional
case because in a finite 2-group is the number of cyclic subgroups of a given
order 2n (n ≥ 2 fixed) divisible by 4 in most cases and this solves a part
of a problem stated by Berkovich. In addition, we show that if in a finite
2-group G all cyclic subgroups of order 4 are conjugate, then G is cyclic or
dihedral. This solves a problem stated by Berkovich.

1. Introduction and known results

For a finite 2-group G and a fixed integer n ≥ 1 we denote with cn(G) the
number of cyclic subgroups of order 2n. The starting point are the following
results of Y. Berkovich. Suppose that a finite 2-group G is neither cyclic nor
of maximal class. Then c1(G) ≡ 3 (mod 4) and if n ≥ 2, then cn(G) is even
(Berkovich [2, Theorem 1.17]). If in addition G is nonabelian and n ≥ 3, then
cn(G) ≡ 0 (mod 4) unless G is an L2-group or a U2-group (Berkovich [1] and
[2, Corollary 18.7]).

We shall use freely the above two results and we consider here only finite
2-groups with a standard notation. In addition, a 2-group G is called an L2-
group if Ω1(G) ∼= E4 is a four-subgroup and and G/Ω1(G) is cyclic of order
≥ 4. We note that an L2-group G is either abelian of type (2, 2m), m ≥ 3, or

G ∼= M2m+1 = 〈a, b | a2
m

= b2 = 1, m ≥ 3, ab = a1+2
m−1

〉.

A 2-group G is called a U2-group (with respect to R) if G possesses a normal
four-subgroup R such that G/R is a group of maximal class (i.e., G/R is dihe-
dral D2n , generalized quaternion Q2n or semi-dihedral SD2n) and whenever
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T/R is a cyclic subgroup of index 2 in G/R, then Ω1(T ) = R. It is easy to
see that the four-subgroup R is uniquely determined. All U2-groups are com-
pletely classified in Janko [3, section 6]. Finally, for a 2-group G, we define
Ω∗

n(G) = 〈x ∈ G | o(x) = 2n〉.
Here we shall consider the exceptional cases, where in a 2-group G we have

c2(G) ≡ 2 (mod 4). If c2(G) = 2, then such 2-groups G are already known
(see Janko [4, Proposition 1.4, Theorems 5.1 and 5.2]). If c2(G) = 6, then
such 2-groups G are determined only in the special case where |Ω∗

2(G)| = 24.
Such 2-groups G with |G| > 24 are determined by Janko [4, Theorem 2.1]
when |Ω2(G)| = 24 (since in that case Ω2(G) ∼= Q8 ×C2 or Ω2(G) ∼= C4 ×C4)
and by Janko [3, Theorem 4.1] when |Ω2(G)| > 24. In this paper we shall
classify 2-groups G with c2(G) = 6 and |Ω∗

2(G)| > 24. First we show that
we must have |Ω∗

2(G)| = 25 and we get three possibilities for the structure
of Ω∗

2(G) (Theorem 2.6). The corresponding 2-groups G are determined up
to isomorphism in Theorem 2.7. The general case, where c2(G) ≡ 2 (mod 4)
and c2(G) ≥ 10 is very difficult and is still open.

At the end we consider 2-groups G which possess only one conjugate
class of cyclic subgroups of order 4 and we show that in that case G has only
one cyclic subgroup of order 4 and therefore G is either cyclic or dihedral
(Theorem 3.1).

For convenience we state another known result which is of special impor-
tance in the proof of Theorem 2.6.

Proposition 1.1. (see [3, Proposition 1.2]) Let K be a 2-group of order
> 23 possessing exactly two cyclic subgroups U1, U2 of order 4 and assume that
neither of them is a characteristic subgroup of K. Then one of the following
holds:

(i) K ∼= D8 × C2 (of order 24) with Φ(K) = U1 ∩ U2
∼= C2;

(ii) K is a uniquely determined group of order 25 with Φ(K) = 〈U1, U2〉 ∼=
C4 × C2.

2. New results for c2(G) = 6

In what follows G will denote a 2-group with c2(G) = 6 and H = Ω∗

2(G)
is of order > 24. Since H has exactly six cyclic subgroups of order 4, H is
neither cyclic nor a group of maximal class. It follows that H possesses a
G-invariant four-subgroup W (see [6, Proposition 2.19]).

Lemma 2.1. If a cyclic subgroup V of order 4 in G normalizes another
cyclic subgroup U of order 4, then U normalizes V and UV ∼= C4 × C2 or
UV ∼= Q8 .

Proof. First suppose U ∩ V = {1}. Then |UV | = 24 and (UV )′ < U
and we have either UV = U × V ∼= C4 × C4 or (UV )′ ∼= C2 in which case
UV is a metacyclic minimal nonabelian group of order 24 and exponent 4. In
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any case, c2(UV ) = 6 and so UV = H = Ω∗

2(G), contrary to our assumption
that |H | > 24. Thus, U ∩ V ∼= C2 and so |UV | = 23. In this case, U also
normalizes V and the only possibilities are UV ∼= C4 × C2 or UV ∼= Q8.

Lemma 2.2. Suppose that H = Ω∗

2(G) contains a quaternion subgroup
Q ∼= Q8. Then |H | = 25 and we have the following two possibilities:

(a) H ∼= Q8 ∗ Q8;
(b) H ∼= Q16 ∗ C4.

Proof. First we determine the structure of S = WQ, where W is a
normal four-subgroup in H and |W ∩ Q| ≤ 2. Let z be an involution in
W ∩Z(S). If z 6∈ Q, then c2(Q×〈z〉) = 6 and therefore Q×〈z〉 = Ω∗

2(G) = H ,
a contradiction. Hence Q ∩ W = 〈z〉 ∼= C2, |S| = 24, and [W, Q] = 〈z〉. This
gives S = Q ∗ 〈v〉, where 〈v〉 ∼= C4 and 〈v〉 ∩ Q = 〈z〉. We have c2(S) = 4,
〈v〉 = Z(S) and since all elements in S − (Q ∪ 〈v〉) are involutions, Q is a
unique quaternion subgroup of S and therefore Q is characteristic in S.

Assume that S is not normal in H and set K = NH(S) so that |K : S| ≥ 2
and |H : K| ≥ 2. Let M be a subgroup of H containing K so that |M : K| = 2
and take an element m ∈ M − K. Since m normalizes W , we have Qm 6= Q,
Qm 6≤ S and Qm ≤ K. We have |Qm∩S| ≤ 4 and so Qm−S contains at least
four elements of order 4. It follows that c2(K) = 6. But Ω∗

2(G) = H and so
there are elements of order 4 in H −K, a contradiction. We have proved that
S is normal in H and so Q and Z(S) = 〈v〉 are normal in H . Since c2(S) = 4,
we have exactly four elements of order 4 in H − S. Set C = CH(Q) so that
C is normal in H and |H : (QC)| ≤ 2 (since Aut(Q) ∼= S4).

If there is an involution u in C−〈v〉, then c2(Q×〈u〉) = 6 and Q×〈u〉 = H ,
a contradiction. Hence C is either generalized quaternion or cyclic. In the
first case (since C−〈v〉 can contain at most four elements of order 4), C ∼= Q8,
QC ∼= Q8 ∗ Q8, c2(QC) = 6 and therefore QC = H is an extraspecial group
of order 25 (case (a) of our lemma).

We may assume that C is cyclic so that |H : (QC)| = 2 because H − S
must contain exactly four elements of order 4. Since H/C ∼= D8, there is
x ∈ H − (QC) such that x2 ∈ C and x induces an involutory outer automor-
phism on Q. There are elements a, b ∈ Q such that 〈a, b〉 = Q, ax = a−1 and
bx = ab.

Suppose that 〈x, C〉 is cyclic so that 〈x, C〉 = 〈x〉. If o(x) ≥ 16, then there
are no elements of order 4 in H−(QC), a contradiction. Hence o(x) = 8 so that
we may assume that x2 = v. In this case all eight elements lx (l ∈ S − 〈a, v〉)
in H − S are of order 4, a contradiction. Hence 〈x, C〉 is noncyclic.

Assume that 〈x, C〉 is abelian or 〈x, C〉 ∼= M2m , m ≥ 4, so that in
both cases we may assume that x is an involution centralizing 〈v〉. We
have o(xv) = o(xva) = 4 and we see that c2(S〈x〉) = 6 and so we get
H = S〈x〉 = 〈Q, xv〉 ∗ 〈v〉, where 〈Q, xv〉 ∼= Q16 and H ∼= Q16 ∗ C4 (case
(b) of our lemma).
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Assume that 〈x, C〉 ∼= Q2n or 〈x, C〉 ∼= SD2n . In both cases we may
assume that x2 = z and 〈v, x〉 ∼= Q8 since Q8 is a subgroup of Q2n and SD2n

and Q8 contains the subgroup 〈v〉 of C . But then x inverts 〈v〉 and 〈a〉 (see
above) and so all eight elements in 〈a, v〉x from H − (QC) are of order 4, a
contradiction. Indeed, we compute for any integers i, j :

(aivjx)2 = aivjxaivjx = aivjx2(aivj)x = aivjza−iv−j = z.

Finally, suppose that 〈x, C〉 ∼= D2n , n ≥ 3, where x is an involution. But
then all elements in 〈a, C〉x from H − (QC) are involutions since x inverts 〈a〉
and C and all other elements in (QC − 〈a, C〉)x from H − (QC) are elements
of order 8, a contradiction (since H−S does not contain any elements of order
4). Indeed, we set C = 〈c〉 and we know that bx = ab so that for any integers
i, j we compute (noting that in Q we have bai = aibzi and bab = a):

(baicjx)2 = baicj(baicj)x = baicj · aba−ic−j = aibzicjaba−ic−j =

aizi(bab)cja−ic−j = aizi · a · cja−ic−j = zia,

which is an element of order 4. Hence, all elements baicjx are of order 8, as
claimed. Our lemma is proved.

In the next three lemmas we assume in addition that Q8 is not a subgroup
of H .

Lemma 2.3. Assuming that Q8 is not a subgroup of H, we have
|H : NH(X)| ≤ 2 for each cyclic subgroup X of order 4 in H.

Proof. Suppose that the lemma is false. Then there is a cyclic subgroup
U1 of order 4 in H such that K = NH(U1) is of index 4 in H . Let M be a
maximal subgroup of H containing K so that |H : M | = |M : K| = 2 and let
m ∈ M −K. Then U2 = Um

1 6= U1, NH(U2) = K and so A = U1U2
∼= C4×C2

and A is normal in M (Lemma 2.1). Let x ∈ H − M so that Ax 6= A
since c2(A) = 2 (and so A cannot be normal in H) and Ax ≤ M . We have
c2(M) ∈ {3, 4, 5} because there must exist elements of order 4 in H − M . If
c2(M) is odd, then M (of order ≥ 24) is of maximal class, a contradiction
(since M possesses an abelian subgroup of type (4, 2)). Hence c2(M) = 4.

Suppose that |M | > 24. If |Ω2(M)| > 24, then U1 is normal in M (see [3,
Introduction]), contrary to the fact that NH(U1) = K < M . Hence we must
have |Ω2(M)| = 24. In that case we may use Janko [4, Theorems 3.1, 3.3,
and 3.4] since Q8 is not a subgroup of M and c2(Ω2(M)) = 4. This implies
that Ω2(M) is abelian of type (4, 2, 2) and there is a cyclic subgroup of order
4 which is normal in M . This is a contradiction since Ω2(M) = AAx and so
all four cyclic subgroups of order 4 in M are conjugate in H and so no one of
them could be normal in M .

We have proved that |M | = 24 so that K = A = NH(U1), AAx = M
is of order 24 and |H | = 25. In this case A and Ax are two distinct abelian
maximal subgroups of M which implies |Z(M)| = 4, |M ′| = 2, the class of
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M is 2 and M is of exponent 4. Suppose that M is not minimal nonabelian.
Then M possesses a subgroup D ∼= D8 and since M is not of maximal class,
we have CM (D) 6≤ D (see [3, Proposition 1.9]). Since c2(M) = 4, we get
M = D∗C with C ∼= C4 and D∩C = Z(D). But D8 ∗C4

∼= Q8 ∗C4, contrary
to our assumption. Hence M is minimal nonabelian. If M is metacyclic, then
M possesses a cyclic normal subgroup of order 4 which contradicts the fact
that all four cyclic subgroups of order 4 in M are conjugate in H . Hence M
is a uniquely determined nonmetacyclic minimal nonabelian group of order
24 and exponent 4 (see [4, Proposition 1.3]).

Since NH(X) < M for each cyclic subgroup X of order 4 in M , there
are no elements of order 8 in H − M . It follows that H − M consists of
four elements of order 4 and 12 involutions. Set E = Ω1(M) so that E is
elementary abelian of order 8, Z(M) = Φ(M) ∼= E4 and Z(H) ≤ Z(M). Let
v be an element of order 4 in H − M so that v2 ∈ E and CE(v) ∼= E4 since
H − M contains exactly four elements of order 4 (and they are all contained
in (E〈v〉) − E). All eight elements in H − (M ∪ E〈v〉) are involutions and
so if u ∈ H − (M ∪ E〈v〉), then u centralizes E and F = E × 〈u〉 ∼= E16. In
particular, Z(M) < E < F and so Z(M) = Z(H). Let y ∈ M − E and we
know that all cyclic subgroups of order 4 in M are conjugate in H to 〈y〉.
But y2 ∈ Φ(M) = Z(H) and so ℧1(M) = 〈y2〉, contrary to Φ(M) ∼= E4. Our
lemma is proved.

Lemma 2.4. Assuming that Q8 is not a subgroup of H, we have
|H : NH(X)| = 2 for each cyclic subgroup X of order 4 in H.

Proof. Suppose that the lemma is false. Then there are at least two dis-
tinct cyclic subgroups U1 and U2 which are normal in H . Let {U1, U2, ..., U6}
be the set of six cyclic subgroups of H . Since each Ui, i = 1, 2, ..., 6, normal-
izes U1 and U2, it follows (Lemma 2.1) that A = 〈U1, U2〉 ∼= C4 × C2 and
A ≤ Z(H). For each Uj , j = 3, ..., 6, we have 〈U1, Uj〉 ∼= 〈U2, Uj〉 ∼= C4 × C2

and so U1 ∩ Uj = U2 ∩ Uj = U1 ∩ U2 = 〈z〉 = ℧1(A). It follows
that B = AU3 = 〈U1, U2, U3〉 is abelian of order 24 and exponent 4 with
℧1(B) = 〈z〉 and so B is abelian of type (4, 2, 2). Since c2(B) = 4, we
nay assume that {U1, U2, U3, U4} is the set of cyclic subgroups of order 4
in B. Similarly, C = AU5 is abelian of type (4, 2, 2) with ℧1(C) = 〈z〉 so
that {U1, U2, U5, U6} is the set of cyclic subgroups of order 4 in C. We have
B ∩ C = A and H = 〈B, C〉. Thus, H/A is generated with two distinct
involutions (B/A)♯ and (C/A)♯ and so H/A ∼= E4 or H/A ∼= D2n , n ≥ 3.
In particular, B and C are not conjugate in H . Let t be an involution in
H − (B ∪ C) and let v be an element of order 4 in A ≤ Z(H). Then tv is
an element of order 4 in H − (B ∪ C), a contradiction. Hence, all elements
in H − (B ∪ C) are of order ≥ 8. This implies that B and C are normal in
H and so H = 〈B, C〉 = BC is of order 25 with two distinct abelian maxi-
mal subgroups B and C. It follows that |H ′| ≤ 2 and so H is of class ≤ 2.
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But H is generated by its elements of order 4 and so H is of exponent 4, a
contradiction.

Lemma 2.5. Assuming that Q8 is not a subgroup of H, we have
c2(NH(X)) = 2 for each cyclic subgroup X of order 4 in H.

Proof. Let U1 be a cyclic subgroup of order 4 in H so that
|H : NH(U1)| = 2 (Lemma 2.4). Set M = NH(U1) and taking an element
h ∈ H − M we get U2 = Uh

1 6= U1, NH(U2) = M , A = 〈U1, U2〉 ∼= C4 × C2

(Lemma 2.1), and A is normal in H . Assume that M possesses a further
cyclic subgroup U3 6≤ A of order 4 so that 〈U1, U3〉 ∼= 〈U2, U3〉 ∼= C4 ×C2 and
therefore B = 〈U1, U2, U3〉 is abelian of type (4, 2, 2). Since c2(B) = 4, we
may assume that {U1, U2, U3, U4} is the set of all cyclic subgroups of order 4
in B. There is an element g of order 4 in H −M and since |H : NH(〈g〉)| = 2,
U5 = 〈g〉 and U6 = 〈gx〉 (with an x ∈ H − NH(〈g〉)) give two last cyclic sub-
groups of order 4 in H which give exactly four elements of order 4 in H −M .
This implies that B = Ω∗

2(M) is normal in H and U3 and U4 are conjugate in
H .

Set H0 = BU5. If c2(H0) = 5, then H0 is of maximal class, a contra-
diction. Hence c2(H0) = 6 and so H0 = BU5 = H . Set B0 = Ω1(B) ∼= E8.
Suppose B ∩ U5 = {1} so that |H : B| = 4. Since |H : NH(U5)| = 2, U5

centralizes a four-subgroup S in B0. But then all eight elements of order 4 in
S ×U5 lie in H −B, a contradiction. Hence B ∩U5

∼= C2 and so |H : B| = 2,
|H | = 25, B = M , and NH(U3) = NH(U4) = B. This implies that there are
no elements of order 8 in H − B and so H − B consists of four elements of
order 4 and twelve involutions.

We have |B : NB(〈g〉)| = 2, where 〈g〉 = U5 and NB(〈g〉) cannot con-
tain an element x of order 4 (otherwise, that element x would centralize U5,
contrary to the fact that CH(x) = B). Hence NB(〈g〉) = B0. If g central-
izes B0, then there are eight elements of order 4 in H − B, a contradiction.
Hence CB(g) = CB0

(g) = Z ∼= E4 and so Z(H) = Z. The set B0g consists
of four elements of order 4 and four involutions. Hence all eight elements in
H−(B∪B0〈g〉) are involutions and if t is one of them, then H−B = B0g∪B0t
and B0g ∩ B0t = ∅ so that t must centralize B0 and therefore B0 ≤ Z(H),
contrary to the fact that Z(H) = Z ∼= E4. Our lemma is proved.

Theorem 2.6. Let G be a 2-group with exactly six cyclic subgroups of
order 4 and let H = Ω∗

2(G) = 〈x ∈ G | o(x) = 4〉 be of order > 24. Then H is
of order 25 and we have the following three possibilities:

(a) H ∼= Q8 ∗ Q8 is extraspecial (of type ”+”);
(b) H ∼= Q16 ∗ C4 with Q16 ∩ C4 = Z(Q16);
(c) H is a special group possessing a unique elementary abelian subgroup

E of order 24 and there is an involution t ∈ H−E such that H = 〈E, t〉
and CE(t) = Z(H) ∼= E4.
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Proof. In view of Lemma 2.2, we may assume that Q8 is not a subgroup
of H and so we may use Lemmas 2.1, 2.4, and 2.5. Let U1 be a cyclic subgroup
of order 4 in H . Set K = NH(U1) so that |H : K| = 2 and if h ∈ H − K,
then U2 = Uh

1 6= U1, A = 〈U1, U2〉 = Ω∗

2(K) ∼= C4 × C2 is normal in H ,
NH(U2) = K and so no one of U1, U2 is characteristic in K. Note that
|H | > 24 and so |K| > 23.

We are in a position to use Proposition 1.1 which gives that K is a uniquely
determined group of order 25 or 24. We may assume that we have the following
conjugacy classes of our six cyclic subgroups of order 4 in H : U1 ∼ U2,
U3 ∼ U4, and U5 ∼ U6. Assume that |K| = 25 in which case |H | = 26.
It follows that Φ(NH(U1)) = 〈U1, U2〉 and similarly (since |H : NH(U3)| =
|H : NH(U5)| = 2), NH(U3) ∼= NH(U5) ∼= K. But then Φ(NH(U3)) =
〈U3, U4〉, Φ(NH(U5)) = 〈U5, U6〉 and therefore Φ(H) ≥ 〈U1, U2, U3, U4〉 = H ,
a contradiction.

We have proved that K = NH(U1) = NH(U2) is of order 24 and then
K ∼= D8 × C2 (Proposition 1.1(i)) and |H | = 25. The subgroup K has exactly
three abelian maximal subgroups: F1

∼= E8, F2
∼= E8, and A = 〈U1, U2〉 ∼=

C4 × C2, where F1 ∩ F2 = F0 = Z(K) ∼= E4. There are no elements of order
8 in H − K since NH(U1) = NH(U2) = K and so H − K consists of eight
elements of order 4 and eight involutions. Let r be an involution in H − K.
Then rk (k ∈ K) is an involution if and only if kr = k−1. But U r

1 = U2

and so the fact that H − K contains exactly eight involutions gives at once
that CK(r) is elementary abelian of order 8 and therefore we may assume
that CK(r) = F1. Indeed, the fact that U r

1 = U2 implies that r neither
centralizes nor inverts any of the four elements of order 4 in K − (F1 ∪ F2).
Since H − K contains exactly eight involutions, it follows that r inverts (and
therefore centralizes) the element 1 and seven further involutions in K and so
in F1 ∪F2. Note that no involution in F1 −F0 commutes with any involution
in F2 −F0 (otherwise, K would be abelian!). If all these seven involutions are
not contained in F1 or in F2, then r centralizes an involution t1 ∈ F1 − F0

and an involution t2 ∈ F2 − F0 and so r centralizes t1t2. But t1 and t2 do
not commute and so r centralizes the element t1t2 of order 4, a contradiction.
The subgroup E = F1 ×〈r〉 is a unique elementary abelian subgroup of order
16 in H and for each involution x ∈ E − F1, CK(x) = F1 and so if t is an
involution in F2 − F0, then CE(t) = CF1

(t) = F0 = Z(K) = Z(H) ∼= E4. We
have obtained the group (c) stated in our theorem.

Theorem 2.7. Let G be a 2-group with exactly six cyclic subgroups of
order 4 and let H = Ω∗

2(G) be of order > 24. Then H is of order 25 and
we have three possibilities for the structure of H (Theorem 2.6). However, if
G > H, then H ∼= Q16 ∗C4, |G : H | = 2, |G| = 26, and we have the following
two possibilities:
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(i) G has a dihedral subgroup D = 〈f, ξ | f16 = ξ2 = 1, f ξ = f−1〉 ∼= D16

of index 2 and an involution u ∈ G−D so that [u, ξ] = 1 and fu = fz,
z = f8.

(ii)

G = 〈a, t | a16 = t2 = 1, a8 = z, a4 = v, at = a−1vu, u2 = 1,

[u, a] = 1, ut = uz〉,

where G is a U2-group with respect to U = 〈u, z〉 ∼= E4, G/U ∼= SD16

and Z(G) = 〈uv〉 ∼= C4.

Proof. For the structure of H = Ω∗

2(G) we use Theorem 2.6. We assume
in addition that G > H . If H ∼= Q8 ∗ Q8 (Theorem 2.6(a)), then we have a
contradiction by [5, Theorem 2].

Suppose that H is a special group given in Theorem 2.6(c). Let L be
a subgroup of G containing H so that |L : H | = 2. Let E be a unique
elementary abelian subgroup of order 16 in H so that H is normal in L. Let
j be an involution in H − E so that CE(j) = E0 = Z(H) ∼= E4 is normal
in L and F = E0 × 〈j〉 = CH(j) ∼= E8 is normal in L since 12 elements in
H−(E∪F ) are of order 4. Four involutions in F −E0 form a single conjugate
class in H and so I = CL(j) covers L/H and I ∩ H = F . Since there are no
elements of order 4 in L − H , all elements in I − F must be involutions and
therefore I ∼= E16 and E0 ≤ Z(L). Let i be an involution in I−F and consider
the subgroup J = E〈i〉 of order 25, where J ∩ H = E. Again, all elements
in J − E must be involutions and so J ∼= E32. We get CH(i) ≥ 〈E, F 〉 = H .
If v is an element of order 4 in H , then vi is of order 4 and vi ∈ L − H , a
contradiction.

We have proved that H ∼= Q16 ∗ C4 must be a group given in Theo-
rem 2.6(b). We may set H = Q ∗ C, where

Q = 〈b, t | b8 = 1, t2 = b4 = z, bt = b−1〉 ∼= Q16, C = 〈v〉 ∼= C4, v2 = z,

and Q∩C = 〈z〉. The subgroup Q is generated by all (five) noncentral cyclic
subgroups of order 4 in H and so Q is normal in G. Set D = CG(Q) so
that D ≥ C and D ∩ H = C. If there is an involution i ∈ D − C, then
o(b2i) = 4 and b2i 6∈ H , a contradiction. Hence z is a unique involution in D.
Since c2(D) = 1, D cannot be generalized quaternion and so D is cyclic. Let
d ∈ D−C be an element of order 8. Then b4 = d4 = z and so o(bd) = 4 with
bd 6∈ H , a contradiction. We have proved that D = C = CG(Q).

The automorphism group Aut(Q) is generated by Inn(Q) ∼= D8 and two
involutory outer automorphisms α and β induced by tα = tb, bα = b−1,
tβ = t, bβ = bz, where [α, β] = ib2 (the inner automorphism of Q induced by
conjugation with the element b2) and so Aut(Q)/Inn(Q) ∼= E4 (and in fact
〈α, β〉 ∼= D8). The subgroup Q contains exactly two quaternion subgroups

Q1 and Q2 and we have Qβ
1 = Q1, Qβ

2 = Q2, and Qα
1 = Q2. It follows that

G/H 6= {1} is elementary abelian of order ≤ 4.
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Assume that L = NG(Q1) > H so that |L : H | = 2. Since Q/〈z〉 ∼= D8

is isomorphic to an S2-subgroup of Aut(Q1) ∼= S4, it follows that C0 =
CL(Q1) > C and |C0 : C| = 2. If y ∈ C0 −C is an involution, then o(b2y) = 4
(because b2 ∈ Q1) and b2y 6∈ H , a contradiction. Since c2(C0) = 1, we get
that C0 = 〈c〉 ∼= C8 is cyclic with c4 = z. Now, c normalizes 〈b〉 (since Q is
normal in G and 〈b〉 is a unique cyclic subgroup of index 2 in Q) and central-
izes 〈b2〉 = 〈b〉∩Q1, but c does not centralize 〈b〉 (otherwise, c would centralize
〈b, Q1〉 = Q, a contradiction) and so we get bc = bz, 〈b, c〉′ = 〈z〉, class of 〈b, c〉
is 2, (bc)4 = b4c4[c, b]6 = zzz6 = 1, o(bc) = 4, and bc 6∈ H , a contradiction.

We have proved that |G/H | = 2, |G| = 26, and if g ∈ G − H , then
Qg

1 = Q2. In particular, CG(t) = 〈t, v〉 ∼= C4 × C2 and so eight elements of
order 4 in Q−〈b〉 form a single conjugate class in G. Set T = 〈b〉〈v〉 ∼= C8×C2

which is normal in G and eight elements in H − (Q ∪ T ) are involutions
which form a single conjugate class in G and so if tv is one of them, then
CG(tv) = 〈t, v〉. In particular, if x ∈ G − H , then x2 ∈ T . We have U =
Ω1(T ) = 〈z, b2v〉 ∼= E4 is normal in G, Ω2(T ) = 〈b2, v〉 ∼= C4 × C2, and 〈b2〉
and 〈v〉 are normal in G.

Suppose that there is an involution ξ ∈ G − H . Then ξ inverts 〈v〉 and
〈b2〉 (otherwise, ξ centralizes v or b2 and then ξv or ξb2 would be an element
of order 4 in G − H , a contradiction). If bξ = b−1z, then (ξb)2 = bξb = z and
o(ξb) = 4 with ξb 6∈ H , a contradiction. Hence ξ inverts each element in T

and so, in particular, ξ centralizes U . Since Qξ
1 = Q2, we have tξ = tbi, where

i is odd. Set b2v = u and ξt = f so that ξ centralizes the involution u,

f2 = ξtξt = tξt = (bi)t = b−i, o(f) = 16, f8 = (b−i)4 = z,

f ξ = (ξt)ξ = ξtξ = ξtbi = fbi = f−1(f2bi) = f−1b−ibi = f−1, 〈f, ξ〉 ∼= D16

and

fu = (ξt)b2v = v−1b−2ξtb2v = ξ(v−1b−2)ξtb2v = ξvb2tb2v =

(ξt)(vb2)tb2v = (ξt)vb−2b2v = ξtv2 = fz.

We have obtained the group given in part (i) of our theorem.
It remains to investigate the case, where there are no involutions in G−H .

Then 32 elements in G − H are of order 8 or 16. If all 32 elements in G − H
are of order 8, then c3(G) = 10 and therefore G is a U2-group (see section
1). But then G must also have elements of order 16 which is not the case.
If all 32 elements in G − H are of order 16, then c4(G) = 4 and c3(G) = 2.
Again, G is a U2-group. But a U2-group of order 26 has exactly two cyclic
subgroups of order 16, a contradiction. Hence G − H contains elements of
order 8 and 16. Since the number of cyclic subgroups of order 16 must be
even (otherwise, G would be of maximal class), it follows that G − H has
exactly 16 elements of order 16 (and so c4(G) = 2) and exactly 16 elements of
order 8. Hence c3(G) = 6 and so G is a U2-group with respect to U since in
a U2-group a normal four-subgroup is unique. If R/U is a cyclic subgroup of
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index 2 in G/U , then G−R contains exactly eight involutions, eight elements
of order 4, and 16 elements of order 8. Hence G/U ∼= SD16 and Φ(R) ∼= C8.
Since H is nonmetacyclic, G is also nonmetacyclic. We have Φ(G) ≤ T and
so there are exactly three maximal subgroups of G containing T . They are
H , R and a certain subgroup V with the property that all 16 elements in
V − T are of order 8. Since Ω2(V ) = Ω2(T ) = 〈b2, v〉 ∼= C4 × C2, |V | = 25,
and V has no elements of order 16, V must be isomorphic to a group (d)
given in [4, Proposition 1.4] and so Φ(V ) = Ω2(V ) and Z(V ) ∼= C4. We get
Φ(G) ≥ 〈Φ(R), Φ(V )〉 = T and so G is 2-generated, i.e., d(G) = 2. Also,
Z(V ) ∼= C4 implies that U 6≤ Z(V ) and so CG(U) = R (because CG(U)
must be a maximal subgroup of G containing T and also U 6≤ Z(H)). Since
Φ(T ) = 〈b2〉 and Φ(V ) = 〈b2, v〉 (and no involution in Φ(V ) − 〈z〉 could be
a square of an element in V − T because U 6∈ Z(V )), there is an element
s ∈ V − T such that s2 = v. Hence, CG(v) ≥ 〈H, s〉 = G and so Z(G) ∼= C4.
We have obtained a nonmetacyclic U2-group G of order 26 with respect to
U ∼= E4 such that G/U ∼= SD16, d(G) = 2, and Z(G) ∼= C4. It follows that
G must be isomorphic to a U2-group given in [3, Theorem 6.3(c)]. We have
obtained the group given in part (ii) of our theorem.

3. 2-groups with one conjugacy class of cyclic subgroups of

order 4

Theorem 3.1. Let G be a 2-group of exponent > 2 all of whose cyclic
subgroups of order 4 are conjugate. Then G has exactly one cyclic subgroup
of order 4 and G is either cyclic or dihedral.

Proof. First suppose that G has more than one cyclic subgroup of order
4. Let U be one of them and set K = NG(U) so that |G : K| ≥ 2 and let
M be a maximal subgroup of G containing K. Then each cyclic subgroup of
order 4 is contained in M and if X is one of them, then NG(X) ≤ M (since
X is conjugate in G to U). Let x be any element in G−M . We know that x
is not of order 4 and suppose that o(x) ≥ 8. But then x2 ∈ M and o(x2) ≥ 4
and so x centralizes a cyclic subgroup of order 4 in M , a contradiction. Hence
each element x in G − M is an involution and so M must be abelian and x
acts invertingly on M . But then U is normal in G, a contradiction.

We have proved that G has a unique cyclic subgroup V = 〈v〉 of order
4 so that V is normal in G. Then our result follows by [2, Theorem 1.17].
Here we give also a direct proof. Set C = CG(V ) and we have |G : C| ≤ 2.
If C possesses an involution t 6= v2, then 〈tv〉 is a cyclic subgroup of order 4
distinct from V , a contradiction. It follows that C has the unique involution
v2 and so C is cyclic. If |G : C| = 2, then G is dihedral and we are done.
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