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SEQUENCES OF ITERATES OF RANDOM-VALUED
VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF
RELATED EQUATIONS

Rarat KaAprica

Silesian University, Poland

ABSTRACT. Given a probability space (92,4, P), a separable metric
space X, and a random-valued vector function f : X x Q@ — X, we ob-
tain some theorems on the existence and on the uniqueness of continuous
solutions ¢ : X — R of the equation ¢(z) = [, ¢(f(z,w))P(dw).

1. INTRODUCTION

The basic technique for getting a solution of functional equations in a
single variable is iteration. However it may happen that instead of the exact
value of a function at a point we know only some parameters of this value.
The iterates of such functions were defined independently by K. Baron and
M. Kuczma [4] and Ph. Diamond [5]. In [3] and [6, 8] these iterates were
applied (for the first time in [3]) to equations of the form

(L1) o(z) = /Q ([ (2,0)) P(d).

Equation (1.1) appears in many branches of mathematics and its solutions
¢ are extensively studied (see [2, Part 4] and [1, Part 3]). A very particular
case of (1.1) was studied by W. Sierpinski in [15] (cf. [9, Theorem 11.11]) to
characterize Cantor’s function. A more general equation, but still much less
general then (1.1), was considered by S. Paganoni Marzegalli [14]. J. Morawiec
elaborated on her method in [12] and [13] to the case of (1.1) but on the real
line only. The aim of this paper is to enlarge the procedure of J. Morawiec to
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get the continuity of the solution given via probability distribution of a limit
of the sequence of iterates ( f™(x, )) of the given function f in the vector case.

2. RANDOM-VALUED FUNCTIONS AND THEIR ITERATES

Fix a probability space (£2,.A, P) and a separable metric space X.
Let B(X) denote the c-algebra of all Borel subsets of X. We say that
f X xQ — X is a random-valued function if it is measurable with respect
to the product o-algebra B(X) ® A. The iterates of such a function f are
defined by

fl(m7wlaw2a . ) = f(m7w1)a fn+1(m7wlaw2a . ) = f(fn(xawlaw% s )7wn+1)

for  from X and (wi,ws,...) from Q> defined as QY. Note that

S X xQ*° — X is a random-valued function on the product probability

space (Q2°°, A%, P*>). More exactly, the n-th iterate f™ is B(X) ® A,-

measurable, where A,, denotes the o-algebra of all the sets of the form
{(wl,wg, .. ) € N> (wl,wg, . ,wn) S A}

with A from the product o-algebra A"™. (See [4, 7]; also [10, Sec. 1.4]).
Since, in fact, f™(-,w) depends only on the first n coordinates of w, instead
of f*(x,wr,ws,...) we will write also f™(z,w1,...,wn).

3. MAIN RESULTS

Being motivated by the paper [3] (especially by [3, Proposition 2.2]) we
will get continuity of the solution of (1.1) given via the probability distribution
of the limit of (f™(z,-)) (cf. also [8]). For this purpose we will obtain the
vector counterparts of [12, Proposition 1, Theorem 1] adopting methods of S.
Paganoni Marzegalli and J. Morawiec.

Fix a nonempty set S, and for every s € S fix a nonempty subset X, of
X and a function u, : Xy — R. We are interested in solutions ¢ : X — R of
(1.1) in the class F defined by

F={p: X —>R | ¢isabounded function,
o(x) = us(x) for x € X5 and s € S}.
First we prove a theorem on the existence and uniqueness of such solutions
accepting the following assumptions:

(A) For every s € S there exist: an open set Us C X, an event A € A of
positive probability and a positive integer m such that

(3.1) (U x AY) C X

moreover, for some sg € S the function f(-,w) is continuous for w € Ay,
and there exists an mg € N such that

(3.2) Foo(x\ JUs) xAY) c | U

seS seS
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The following theorem is an extension of [12, Proposition 1].

THEOREM 3.1. Assume (A). If the closure of X \ |U,cq Xs is compact,
then equation (1.1) has in the class F at most one solution.

PROOF. Assume that ¢1,¢2 € F are solutions of (1.1) and put ¢ =
1 — 2. Clearly ¢ is a solution of (1.1) and

(3.3) p(x)=0 forzxe U Xs.
ses
Suppose that
M :=sup{|e(z)| :z € X} >0
and consider the set
Y = {z € X : there exists a sequence (x,,) such that

lim x, =2 and lim |p(z,)| = M}.

n—oo

Since M > 0, (3.3) and compactness of cl(X \ [J,cg Xs) show that the set
Y is nonempty. We will prove that Us N Y = () for every s € S. To get this
suppose that z € Us NY for some s € S. Then

(3.4) lim z, =2 and lim |p(z,)| =M

n—oo

for some sequence (z,,) of points of U,. Applying (1.1), (3.1) and (3.3) we see
that

lo(zn)| = ‘/Q(...(/Qcp(fm(mn,wl,...,wm))P(dwm))...)P(dwl)‘
<

\/ ((/ lo(f™ (@n, w1, . .y wm))|[P(dwm)) ... ) P(dwy)
A, A,

+ MP®{(wy,wa,...) €Q°: (w1,...,wm) € AT}
— (1 P(A)”)
for every n € N, which is a contradiction. Consequently,
(3.5) ycx\ .
seS

Now fix an € Y and an (z,) satisfying (3.4). Applying Fatou’s Lemma
and (1.1) we obtain

0< /Qliminf (M — |<p(f(:cn,w))‘)P(dw)

< lim inf / (M = [ (f (2n,))]) P(dw)

< liminf (M — |¢(z,)]) = 0.

n—00
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This gives liminf, (M — |<p(f(xn,w)) |) =0 a.e. In particular,
limsup [ (21))| = M

for some wy € As,. By the continuity of f(-,w;) we have f(x,w1) € Y. Re-
placing « by f(z,w;) we can find we € A, such that f(f(z,w1),w2) € Y,
ie. f2(z,wi,ws) €Y. After mg steps we obtain a sequence wy, .. .,wn, of
elements of A,, such that

I (zywi, ..y wim,) € Y.
On the other hand, on account of (3.5) and (3.2), f™°(z,w1,...,wn,) belongs

to (J,cg Us which is a contradiction. O

Now fix a family Fy C F. We will prove a theorem on the existence and
on the uniqueness of solutions of (1.1) in the class Fy under the following
assumptions:

(B) There exist an m € N and U; C X, A; € A for s € S such that
inf{P(As):s€ S} >0,
condition (3.1) holds for every s € S, and for some sy € S we have
(3.6) Fr(x\ Y us) xAY) ¢ | X
ses s€S

(C) For every ¢ € Fy the function ¢ o f(x,-) is measurable for z € X, and
the function v given by

(3.7) b(z) = /Q o (2 w)) P(dw)

belongs to Fp.

In the proof of the next theorem we will integrate nonnegative functions
possibly nonmeasurable. If A € A and h: A — [0,00), then

/A h(w)P(dw) = sup > P(E)inf h(E)

Eell

where the supremum is taken over all partitions Il of A into a countable
number of pairwise disjoint members of A (cf. [11, p. 117]).

THEOREM 3.2. Assume (B) and (C). If Fo is nonempty and closed in
uniform convergence, then equation (1.1) has in Fy exactly one solution.

PRrROOF. Consider the operator L : Fy — Fy given by

Lo(z) = / o () P(dw).
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It is enough to prove that L™ : Fy — Fp is a contraction in the supremum
metric 7. To this end we will show (by induction) that for every n € N,
p1,02 € Fo, x € X and A € A the following inequality holds:

IL"p1(z) — L"p2(2)| < T(p1,02) (1 = P(A)")
(3.8) —|—/ (... (/ ‘((pl —2) (f"(z, w1, .. .,wn))‘P(dwn)) ... ) P(dw).
A A

In fact, if ¢1, 92 € Fp, then putting ¢ = ¢1 — @9, for every x € X and
A € A we have

Lor(z) — Lea(a)] < /Q \A|so(f<x,w>)\P<dw>+ / o (f(,)) [ P(dw)

T(p1,92)(1 /}ga ,w))|P(dw)

and
L™ () — L ( )| = [L" L1 (x) — L™ Lpa ()|
< 7(Lepr, Lipa) (1 — P(A)")

/ /‘L(pl L(pz (ac,wl,...,wn))‘P(dwn))...)P(dwl)

(1, 92)(
/ / {T o1.02)(1 ~ P(4))
/ |80 (z wla-"7Wn)awn+1))|P(dwn+1)}P(dwn))"')P(dwl)

(1, 02) (1 = P(A)”) +7(p1,02) (1 — P(A)) P(A)"
+/A(...(/A‘cp(f”“(:v,wl,...,wnﬂ))‘P(dwnH))...)P(dwl).

Fix 1,02 € Fo and, using (B), fix also an m € N satisfying (3.1) and
(3.6). If s € S and x € Us, then by (3.8) and (3.1) we have

L™ p1(x) — L™ pa(x)] < 71, 02) (1 — P(A)™),
whilst if 2 € X \ J,cg Us, then (3.8) and (3.6) give
L™ p1(2) — L™ 2 ()] < 7(01, 02) (1 — P(As,)™).
By this we obtain
[L™@1(x) = L™ @2(x)] < 7(p1,p2) sup{l — P(A,)™ : s € S}

for every z € X and, consequently,

(L™ @1, L™pa) < T(p1,p2)sup{l — P(A4,)™ : s € S}.
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REMARK 3.3. Under the assumptions of Theorems 3.1 and 3.2 equation
(1.1) has in F exactly one solution and this solution belongs to Fy.

Now we proceed to the case where
Fo={p: X — R| ¢is a bounded continuous function,
p(x) =0forz € X1, p(z) =1forx € Xa}
for some Borel subsets X, Xo C X, assuming the following:
(D) There exist open sets Uy,Us C X, events Ay, Az of positive proba-
bility, and an m € N such that (3.1) holds for s € {1, 2},
F((X N\ (U1 Ul)) x AY) C (X1 U Xo) N (U UUL),

(39) f(Xl X Q) C Xy, f(XQ X Q) C Xo,

f(-,w) is continuous for every w € Ay and f is P-continuous (i.e., if z,, — x,
then f(xn, ) — f(z,-) in probability).

The main result of this paper, which is a generalization of [3, Proposition
2.2], reads as follows.

THEOREM 3.4. Assume (D), dist(X1, X2) > 0 and that cl(X \ (X1 UX2))
18 compact. Then:

(i) Equation (1.1) has exactly one bounded solution ¢ : X — R such
that
(3.10) ox)=0 forzeX;, x)=1 forze Xo;

this solution is a continuous function.

(ii) If X is complete and the function m: X x B(X) — [0,1] given by
m(z, B) = P> ({w € Q% : the sequence (f™(z,w))
(8:11) converges and its limit belongs to B})
satisfies
m(x,X2) =0 forxe X1, 7(z,X2)=1 forxe X,
then 7(-, X2) is a continuous solution of (1.1).

(iii) If for every x € X the sequence (f™(z,-)) converges in probability
to a random variable (x,-), and the function m: X x B(X) — [0,1] given by
(3.12) m(xz, B) = P> (&(x,-) € B)
satisfies

(3.13) m(z, X1)=1 forxze X1, 7(z,X2)=1 forxe X,
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then for every bounded and continuous function u: X — R such that
(3.14) u(x)=0 forze Xy, ulx)=1 forxe Xo,
the function ¢ : X — R defined by

B15) e = [ urledy) = [ ulw)Pe(d)
X oo
is a continuous solution of equation (1.1) and has property (3.10).

PRrROOF. Since clX; and clXs are disjoint, the family Fy is nonempty. It
is also closed in the uniform convergence. Fix a ¢ € Fy. By the continuity
of ¢ the function ¢ o f(x,-) is measurable for every z € X. Consider the
function ¥ : X — R defined by (3.7). Obviously ¢ is a bounded function,
P(x) = 0 for z € Xy and ¢(x) = 1 for x € Xo. We will prove that ¢ is
continuous. If the sequence (z,) of points of X converges to an z, then the
sequence ((po f(zy, )) of uniformly bounded functions converges in probability
to ¢ o f(x,-) and on account of the Lebesgue-Vitali Dominated Convergence
Theorem the sequence (t(zy)) converges to 1(z). This shows (C) with

S={1,2}, u1 =0, uy=1

Clearly, conditions (A) and (B) are fulfilled. Applying Remark 3.3 we get the
first assertion.

To prove the second one it is enough to observe that by [8, Theorem 1]
(for u =1x,) the function 7 (-, X5) is a (bounded) solution of (1.1) and to
apply ().

Passing to a proof of the third assertion fix a u € Fy. According to [8,
Theorem 2.(i)] the function ¢ : X — R given by (3.15) is a bounded solution
of (1.1). In view of the first part of Theorem 3.4 it is enough to verify that ¢
satisfies (3.10). This however follows immediately from (3.13) and (3.14): if
x € X1, then

so(w)=/x u(y)m(z,dy) =0,

and for z € X5 we have

() =/X u(y)m (@, dy) = 1.

4. EXAMPLES

The following shows a possible application of Theorem 3.4.

Fix an N € N and let X = [0,1]V.

Denoting the set {1,..., N} by I, define the subsets X1, X2 and Uy, Us
of X as follows:

X1 =10}, Xo={reX:z,=1forsomen eI},
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Up={zeX :z,<bfornel}, Us={xeX:x,>aforsomen €I},

where 0 < b < a < 1 are fixed. Assume that ay,...,an : [0,1] — [0,1] are

nondecreasing continuous functions such that
(4.1)
ap(t)=0 forte€0,b], ap(l)=1 and a,t) <t forte (0,1),

and let vy,...,on,w1,...,wy : X — [0,1] be continuous functions. Given
p1 > 0 and ps > 0 summing up to 1, consider also Q = {w;, w2} and define
the function f: X x Q2 — X by

[(z,wi) = fi(x),
where
fi(x) = (ar(vi(x)), ..., an(vn(2)), fa(z) = (wi(2),. .., wN(2)).

Since f1, f2 are continuous, it follows that f is random-valued. Equation (1.1)
takes the form

(4.2)  ¢(z) = prp(aa(vi(@)), ..., an(on (@) + p2e(wi(a),. .., wn ().
(I) Assume that

43)  wi(2),...,on(z) <max{zy,...,an} foraz € X\ Us,
(4.4) max{v(z),...,on(x)} =1 forz € Xs,

(4.5) max{w; (z),...,wy(z)} =1 forz € U,

(4.6) wi(0) = ... = wy(0) = 0.

We will show that:

(i) Equation (4.2) has exactly one bounded solution ¢ : X — [0, 1] satisfy-
mng

(4.7) p(0)=0 and @(x)=1 forxz € Xo;
this solution is a continuous function.
(i1) If the function 7 given by (3.11) fullfils
(4.8) w(z,Xo)=1 forz e X,
then (-, X2) is a continuous solution of (4.2).

PRrROOF. First we show that (D) holds. Let Ay = {w1}, As = {w2}. We
claim that

(4.9) fi(h) € X1, f2(Uz) C Xs.

If © € Uy, then z,, < b for n € I and according to (4.3) we have v,(z) < b
for n € I, hence by (4.1) we see that o, (v,(x)) =0 for n € I, i.e. fi(z) =0.
If x € Us, then (4.5) gives fa(x) € X3. From this (4.9) follows, and since
X1 C Uy and Xy C Uz, we have (3.1) for every m € N and s € {1,2}.
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Similarly we verify that (3.9) holds. The task is now to find a positive integer
m with

f(x)=0 forze X\ Us.
Put a(t) = max{ai(t),...,an(t)} for t € [0,1]. Clearly, « is a continuous
nondecreasing function,

a(t) =0 forte 0,5 and «at) <t forte (0,1).

In particular, lim,, ., @™ (a) = 0. Hence o™ (a) = 0 for some m € N. Fix an
x € X \ Uz. By the monotonicity of & and (4.3) we have

4
fi(z) < (a(vi(2)), ..., alvn (@) <
< (a(max{zy,...,zn}), ..., c(max{z,...,zn})),
whence
fi(@) < (a(a),...,a(a)) < (a,...,a).
In particular, fi(x) € X \ Uy and since € X \ Uy was arbitrarily fixed we
can replace it by fi(x) to get

fi(@) < (a(max{(fi(2))n :n € 1}), ..., a(max{(fi(2))n : n € I}))
(o*( max{xl,...,xN}),...,QQ(max{acl,...,xN}))

(*(a),...,a%(a)).

<
<

After m steps
1@ < (@™ (@),....a"(a)
and f{"(z) = 0. This ends the proof of (D).
Consequently Theorem 3.4(i) yields part (i) of our example.
Since f1(0) = f2(0) = 0, we conclude that for 7 given by (3.11) we have
m(0,X2) = 0. The continuity of 7(-, X3) follows from (4.8) and Theorem

3.4(i). O
Consider now continuous functions f1,..., 8 : [0,1] — [0, 1] such that
Bn(0) =0, Bu(t)=1 fortela,l],nel.
(IT) The functions vy, ...,vN,w1,...,wy defined by

vp(x) = max{z1,...,2N}, wp(x) = Gp(min{z; +...+2an,1}) forzeX
satisfy (4.3)-(4.6). By Example (I).(i) the equation

olz) = plga(al(max{ml, ce s N ), an (max{xy, . .. ,:cN}))
(4.10) —|—<p(ﬁ1(min{x1 +...+zn,1}),..., B (min{z; + ... + 2N, 1}))

has exactly one bounded solution ¢ : X — R satisfying (4.7) and this solution
is a continuous function. We will show that it equals to

(4.11) xHPOO(nILII;Of”(x,.):(1,...,1)), reX.
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In fact, according to [8, Theorem 1 (with u =1y . 1)})] the function (4.11)
is a (bounded) solution of (4.10). If € X5, then

Up(z) =1=min{z1 + ...+ zn,1} fornel,
whence f(z,w;) = (1,...,1) € X5 for i = 1,2. Consequently
fMz,w)y=(@1,...,1) forneN, z € Xy andw € O™,

and the function (4.11) takes the value 1 on Xs. Moreover, f(0,w;) = 0 for
i = 1,2, whence f"(0,w) = 0 for n € N and w € Q° and, consequently,
7(0,-) = 0.

(II1) Define now the functions vy, ..., vN,w1,...,wy by

Un () = Xny, wp(z) = Bn(z,) forze X.
Clearly (4.3)—(4.6) are fulfilled. Consequently the equation

(4.12) o(x) = pro(aa(z1),...,an(zn)) + p2o(Bi(21), - .., Bn(aN))

has exactly one bounded solution ¢ : X — R satisfying (4.7). Assume addi-
tionally (cf. [3, Example 2.1]) that ps < b and

t—p2
P1

an(t) =0 forte[0,a], an(t)< fort € [a, 1],

But) =1 forte b 1], 5n(t)<pi for t € [0,b],
2

for n € I. Then
prog(t) + p2fn(t) <t forte[0,1] and n € I,

and
p1fi(z) +pafo(z) <z forx € X.

Due to [7, Theorem 4] for every x € X the sequence (f"(:n, )) converges a.s.
to a measurable function £(z, -) : 2°° — X. In particular, the functions (3.11)
and (3.12) coincide. Since fi(X2) C X2, f2(X2) C X2, we have

fMzr,w) e Xy forze Xy, we Q™ neN.
This gives (4.8), because X5 is closed. Thus 7(-, X3) is a continuous solution
of (4.12).

ACKNOWLEDGEMENTS.
The research was supported by the Silesian University Mathematics De-
partment (Iterative Functional Equations and Real Analysis program).



(1]

SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS 399

REFERENCES

K. Baron, Recent results in the theory of functional equations in a single variable,
Seminar LV 15 (2003), 16 pp.

K. Baron, W. Jarczyk, Recent results on functional equations in a single variable,
perspectives and open problems, Aequationes Math. 61 (2001), 1-48.

K. Baron, W. Jarczyk, Random-valued functions and iterative functional equations,
Aequationes Math. 67 (2004), 140-153.

K. Baron, M. Kuczma, Iteration of random-valued functions on the unit interval,
Colloq. Math. 37 (1977), 263-269.

Ph. Diamond, A stochastic functional equation, Aequationes Math. 15 (1977), 225-
233.

R. Kapica, Sequences of iterates of random-valued vector functions and continuous
solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci.
Math. 50 (2002), 447-455.

R. Kapica, Convergence of sequences of iterates of random-valued vector functions,
Collog. Math. 97 (2003), 1-6.

R. Kapica, Sequences of iterates of random-valued vector functions and solutions of
related equations, Sitzungsber. Abt. II 213 (2004), 113-118.

M. Kuczma, Functional equations in a single variable, Panstwowe Wydawnictwo
Naukowe, Warszawa, 1968.

M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Cambridge Uni-
versity Press, Cambridge, 1990.

S. Lojasiewicz, An introduction to the theory of real functions, John Wiley and Sons,
New York 1988.

J. Morawiec, On a linear functional equation, Bull. Polish Acad. Sci. Math. 43 (1995),
131-142.

J. Morawiec, Some properties of probability distribution solutions of linear functional
equations, Aequationes Math. 56 (1998), 81-90.

S. Paganoni Marzegalli, One-parameter system of functional equations, Aequationes
Math. 47 (1994), 50-59.

W. Sierpiniski, Sur un systéme d’equations fonctionnelles, définissant une fonction
avec un ensemble dense d’intervalles d’invariabilité, Bull. Intern. Acad. Sci. Cracovie
A (1911), 577-582.

R. Kapica

Institute of Mathematics

Silesian University

Bankowa 14

PL-40-007 Katowice

Poland

E-mail: rkapica@ux2.math.us.edu.pl

Received: 2.1.2006.
Revised: 4.7.2006.



