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Abstract. Let G be an infinite solvable group (resp. an infinite group
properly containing its commutator subgroup G′). We prove that G is
isomorphic to a quasicyclic group if and only if all proper normal subgroups
of G are finitely generated (resp. all proper normal subgroups of G are cyclic
or finite).

In this paper, the symbols Q, Z, N denote the rational numbers, the integers,
the nonnegative integers, respectively. A quasicyclic group (or Prüfer group)
is the p-primary component of Q/Z, that is, the unique maximal p-subgroup
of Q/Z, for some prime number p. Any group isomorphic to it will also be
called a quasicyclic group and denoted by Zp∞ . Quasicyclic groups play an
important roles in the infinite abelian group theory. They may also be defined
in a number of equivalent ways (again, up to isomorphism):

• A quasicyclic group is the group of all pn-th complex roots of 1, for
all n ∈ N.

• A quasicyclic group is the injective hull of Z/pZ (viewing abelian
groups as Z-modules).

• A quasicyclic group is the direct limit of the groups Z/pnZ.

The subgroup structure of Zp∞ is particularly simple: all proper subgroups
are finite and cyclic, and there is exactly one of order pn for each non-negative
integer n.

One may naturally ask the inverse problem: is G a quasicyclic group
if its all proper subgroups are finite or cyclic? The literature [1] gives an
affirmative answer if G is an infinite solvable group or G is an infinite group
with G > G′. In this paper, we will prove that G is a quasicyclic group if its
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all proper normal subgroups are finite or cyclic under the condition that G
is an infinite solvable group or G is an infinite group properly containing its
commutator group G′.

A characterization of a group from its subgroups is one of the key technical
tools in the infinite group theory. Let G be a group and Σ be an absolute
property about group G, i.e. whether G has a property Σ is only dependent
on the group G itself. G is called a Σ group if G has a property Σ. G is called
an inner Σ group if each proper subgroup of G has the property Σ but G
itself doesn’t. For more information about inner Σ group, we refer to [2].
In the same vein, we give the following definition for convenience of a later
description.

Definition 1. A group G is called a hypo-inner Σ group if each proper

normal subgroup of G has the property Σ but G itself doesn’t.

For example, Zp∞ is a hypo-inner finitely generated group, a hypo-inner
cyclic group, a hypo-inner finite group, etc. But G itself is not finitely gen-
erated, not cyclic, not finite, etc. Clearly, inner Σ group is a hypo-inner Σ
group. But the converse is not valid. A. J. Ol′sanskii in [4] gives a counter
example. If G is an infinite abelian group, then a hypo-inner Σ group is also
an inner Σ group. From [1], following results hold clearly.

1© G is hypo-inner finitely generated if and only if G ∼= Zp∞ .
2© G is a hypo-inner supper solvable group if and only if G ∼= Zp∞ .
3© G is not a direct product of cyclic groups. Then each proper normal

subgroup of G is a direct product of cyclic groups if and only if G ∼=
Zp∞ .

4© G is a hypo-inner cyclic group if and only if G ∼= Zp∞ .

In the sequel, let G be an infinite group. We prove

Theorem 2. Let G be a solvable group, then G is a hypo-inner finitely

generated group if and only if G ∼= Zp∞ .

Proof. Sufficiency is clear. We prove the necessity by induction on the
length of the derived series of G. Suppose

G = G(0) ≥ G′ ≥ G(2) ≥ . . . ≥ G(s) = 1.

When G is an abelian group, The fact 1© implies that G ∼= Zp∞ .
The first step, we prove that the theorem holds if G′ is abelian.
From inductional assumption, G′ and G/G′ are abelian groups. Since

G is a hypo-inner finitely generated group then G′ is a finitely generated
group and G/G′ is a hypo-inner finitely generated group. By the fact 1©,
G/G′ ∼= Zp∞ .

Now, first we show that G′ is in the center of G, i.e. G′ ≤ Z(G). Since G′

is an abelian group, G′ ≤ CG(G′). If CG(G′) is a proper normal sub-
group of G, then G/CG(G′) is a hypo-inner finitely generated abelian group,
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and G/CG(G′) ∼= Zp∞ . On the other hand, G/CG(G′) is isomorphic to a
subgroup of the automorphic group Aut(G′). Hence G′ is an infinite group.

The structure theorem of finitely generated abelian groups ([5, 4.2.10])
asserts that G′ is a direct sum of finitely many cyclic groups of infinite or
prime-power orders. We can assume that G′ is torsion-free. In fact, any
torsion subgroup F of G′ is a characteristic subgroup, so, G/CG(G′) can be
viewed as a subgroup of the automorphic group Aut(G′/F ), and G′/F is
torsion-free. Hence an automorphism of G′ can be represent by a matrix A
with entries in Z, which satisfies det(A) = ±1.

Suppose the order of A is pk and minimal polynomial of A is m(x). We
have

m(x)|(xpk

− 1) and xpk

− 1 = Ψ1(x)Ψp(x) · · ·Ψpk−1(x)Ψpk(x),

where Ψi is ith cyclotomic polynomial.
It is easily shown that m(x) must contain the irreducible polyno-

mial Ψpk(x). Otherwise

m(x)|Ψ1(x)Ψp(x) · · ·Ψpk−1(x).

Then

xpk−1

− 1 = m(x)q(x) and Apk−1

− 1 = m(A)q(A) = 0.

This is a contradiction. Hence, the degree of the m(x) is not less than the
degree of Ψpk(x), which is equal to pk−1(p − 1). Assume that the size of A
is n, then the degree of the minimal polynomial m(x) of A is less than n. We
have

pk−1(p − 1) ≤ n.

So, we obtain

|A| = pk ≤ pn (constant),

where |A| denote the order of A. This inequality shows that, for any
A ∈ Aut(G′), the order of A is not greater than a constant. Hence, G/CG(G′)
can not be isomorphic to a subgroup of Aut(G′). Therefore, G = CG(G′),
and G′ ≤ Z(G).

Second, we show that G is an abelian group. Since G/G′ ∼= Zp∞ and
G′ ≤ Z(G), for any elements a, b ∈ G, there exists c ∈ G such that

a = cz1, b = crz2, for z1, z2 ∈ G′ ⊂ Z(G),

then

ab = cz1 · c
rz2 = crz2 · cz1 = ba.

So, G is an abelian group, and the fact 1© implies G ∼= Zp∞ .

The second step, clearly, G/G(s−1) is a hypo-inner finitely generated
group. It has a derived series

G/G(s−1) ≥ G′/G(s−1) ≥ . . . ≥ G(s−2)/G(s−1) ≥ 1.
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By the induction hypothesis, we have G/G(s−1) ∼= Zp∞ . Then G(s−1) ≥ G′

and G′ = G(s−1). Thus, (G′)′ = 1 implies that G′ is an abelian group. From
the first step, we get G ∼= Zp∞ .

Theorem 3. Suppose that G properly contains its commutator sub-

group G′. Then G is hypo-inner finite group if and only if G ∼= Zp∞ .

Proof. We need only to prove the necessity. G/G′ is a torsional abelian
group since it is a hypo-inner finite abelian group. By [3, Theorem 1], G is
isomorphic to a direct sum of primary groups. By the assumption, G has only
one primary component, i.e. G/G′ ∼= Zp∞ . Since G′ is finite, its automorphic
group Aut(G′) is also finite. If CG(G′) is a proper normal subgroup of G,
then CG(G′) is finite, and G/CG(G′) is infinite. But G/CG(G′) is isomorphic
to a subgroup of Aut(G′). This is a contradiction. So G = CG(G′). Using the
similar proof of Theorem 2, we obtain that G is an abelian group. Therefore,
G is a torsional abelian group. By assumption and [3, Theorem 1], we have
that G ∼= Zp∞ .

Lemma 4. Suppose that G properly contains its commutator subgroup G′.

If all proper normal subgroups of G are abelian groups then G is an abelian

group.

Proof. Suppose that G is not an abelian group. Then 1 6= G′⊳G. Let Ω
be the set of all proper normal subgroups of G which contain G′. Assume that

A1 ≤ A2 ≤ . . . ≤ An ≤ . . .

is an ascending series of Ω. Set B = ∪iAi. It easily shows that B is an abelian
subgroup containing G′ since every Ai is an abelian group containing G′.
From the hypothesis, B is a proper normal subgroup of G, then B ∈ Ω. By
Zorn Lemma, there exists a maximal normal subgroup M of G containing G′.
So, G/M is an abelian simple group, i.e. G/M is a cyclic group of order p for
some prime number p. Suppose that aM is a generator of G/M . Since G is
not an abelian group, there exists b ∈ M such that

a−1ba = b1 ∈ M, b1 6= b.

Assume that b1, b2, . . . , br are all distinct elements in G which conjugate
with b. Note that 1 ≤ r ≤ p. Accordingly, M1 =< b1, b2, . . . , br > is a
normal subgroup of G, and M1 6 M .

Set N =< a, M1 >=< a, b1, . . . , br >. It is clear that N is a nonabelian
subgroup of G. We show that N is normal in G. For x ∈ G, y ∈ N , we
have x = akm with m ∈ M and k ∈ Z, and y = alm1 with m1 ∈ M1 and
l ∈ Z.

x−1yx = (akm)−1(alm1)(a
km) = (m−1alm)m̃1 = asm̃1,

where m̃1 ∈ M1 and s ∈ Z. It follows that N E G, and G = N . Hence, we
may choose M =< b1, . . . , br >. So, M is a finitely generated infinite abelian
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group. Without loss of generality, assume that the order of b1 is infinite. If
the order of bi (2 ≤ i ≤ r) is finite, then denote their order by qi. Let n > 1
be a positive integer and be coprime with all qi. We claim that Mn 6= M .
Otherwise, b1 can be written as

b1 = x1nb1 + . . . + xknbr for xi ∈ Z.

Since b1, . . . , br is a base of the abelian group M , nx1 = 1. This is a contra-
diction. Mn is a characteristic subgroup of M , then Mn EG. Using the same
technique as in the previous proof of this lemma, we have that < a, Mn > is
a proper normal subgroup of G. Thus < a, Mn > is an abelian group. We
have

nbi = a−1(nbi)a = n(a−1bia) for 1 ≤ i ≤ r.

Since a−1bia ∈ M , we have

a−1bia = t1b1 + . . . + tibi + . . . + trbr for 1 ≤ i ≤ r(1)

where ti ∈ Z. When the order of bi is a finite number qi then 1 ≤ ti ≤ qi. It
follows that

nbi = nt1b1 + . . . + ntibi + . . . + ntrbr,

where b1, . . . , br is a basis of M . The uniqueness of representation implies
that

ntj ≡ 0 (mod qj) or ntj = 0, j 6= i,

and

n(ti − 1) ≡ 0 (mod qi) or n(ti − 1) = 0.

Since n and qi are coprime, anyway we obtain

ti = 1 and tj = 0, j 6= i.

Hence, the equality (1) becomes a−1bia = bi for 1 ≤ i ≤ r. That is to
say, G =< a, b1, . . . , br > is an abelian group. This is a contradiction to the
hypothesis.

Theorem 5. Suppose that G properly contains G′. Then G is a hypo-

inner cyclic group if and only if G ∼= Zp∞ .

Proof. Cyclic groups are of course abelian groups, then all proper nor-
mal subgroups of G are abelian groups. Hence, from Lemma 4 we have that G
is an abelian group. By the fact 4©, G ∼= Zp∞ .
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