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ON A CHARACTERIZATION OF QUASICYCLIC GROUPS
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ABSTRACT. Let G be an infinite solvable group (resp. an infinite group
properly containing its commutator subgroup G’). We prove that G is
isomorphic to a quasicyclic group if and only if all proper normal subgroups
of G are finitely generated (resp. all proper normal subgroups of G are cyclic
or finite).

In this paper, the symbols Q, Z, N denote the rational numbers, the integers,
the nonnegative integers, respectively. A quasicyclic group (or Priifer group)
is the p-primary component of Q/Z, that is, the unique maximal p-subgroup
of Q/Z, for some prime number p. Any group isomorphic to it will also be
called a quasicyclic group and denoted by Z,~. Quasicyclic groups play an
important roles in the infinite abelian group theory. They may also be defined
in a number of equivalent ways (again, up to isomorphism):

e A quasicyclic group is the group of all p”-th complex roots of 1, for
all n € N.

e A quasicyclic group is the injective hull of Z/pZ (viewing abelian
groups as Z-modules).

e A quasicyclic group is the direct limit of the groups Z/p"Z.

The subgroup structure of Zp~ is particularly simple: all proper subgroups
are finite and cyclic, and there is exactly one of order p™ for each non-negative
integer n.

One may naturally ask the inverse problem: is G a quasicyclic group
if its all proper subgroups are finite or cyclic? The literature [1] gives an
affirmative answer if G is an infinite solvable group or G is an infinite group
with G > G’. In this paper, we will prove that G is a quasicyclic group if its
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all proper normal subgroups are finite or cyclic under the condition that G
is an infinite solvable group or G is an infinite group properly containing its
commutator group G'.

A characterization of a group from its subgroups is one of the key technical
tools in the infinite group theory. Let G be a group and X be an absolute
property about group G, i.e. whether G has a property X is only dependent
on the group G itself. G is called a X group if G has a property X. G is called
an inner % group if each proper subgroup of G has the property ¥ but G
itself doesn’t. For more information about inner ¥ group, we refer to [2].
In the same vein, we give the following definition for convenience of a later
description.

DEFINITION 1. A group G is called a hypo-inner 3 group if each proper
normal subgroup of G has the property % but G itself doesn’t.

For example, Z,~ is a hypo-inner finitely generated group, a hypo-inner
cyclic group, a hypo-inner finite group, etc. But G itself is not finitely gen-
erated, not cyclic, not finite, etc. Clearly, inner 3 group is a hypo-inner ¥
group. But the converse is not valid. A. J. Ol'sanskii in [4] gives a counter
example. If GG is an infinite abelian group, then a hypo-inner ¥ group is also
an inner 3 group. From [1], following results hold clearly.

(@ G is hypo-inner finitely generated if and only if G = Zpe.

@ G is a hypo-inner supper solvable group if and only if G = Zpe.

(® G is not a direct product of cyclic groups. Then each proper normal

subgroup of G is a direct product of cyclic groups if and only if G =
Lo .
® G is a hypo-inner cyclic group if and only if G = Ze.
In the sequel, let G be an infinite group. We prove

THEOREM 2. Let G be a solvable group, then G is a hypo-inner finitely
generated group if and only if G = Zpe.

PRrROOF. Sufficiency is clear. We prove the necessity by induction on the
length of the derived series of G. Suppose

G=GO>qg">0% > .. . >a6 =1.

When G is an abelian group, The fact (O implies that G = Z,.

The first step, we prove that the theorem holds if G’ is abelian.

From inductional assumption, G’ and G/G’ are abelian groups. Since
G is a hypo-inner finitely generated group then G’ is a finitely generated
group and G/G’ is a hypo-inner finitely generated group. By the fact (@,
G/G' = Lpes.

Now, first we show that G’ is in the center of G, i.e. G’ < Z(G). Since G’
is an abelian group, G' < Cg(G’). If Cg(G’) is a proper normal sub-
group of G, then G/C¢(G’) is a hypo-inner finitely generated abelian group,
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and G/Cg(G') = Zpe. On the other hand, G/Ce(G’) is isomorphic to a
subgroup of the automorphic group Aut(G’). Hence G’ is an infinite group.

The structure theorem of finitely generated abelian groups ([5, 4.2.10])
asserts that G’ is a direct sum of finitely many cyclic groups of infinite or
prime-power orders. We can assume that G’ is torsion-free. In fact, any
torsion subgroup F' of G’ is a characteristic subgroup, so, G/C¢(G’) can be
viewed as a subgroup of the automorphic group Aut(G'/F), and G'/F is
torsion-free. Hence an automorphism of G’ can be represent by a matrix A
with entries in Z, which satisfies det(A4) = 1.

Suppose the order of A is p* and minimal polynomial of A is m(x). We
have

m(@)| (@ —1) and 27 — 1= Uy (2)V,(x) - Uy (2) 0 (),

where ¥, is ith cyclotomic polynomial.
It is easily shown that m(z) must contain the irreducible polyno-
mial W« (z). Otherwise

m(z)| Wy (z)Wpy(x) - Wpe-1(z).
Then

2 1= m(z)q(z) and AT 1= m(A)q(A) = 0.
This is a contradiction. Hence, the degree of the m(x) is not less than the
degree of W« (x), which is equal to p*~1(p — 1). Assume that the size of A
is m, then the degree of the minimal polynomial m(z) of A is less than n. We
have

PP p—1) <n.
So, we obtain
|A| = p* < pn (constant),

where |A| denote the order of A. This inequality shows that, for any
A € Aut(G'), the order of A is not greater than a constant. Hence, G/Cq(G’)
can not be isomorphic to a subgroup of Aut(G’). Therefore, G = Cq(G’),
and G’ < Z(G).

Second, we show that G is an abelian group. Since G/G’ = Z,~ and
G' < Z(@Q), for any elements a,b € G, there exists ¢ € G such that

a=cz, b=c"29, for z1,20 € G C Z(G),
then
ab=rcz - c"2zp = 29 - cz; = ba.
So, G is an abelian group, and the fact @ implies G' = Zpe.

The second step, clearly, G/G(S’l) is a hypo-inner finitely generated
group. It has a derived series

G/GEY > /gD > > @t /g > 1.
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By the induction hypothesis, we have G/G(~Y = 7, .. Then G&~Y > ¢
and G = G~V Thus, (G') = 1 implies that G’ is an abelian group. From
the first step, we get G = Zpeo. o

THEOREM 3. Suppose that G properly contains its commutator sub-
group G'. Then G is hypo-inner finite group if and only if G = Zpeo .

PROOF. We need only to prove the necessity. G/G’ is a torsional abelian
group since it is a hypo-inner finite abelian group. By [3, Theorem 1], G is
isomorphic to a direct sum of primary groups. By the assumption, G has only
one primary component, i.e. G/G’ = Zp. Since G’ is finite, its automorphic
group Aut(G') is also finite. If C(G’) is a proper normal subgroup of G,
then C(G') is finite, and G/Cq(G’) is infinite. But G/Cg(G’) is isomorphic
to a subgroup of Aut(G’). This is a contradiction. So G = C¢(G’). Using the
similar proof of Theorem 2, we obtain that G is an abelian group. Therefore,
G is a torsional abelian group. By assumption and [3, Theorem 1], we have
that G = Zpe. O

LEMMA 4. Suppose that G properly contains its commutator subgroup G'.
If all proper normal subgroups of G are abelian groups then G is an abelian
group.

PROOF. Suppose that G is not an abelian group. Then 1 # G’ <G. Let Q
be the set of all proper normal subgroups of G which contain G’. Assume that

A1 <Ay <... <A, <.

is an ascending series of Q. Set B = U; A;. It easily shows that B is an abelian
subgroup containing G’ since every A; is an abelian group containing G’.
From the hypothesis, B is a proper normal subgroup of G, then B € ). By
Zorn Lemma, there exists a maximal normal subgroup M of G containing G'.
So, G/M is an abelian simple group, i.e. G/M is a cyclic group of order p for
some prime number p. Suppose that aM is a generator of G/M. Since G is
not an abelian group, there exists b € M such that

a‘ba =0, € M, by #b.

Assume that b1,b2,...,b,. are all distinct elements in G which conjugate
with . Note that 1 < r < p. Accordingly, M7 =< by1,bs,...,b. > is a
normal subgroup of G, and M; < M.

Set N =< a,M; >=<a,by,...,b. >. It is clear that IV is a nonabelian
subgroup of G. We show that N is normal in G. For z € G, y € N, we
have © = a*m with m € M and k € Z, and y = almy with m; € M; and
leZ.

z yr = (aFm) " (almy)(a*m) = (mta
where m; € M7 and s € Z. It follows that N < G, and G = N. Hence, we
may choose M =< by,...,b. >. So, M is a finitely generated infinite abelian

lm)’fﬁ,l = as’fﬁ,l,
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group. Without loss of generality, assume that the order of by is infinite. If
the order of b; (2 < ¢ < r) is finite, then denote their order by ¢;. Let n > 1
be a positive integer and be coprime with all ¢;. We claim that M™ # M.
Otherwise, b; can be written as

by = x1nby + ...+ xpnb, for z; € Z.

Since by, ...,b, is a base of the abelian group M, nxy; = 1. This is a contra-
diction. M™ is a characteristic subgroup of M, then M"™ < G. Using the same
technique as in the previous proof of this lemma, we have that < a, M™ > is
a proper normal subgroup of G. Thus < a, M™ > is an abelian group. We
have

nb; = a *(nb;)a = n(a"'bia) for 1 <i<r.
Since a~1tb;a € M, we have
(1) a_lbiaztlbl+...+tibi+...+t,«b,. for 1<i<r
where t; € Z. When the order of b; is a finite number ¢; then 1 < ¢; < ¢;. It
follows that
nb; = nt1by + ...+ nt;b; + ... + nt,b,,

where b1,...,b, is a basis of M. The uniqueness of representation implies
that

nt; =0 (mod ¢;) or nt; =0, j#i,
and
n(t;—1)=0 (mod ¢;) or n(t; —1)=0.
Since n and ¢; are coprime, anyway we obtain
ti=1 and t; =0, j#1.

Hence, the equality (1) becomes a='bja = b; for 1 < i < r. That is to
say, G =< a,by,...,b, > is an abelian group. This is a contradiction to the
hypothesis. O

THEOREM 5. Suppose that G properly contains G'. Then G is a hypo-
wmner cyclic group if and only if G = Zy.

PRrOOF. Cyclic groups are of course abelian groups, then all proper nor-
mal subgroups of GG are abelian groups. Hence, from Lemma 4 we have that G
is an abelian group. By the fact @, G = Zpe. O
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