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Abstract. Let X be a continuum, that is a compact, connected,
nonempty metric space. The span of X is the least upper bound of the
set of real numbers r which satisfy the following conditions: there exists
a continuum, C, contained in X × X such that d(x, y) is larger than or
equal to r for all (x, y) in C and p1(C) = p2(C), where p1, p2 are the usual
projection maps. The following question has been asked. If X and Y are
two simple closed curves in the plane and Y is contained in the bounded
component of the plane minus X, then is the span of X larger than the
span of Y ? We define a set of simple closed curves, which we refer to as
being five star-like. We answer this question in the affirmative when X is
one of these simple closed curves. We calculate the spans of the simple
closed curves in this collection and consider the spans of various geometric
objects related to these simple closed curves.

1. Introduction

The span of a metric continuum was defined in 1964 by A. Lelek (see
[3, p.209]). Variations of the span have been defined since then (cf [4, 5, 2]).
In general it is difficult to evaluate the spans of a geometric object. It is of
interest how these various spans, for a particular object, are related to each
other. Also of interest is how the spans of related objects compare to each
other. The following question by H. Cook has been particularly interesting.

If X1 and X2 are two simple closed curves in the plane and X2 is contained
in the bounded component of X1, then is the span of X1 larger than the span
of X2 ? ([1])

This question has not yet been answered in general. Given some specific
conditions on either X1 or X2, the answer has been shown to be yes. We
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give a short summary of the results for these special cases that have been
determined.

In the following results we assume that:

1. X2 is a simple closed curve,
2. X3 is a continuum that is contained in the bounded component of

R2 −X2,
3. X1 is a plane separating continuum that contains X2 in one of its

bounded components, and
4. the span of X is denoted by σ(X).

If X2 is the boundary of a convex region in the plane and X1 is a simple
closed curve, then σ(X2) < σ(X1) ([7], see also [6]).

If X2 is the boundary of a convex region in the plane, then
σ(X3) < σ(X2) < σ(X1) [11].
Also, σ(X3) < σ(X2) < σ(X1) when X2 is either an “indented circle”

([8, 9, 13]), or a “concave upward symmetric” simple closed curve [10], or
a simple closed curve as defined in [12]. In this paper we define a set of
simple closed curves that we refer to as five star-like and show that if X2 is
a five star-like simple closed curve and X1 and X3 are as defined previously,
then α(X3) < α(X2) < α(X1), where α represents the span σ, semispan σ0,
surjective span σ∗, surjective semispan σ∗

0 , symmetric span s, and surjective
symmetric span s∗.

2. Preliminaries

Let X be a continuum, that is a compact, connected metric space. The
span of X , σ(X), is the least upper bound of the set of real numbers r which
satisfy the following conditions: there exist a continuum, C, and continuous
functions f, g : C → X , such that

dmin(f, g) = min{d(f(c), g(c)) | c ∈ C} ≥ r

and
f(C) = g(C) σ

span

To obtain the various other spans, we replace the preceeding equation with
the following:

f(C) ⊆ g(C) σ0

semispan

f(C) = g(C) = X σ∗

surjective span

f(C) ⊆ g(C) = X σ∗

0

surjective semispan

f(C) = g(C) s
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symmetric span

and ∀c ∈ C, ∃c
′

such that f(c) = g(c
′

) and f(c
′

) = g(c)

f(C) = g(C) = X s∗

surjective symmetric span

and ∀c ∈ C, ∃c
′

such that f(c) = g(c
′

) and f(c
′

) = g(c).

The inequalities below follow immediately from the definitions,

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diamX,

0 ≤ σ∗(X) ≤ σ∗

0(X) ≤ σ0(X) ≤ diamX,

0 ≤ s(X) ≤ σ(X),

0 ≤ s∗(X) ≤ σ∗(X).

The following results are easy consequences of the various definitions.

1. If J is an arc, then α(J) = 0, where α = σ, σ0, σ
∗, σ∗

0 , s, s∗.
2. If X is a simple closed curve, then σ(X) = σ∗(X), σ0(X) = σ∗

0(X),
and s(X) = s∗(X).

We utilize the following theorem from [3] in the proof of Corollary 2.
Theorem L: If Y is a closed subset of the Hilbert cube Iω and ρ : Y → S

is an essential mapping of Y onto the circumference S, then

inf
s∈S

(ρ−1(s), ρ−1(−s)) ≤ σ(Y ).

3. Main Results

(a) Let Q be a five-sided, convex polygon with sequentially labeled vertices

Q
′

i for i = 0, 1, 2, 3, 4, with all interior angles ∠Q
′

i, i = 0, 1, 2, 3, 4, larger

than 90◦. Extend each side Q
′

jQ
′

j+1 of the polygon.

(b) Let Qj+2 be the point of intersection of
←−−−→
Q

′

jQ
′

j+1 and
←−−−−−→
Q

′

j+2Q
′

j+3 for
j = 0, 1, 2, 3, 4, where all indices are taken modulo 5.

(c) Let X be the star shaped simple closed curve defined by X =

∪4
j=0(Q

′

jQj+1 ∪ Q
′

j+1Qj+1). We refer to X as a five star-like simple
closed curve.

(d) Let tj be the point on Qj−1Qj−3 that is the closest to Qj . Note that

tj ∈ (Q
′

j−2Qj−1 − {Q
′

j−2}), since Qj ∈
−−−−−−−→
Q

′

j−2Q
′

j−1 and ∠Q
′

j−2 > 90◦.

(e) Let rj be the point on Qj+1Qj+3 that is closest to Qj . Note that

rj ∈ (Qj+1Q
′

j+1 − {Q
′

j+1}), since Qj ∈
−−−−−→
Q

′

j+1Q
′

j and ∠Q
′

j+1 > 90◦.

(f) Note that t
′

j = d(Qj , tj) < d(Qj , Q
′

j+2) = q
′

j and r
′

j = d(Qj , rj) <

d(Qj , Q
′

j+2) = q
′

j .
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(g) Suppose that q
′

3 = min{q
′

i}
4
i=0. We can make this assumption since we

can relabel the vertices so that this is true. We refer to the number

fss(X) = max{q
′

3, min{r
′

0, r
′

1, t
′

1, t
′

2}, min{r
′

1, t
′

2, q
′

4},

min{r
′

4, r
′

0, t
′

0, t
′

1}, min{r
′

4, t
′

0, q
′

2}}

as the five star-like spread of X , where X is a five star-like simple
closed curve.

Theorem 3.1. Let X be a five star-like simple closed curve. Then σ(X) =
σ0(X) = σ∗(X) = σ∗

0(X) = s(X) = s∗(X) = fss(X).

Proof. Let f, g : I → X be continuous functions from I, the unit inter-
val, onto X , such that their movements are always clockwise on X and one
function is constantly Qj for some j, while the other function moves from Qk

to Qk+1, passing through the point Q
′

k, where k 6= j, j−1 and f [I] = g[I] = X .
Let P be the set consisting of all pairs of functions (f, g) that satisfy these
conditions. We claim that α(X) = max{dmin(f, g) | (f, g) ∈ P} = fss(X),
where α = σ, σ0, σ

∗, σ∗

0 , s, s∗. We consider two cases.

Case A: max{dmin(f, g) | (f, g) ∈ P} = q
′

3

Consider the pair of functions given in Table 1.

Table 1. f(t) and g(t) versus t.

t f(t) g(t)
0 Q0 Q3

0.1 Q1 Q3

0.2 Q1 Q4

0.3 Q2 Q4

0.4 Q2 Q0

0.5 Q3 Q0

0.6 Q3 Q1

0.7 Q4 Q1

0.8 Q4 Q2

0.9 Q0 Q2

1.0 Q0 Q3

Note that

d(Qj , Qj+2Q
′

j+2 ∪Q
′

j+2Qj+3) = d(Qj , Q
′

j+2) = q
′

j .

Given this observation and assumption (g) in the construction of X , we see

that dmin(f, g) = q
′

3.

We observe that α(X) ≥ d(Q3, Q
′

0) = q
′

3 for α = σ, σ0, σ
∗, σ∗

0 , s, s∗. This
is true since, σ(X) = σ∗(X), σ0(X) = σ∗

0(X), f(I) = g(I) = X , and for all

t ∈ [0, 1] there is a t
′

∈ [0, 1] such that f(t) = g(t
′

) and g(t) = f(t
′

).
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In particular, (f, g), from Table 1, is a “better” pair than the pairs (f1, g1)
and (f2, g2) given in Table 2 and Table 3.

Table 2. f1(t) and g1(t) versus t.

t f1(t) g1(t)
0 Q0 Q3

0.1 Q0 Q4

0.2 Q1 Q4

0.3 Q2 Q4

0.4 Q2 Q0

0.5 Q3 Q0

0.6 Q4 Q0

0.7 Q4 Q1

0.8 Q4 Q2

0.9 Q0 Q2

1.0 Q0 Q3

Table 3. f2(t) and g2(t) versus t.

t f2(t) g2(t)
0 Q0 Q2

0.1 Q1 Q2

0.2 Q1 Q3

0.3 Q1 Q4

0.4 Q2 Q4

0.5 Q2 Q0

0.6 Q2 Q1

0.7 Q3 Q1

0.8 Q4 Q1

0.9 Q4 Q2

1.0 Q0 Q2

Consequently, since

dmin(f, g) ≥ max{dmin(f1, g1), dmin(f2, g2)}

it must be the case that

dmin(f, g) = q
′

3 ≥ min{r
′

4, t
′

0}

and (∗)

dmin(f, g) = q
′

3 ≥ min{t
′

2, r
′

1}
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This implies that fss(X) = q
′

3.

We define a continuous function pj : Y →
−−−→
Q

′

jQj ∪
−−−−−→
Q

′

jQj+1 where j =

0, 1, 2, 3, 4, and Y is the closure of the bounded component of R2 −X . First
we define pj on Y ∩ Yl where Yl is the closure of the bounded component of

R2 − (Q
′

jQj+1 ∪Qj+1Q
′

j+1 ∪Q
′

j+1Qj+2 ∪Qj+2Q
′

j+2 ∪Q
′

j+2Qj+3 ∪Qj+3Q
′

j).
We consider two cases in defining pj on Yl for j = 0, 1, 2, 3, 4.

Case pj, Yl, 1: t
′

j+2 ≤ r
′

j+1

Let t ∈ tj+2Qj+1 and let Lt be the line that is parallel to Qj+2tj+2 and
passes through the point t. For each y ∈ Y ∩Lt, let pj(y) = t. It may be the

case Qj+1 = tj+2. If so, then Lt ∩ Y = {Qj+1, Qj+2} and diam (p−1
j {t}) =

d(Q
′

j+2, tj+2) = t
′

j+2. Otherwise, Qj+1tj+2 ∪ tj+2Qj+2 ∪ Qj+2Qj+1 forms a

right triangle and for each t, diam (p−1
j {t}) ≤ t

′

j+2.

Let h1 : [0, 1] → Q
′

jtj+2 be the homeomorphism such that h1(t) = (1 −

t)tj+2 + tQ
′

j.

Let h2 : [0, 1] → Qj+2Qj+3 be the homeomorphism such that h2(t) =
(1− t)Qj+2 + tQj+3.

Let Lt be the line connecting h1(t) and h2(t) for each t ∈ [0, 1]. For
each y ∈ Y ∩ Lt let pj(y) = h1(t). Note that diam (p−1

j ({h1(t)})) ≤

max{t
′

j+2, q
′

j+3}.

Case pj, Yl, 2: r
′

j+1 < t
′

j+2

Let t ∈ rj+1Qj+2 and let Lt be the line that is parallel to rj+1Qj+1

and passes through the point t. Let t
′

be the point such that {t
′

} = Lt ∩

((
−−−−−→
Q

′

jQj+1 −Q
′

jQj+1) ∪Qj+1). For each y ∈ Y ∩ Lt let pj(y) = t
′

. Note that

for each t
′

, diam (p−1
j {t

′

}) ≤ r
′

j+1.

Let h1 : [0, 1] → Q
′

jQj+1 be the homeomorphism such that h1(t) = (1 −

t)Qj+1 + tQ
′

j .

Let h2 : [0, 1] → rj+1Qj+3 be the homeomorphism such that h2(t) =
(1− t)rj + tQj+3.

Let Lt be the line connecting h1(t) and h2(t). For each y ∈ Lt ∩ Y let

pj(y) = h1(t). Note that for each t, diam (p−1
j ({h1(t)})) ≤ max{r

′

j+1, q
′

j+3}.
The definition of pj on Y ∩ Yr, where Yr is the closure of the bounded

component of R2 − (Q
′

jQj ∪QjQ
′

j+4 ∪Q
′

j+4Qj+4 ∪Qj+4Q
′

j+3 ∪Q
′

j+3Qj+3 ∪

Qj+3Q
′

j) is defined in a similar manner in the two corresponding cases.

Case pj, Yr, 1: r
′

j+4 ≤ t
′

j .

In this case for y ∈ Y ∩ Yr, diam (p−1
j ({pj(y)})) ≤ max{r

′

j+4, q
′

j+3}

Case pj, Yr, 2: t
′

j < r
′

j+4

In this case for y ∈ Y ∩ Yr, diam (p−1
j ({pj(y)})) ≤ max{t

′

j, q
′

j+3}.
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We see that for y ∈ Yl, diam (p−1
j ({pj(y)})) ≤ max{min{r

′

j+1, t
′

j+2}, q
′

j+3}.

For y ∈ Yr, diam (p−1
j ({pj(y)})) ≤ max{min{r

′

j+4, t
′

j}, q
′

j+3}. Consequently,
for y ∈ Y ,

diam (p−1
j ({pj(y)})) ≤ max{min{r

′

j+1, t
′

j+2}, min{r
′

j+4, t
′

j}, q
′

j+3}.

Let f∗, g∗ : C → Z be any two continuous functions from a continuum
C into a continuum Z ⊆ Y , such that f∗(C) ⊆ g∗(C) ⊆ Z. Consider pj ◦

f∗, pj ◦ g∗ : C → (
−−−→
Q

′

jQj ∪
−−−−−→
Q

′

jQj+1). The image of pj ◦ g∗(C) is an arc and
pj ◦ f∗(C) ⊆ pj ◦ g∗(C). Since all the spans of an arc are zero, there is a
c ∈ C such that pj ◦ f∗(c) = pj ◦ g∗(c). Consequently, d(f∗(c), g∗(c)) ≤

diam (p−1
j {pj(g

∗(c))}) ≤ max{min{r
′

j+1, t
′

j+2}, min{r
′

j+4, t
′

j}, q
′

j+3} and

σ0(Z) ≤ max{min{r
′

j+1, t
′

j+2}, min{r
′

j+4, t
′

j}, q
′

j+3}.

In this case (i.e. case A) when fss(X) = dmin(f, g) where f and g are

defined in Table 1, we conclude that σ0(X) ≤ q
′

j+3 by taking Z = X ⊆ Y ,
j = 0, and using (∗). Given the inequalities relating the various spans and

the fact that for each t ∈ [0, 1] there is a t
′

∈ [0, 1] such that g(t) = f(t
′

) and

f(t) = g(t
′

), we conclude that σ(X) = σ0(X) = σ∗(X) = σ∗

0(X) = s(X) =

s∗(X) = fss(X) = q
′

3. This completes case A.

Case B: max{dmin(f, g) | (f, g) ∈ P} > q
′

3

Let (f, g) ∈ P such that max{dmin(f, g) | (f, g) ∈ P} = dmin(f, g) > q
′

3.

Since r
′

3 < q
′

3 and t
′

3 < q
′

3, the pair (f, g) can not include the following
(forbidden) steps as given in Table 4 and Table 5.

Table 4. Forbidden steps

t f(t) g(t)
t1 Q4 Q3

t2 Q0 Q3

t f(t) g(t)
t1 Q0 Q3

t2 Q1 Q3

t f(t) g(t)
t1 Q1 Q3

t2 Q2 Q3

Table 5. Forbidden steps

t f(t) g(t)
t1 Q3 Q4

t2 Q3 Q0

t f(t) g(t)
t1 Q3 Q0

t2 Q3 Q1

t f(t) g(t)
t1 Q3 Q1

t2 Q3 Q2

For any pair of functions, f and g, we consider all the possible starting
values of f and g, that is f(0) and g(0), and determine what steps are possible

for t > 0 given the restriction dmin(f, g) > d(Q3, Q
′

1) = q
′

3. Because of
the symmetry of this process, we consider either f(0) = Qj and g(0) = Qk

where k 6= j, or f(0) = Qk and g(0) = Qj for k 6= j, but not both. All
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these possibilities are summarized in the tables below. For n ∈ N , we let
0 = t0 < t1 < t2 < · · · < tn < 1.

Table 6. Left to right: Patterns I, II, III, IV .

t f(t) g(t)
0 Q0 Q2

t1 Q1 Q2

t2 Q1 Q3

t3 Q1 Q4

t4 Q1 Q0

t5 Q2 Q0

t f(t) g(t)
0 Q0 Q2

t1 Q1 Q2

t2 Q1 Q3

t3 Q1 Q4

t4 Q2 Q4

t5 Q2 Q0

t f(t) g(t)
0 Q0 Q2

t1 Q0 Q3

t2 Q0 Q4

t3 Q1 Q4

t4 Q1 Q0

t5 Q2 Q0

t f(t) g(t)
0 Q0 Q2

t1 Q0 Q3

t2 Q0 Q4

t3 Q1 Q4

t4 Q2 Q4

t5 Q2 Q0

Table 7.

t f(t) g(t)
0 Q0 Q1

t1 Q0 Q2

Table 8. Left to right: Patterns V and VI.

t f(t) g(t)
0 Q4 Q0

t1 Q4 Q1

t2 Q4 Q2

t3 Q0 Q2

t f(t) g(t)
0 Q4 Q0

t1 Q4 Q1

t2 Q0 Q1

t3 Q0 Q2

Table 9.

t f(t) g(t)
0 Q3 Q0

t1 Q4 Q0

We start with f(0) = Q0 and g(0) = Q2 in Table 6. We see that there
are four possibilities: pattern I, II, III, or IV. In Table 7, where f(0) = Q0

and g(0) = Q1, there is only one possible second step. After this step, the
functions would follow one of the patterns I, II, III, or IV in Table 6. In
Table 8, we start with f(0) = Q4 and g(0) = Q0. We see that there are
two possibilities, patterns V and VI. Each of these ends with f(t3) = Q0 and
g(t3) = Q2. These functions would then follow either pattern I, II, III, or IV
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Table 10. Left to right: Patterns VII and VIII.

t f(t) g(t)
0 Q4 Q1

t1 Q4 Q2

t2 Q0 Q2

t f(t) g(t)
0 Q4 Q1

t1 Q0 Q1

t2 Q0 Q2

Table 11.

t f(t) g(t)
0 Q2 Q1

t1 Q3 Q1

t2 Q4 Q1

Table 12.

t f(t) g(t)
0 Q3 Q1

t1 Q4 Q1

Table 13.

t f(t) g(t)
0 Q3 Q2

t1 Q4 Q2

t2 Q0 Q2

in Table 6. In Table 9 we have f(0) = Q3 and g(0) = Q0. There is only one
possible second step, that is f(t1) = Q4 and g(t1) = Q0. These functions then
would follow either pattern V or VI in Table 8. After this, the functions would
follow one of the patterns, I, II, III, or IV in Table 6. In Table 10, we have
f(0) = Q4 and g(0) = Q1. There are two possibilities, patterns VII or VIII.
Both of these patterns end with f(t2) = Q0 and g(t2) = Q2. These functions
would then follow one of the patterns I, II, III, or IV in Table 6. Similarly,
the functions in Table 11 would subsequently follow one of the patterns VII
or VIII in Table 10, then follow one of the patterns I, II, III, or IV in Table 6.
The functions in Table 12 would follow either pattern VII or VIII in Table 10,
then either pattern I, II, III, or IV in Table 6. The pairs of functions in tables
13 and 14 would each follow one of the patterns I, II, III, or IV in Table 6.

We have considered all possible combinations for f(0) and g(0). Note that
f(0) = Q3 and g(0) = Q4 is not possible, since for t1, f(t1) = Q3, g(t1) = Q0,

and dmin(f, g) ≤ r3 < d(Q3, Q
′

0). We see that all pairs of functions f and g,
satisfying our conditions, contain one of the patterns I, II, III, or IV. So, if
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Table 14.

t f(t) g(t)
0 Q4 Q2

t1 Q0 Q2

there is a pair of functions (f, g) ∈ P such that dmin(f, g) > d(Q3, Q
′

0) = q
′

3,
then f and g contain one of the patterns I, II, III, or IV. So, for any pair,
(f, g) ∈ P , we are now considering, we see that:

dmin(f, g) ≤ max{min I, min II, min III, min IV}

where

d(Qi, ti) = t
′

i, d(Qi, ri) = r
′

i, d(Qi, Q
′

i+2) = q
′

i, and

min I = min{r
′

0, r
′

1, t
′

1, t
′

2, q
′

1} = min{r
′

0, r
′

1, t
′

1, t
′

2}

min II = min{r
′

1, t
′

2, q
′

1, q
′

2, q
′

4} = min{r
′

1, t
′

2, q
′

4}

min III = min{r
′

0, r
′

4, t
′

0, t
′

1, q
′

0} = min{r
′

0, r
′

4, t
′

0, t
′

1}

min IV = min{r
′

4, t
′

0, q
′

0, q
′

2, q
′

4} = min{r
′

4, t
′

0, q
′

2}.

Note that patterns I and III are mirror images of each other, as are II and IV.
If the “best” f and g is not as given in Table 1, then since all other pairs,

f and g, contain one of the patterns I, II, III, or IV, then the best f and g

must be one of the pairs of functions given in Table 15. Hence, the “best”
pair f and g will be from either Table I, II, III, or IV in Table 15, and

dmin(f, g) = max{min I, min II, min III, min IV},

where dmin(f, g) = min I for Table I, dmin(f, g) = min II for Table II,
dmin(f, g) = min III for Table III, and dmin(f, g) = min IV for Table IV.
Consequently, α(X) ≥ max{min I, min II, min III, min IV}, where α =
σ, σ0, σ

∗σ∗

0 , s, s∗ since the functions f and g satisfy the requirements for all
of the spans. We will show that σ0(X) ≤ max{min I, min II, min III, min
IV} and consequently that α(X) = max{min I, min II, min III, min IV} for
α = σ, σ0, σ

∗, σ∗

0 , s, s∗.
Since I and III are mirror images of each other as are II and IV, we need

to examine only two cases,

min I = max{min I, min II, min III, min IV}

and

min II = max{min I, min II, min III, min IV}

Case 1: min II = max{min I, min II, min III, min IV} = min{r
′

1, t
′

2, q
′

4}.
Suppose that max{min I, min II, min III, min IV} = min II, that is,

the best pair of functions f and g is from Table II. So, dmin(f, g) = min
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Table 15. Left to right Table I, Table II, Table III, Table IV.

t f(t) g(t)
0 Q0 Q2

0.1 Q1 Q2

0.2 Q1 Q3

0.3 Q1 Q4

0.4 Q1 Q0

0.5 Q2 Q0

0.6 Q2 Q1

0.7 Q3 Q1

0.8 Q4 Q1

0.9 Q0 Q1

1.0 Q0 Q2

t f(t) g(t)
0 Q0 Q2

0.1 Q1 Q2

0.2 Q1 Q3

0.3 Q1 Q4

0.4 Q2 Q4

0.5 Q2 Q0

0.6 Q2 Q1

0.7 Q3 Q1

0.8 Q4 Q1

0.9 Q4 Q2

1.0 Q0 Q2

t f(t) g(t)
0 Q0 Q2

0.1 Q0 Q3

0.2 Q0 Q4

0.3 Q1 Q4

0.4 Q1 Q0

0.5 Q2 Q0

0.6 Q3 Q0

0.7 Q4 Q0

0.8 Q4 Q1

0.9 Q0 Q1

1.0 Q0 Q2

t f(t) g(t)
0 Q0 Q2

0.1 Q0 Q3

0.2 Q0 Q4

0.3 Q1 Q4

0.4 Q2 Q4

0.5 Q2 Q0

0.6 Q3 Q0

0.7 Q4 Q0

0.8 Q4 Q1

0.9 Q4 Q2

1.0 Q0 Q2

II = min{r
′

1, t
′

2, q
′

4} and α(X) ≥ min{r
′

1, t
′

2, q
′

4}, where α = σ, σ0, σ
∗, σ∗

0 , s,

and s∗. We will now show that α(X) = min{r
′

1, t
′

2, q
′

4} = dmin(f, g), where
α = σ, σ0, σ

∗, σ∗

0 , s, and s∗.
Let f∗, g∗ : C → Z be continuous functions from a continuum C into a

continuum Z ⊆ Y such that f∗(C) ⊆ g∗(C). We consider three subcases.

Case 1A: min II = r
′

1, r
′

1 ≤ t
′

2, and r
′

1 ≤ q
′

4.

Observe that min IV = min{r
′

4, t
′

0, q
′

2} ≤ min II = r
′

1 ≤ t
′

2 < q
′

2, so

min IV 6= q
′

2 and min IV = min{r
′

4, t
′

0}. So, either r
′

4 ≤ r
′

1 = dmin(f, g) or

t
′

0 ≤ r
′

1 = dmin(f, g). We define p0 : Y →
−−−−→
Q

′

0, Q0∪
−−−→
Q

′

0Q1 based on r
′

1 ≤ t
′

2 and

either r
′

4 ≤ r
′

1 or t
′

0 ≤ r
′

1. Since r
′

1 ≤ t
′

2, we define p0 on Yl by using case p0, Yl,

1 when r
′

1 = t
′

2 and case p0, Yl, 2 when r
′

1 < t
′

2. Also, either r
′

4 ≤ t
′

0 or t
′

0 < r
′

4.

We define p0 on Yr by case p0, Yr, 1 when r
′

4 ≤ t
′

0 and by case p0, Yr, 2 when

t
′

0 < r
′

4. Consider p0◦f
∗, p0◦g

∗ : C →
−−−→
Q

′

0Q0∪
−−−→
Q

′

0Q1. Since the range of p◦g∗

is an interval and p0 ◦ f∗(C) ⊂ p0 ◦ g∗(C), we see that there is a c ∈ C such

that p0◦f
∗(c) = p0◦g

∗(c) and d(f∗(c), g∗(c)) ≤ max{min{t
′

0, r
′

4}, q
′

3, r
′

1} = r
′

1.

Case 1B: min II = t
′

2, t
′

2 < r
′

1, and t
′

2 ≤ q
′

4.

Observe that min IV = min{r
′

4, t
′

0, q
′

2} ≤ min II = t
′

2 < q
′

2, so min IV

6= q
′

2, and min IV = min{r
′

4, t
′

0}. So, either r
′

4 ≤ t
′

2 = dmin(f, g) or t
′

0 ≤ t
′

2 =

dmin(f, g). We define p0 : Y →
−−−→
Q

′

0Q0 ∪
−−−→
Q

′

0Q1 based on t
′

2 < r
′

1 and either

r
′

4 ≤ t
′

2 or t
′

0 ≤ t
′

2. Since t
′

2 < r
′

1, we define p0 on Yl by using case p0, Yl, 1.

Also, either r
′

4 ≤ t
′

0 or t
′

0 < r
′

4. We define p0 on Yr by case p0, Yr, 1 when

r
′

4 ≤ t
′

0 and by case p0, Yr, 2 when t
′

0 < r
′

4. Again we conclude that there is

a c ∈ C such that d(f∗(c), g∗(c)) ≤ max{min{t
′

0, r
′

4}, q
′

3, t
′

2} = t
′

2.

Case 1C: min II = q
′

4, q
′

4 < r
′

1, and q
′

4 < t
′

2.
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Observe that min I = min{r
′

0, r
′

1, t
′

1, t
′

2} ≤ min II = q
′

4 < r
′

1 and

q
′

4 < t
′

2, min I = min{r
′

0, t
′

1}, so either r
′

0 ≤ q
′

4 = dmin(f, g) or t
′

1 ≤

q
′

4 = dmin(f, g). We define p1 : Y →
−−−→
Q

′

1Q1 ∪
−−−→
Q

′

1Q2 based on either

r
′

0 ≤ t
′

1 or t
′

1 < r
′

0 for y ∈ Yr and either t
′

3 ≤ r
′

2 or r
′

2 < t
′

3 for y ∈ Yl.

Note that t
′

3 < q
′

3 < q
′

4. So we see that there is a c ∈ C such that

d(f∗(c), g∗(c)) ≤ max{min{r
′

0, t
′

1}, {min{r
′

2, t
′

3}, q
′

4} = q
′

4.
Therefore, in case 1 we conclude that σ0(X) ≤ dmin(f, g) = min II. Since

X is a simple closed curve we know that σ(X) = σ∗(X) and σ0(X) = σ∗

0(X).

Also, we see that for all t ∈ [0, 1] there is a t
′

∈ [0, 1] such that f(t) = g(t
′

) and

f(t
′

) = g(t). Consequently, we see that σ(X) = σ0(X) = σ∗(X) = σ∗

0(X) =
s(X) = s∗(X) = min II.

Case 2: min I = max{min I, min II, min III, min IV} = min{r
′

0, r
′

1, t
′

1, t
′

2}.
Suppose that min I = max{min I, min II. min III, min IV}, that the

best pair of functions f and g is from Table I. So, dmin(f, g) = min I

= min{r
′

0, r
′

1, t
′

1, t
′

2} and α(X) ≥ min{r
′

0, r
′

1, t
′

1, t
′

2} where α = σ, σ0, σ
∗, σ∗

0 , s

and s∗. We will now show that α(X) = min{r
′

0, r
′

1, t
′

1, t
′

2} = dmin(f, g) where
α = σ, σ0, σ

∗, σ∗

0 , s and s∗.
Let f∗, g∗ : C → Z be continuous functions from a continuum C into a

continuum Z ⊆ Y such that f∗(C) ⊆ g∗(C). We consider four subcases.

Case 2A: min I = r
′

0, r
′

0 ≤ t
′

1, r
′

0 ≤ r
′

1, and r
′

0 ≤ t
′

2.

Observe that min II = min{r
′

1, t
′

2, q
′

4} ≤ min I = r
′

0. We can assume

that r
′

0 6= r
′

1, since this case has been covered in case 1A, so r
′

0 < r
′

1. We

can assume that r
′

0 6= t
′

2, since this case has been covered in case 1B, so

r
′

0 < t
′

2. So, we assume that min II = q
′

4 ≤ min I = r
′

0. So, we have that

q
′

4 ≤ r
′

0 = dmin(f, g). We can assume that q
′

4 6= r
′

0, since this is covered in case

1C. So, q
′

4 < r
′

0 = dmin(f, g). We define p1 : Y →
−−−→
Q

′

1Q1∪
−−−→
Q

′

1Q2 based on case

p1, Yr, 1 for y ∈ Yr since r
′

0 ≤ t
′

1 and based on either case p1, Yl, 1 if t
′

3 ≤ r
′

2 or

case p1, Yl, 2 if r
′

2 < t
′

3 for y ∈ Yl. Consider p1◦f
∗, p1◦g

∗ : C →
−−−→
Q

′

1Q1∪
−−−→
Q

′

1Q2.
Since the range is an interval there is a c ∈ C such that p1 ◦ f

∗(c) = p1 ◦ g
∗(c)

and d(f∗(c), g∗(c)) ≤ max{min{t
′

3, r
′

2}, q
′

4, r
′

0} = r
′

0.

Case 2B: min I = t
′

1, t
′

1 < r
′

0, t
′

1 ≤ r
′

1, and t
′

1 ≤ t
′

2.

Observe that min II = min{r
′

1, t
′

2, q
′

4} ≤ min I = t
′

1. We can assume that

t
′

1 6= r
′

1, since this is already covered in case 1A, so t
′

1 < r
′

1. We can assume

that t
′

1 6= t
′

2, since this is already covered in case 1B, so t
′

1 < t
′

2. So we assume

that min II = q
′

4 ≤ min I = t
′

1. So, we have that q
′

4 ≤ t
′

1 = dmin(f, g). We can

assume that q
′

4 6= t
′

1, since this is covered in case 1C. So, q
′

4 < t
′

1 = dmin(f, g).

We define p1 : Y →
−−−→
Q

′

1Q1 ∪
−−−→
Q

′

1Q2 based on case p1, Yr, 2 for y ∈ Yr since

t
′

1 < r
′

0 and based on either case p1, Yl, 1 if t
′

3 ≤ r
′

2 or case p1, Yl, 2 if

r
′

2 < t
′

3 for y ∈ Yl. Consider p1 ◦ f∗, p1 ◦ g∗ : C →
−−−→
Q

′

1Q1 ∪
−−−→
Q

′

1Q2. Since the
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range is an interval there is a c ∈ C such that p1 ◦ f∗(c) = p1 ◦ g∗(c) and

d(f∗(c), g∗(c)) ≤ max{min{t
′

3, r
′

2}, q
′

4, t
′

1} = t
′

1.

Case 2C: min I = r
′

1, r
′

1 < r
′

0, r
′

1 < t
′

1, and r
′

1 ≤ t
′

2.
This case has been covered in case 1A.
Case 2D: min I = t

′

2, t
′

2 < r
′

0, t
′

2 < r
′

1, and t
′

2 < t
′

1.
This case has already been covered in case 1B.

Therefore in case 2 we conclude that σ0(X) ≤ dmin(f, g) = min I. Also,
σ(X) = σ∗(X) and σ0(X) = σ∗

0(X) since X is a simple closed curve and for

all t ∈ [0, 1] there is a t
′

∈ [0, 1] such that f(t) = g(t
′

) and f(t
′

) = g(t).
Consequently, σ(X) = σ0(X) = σ∗(X) = σ∗

0(X) = s(X) = s∗(X) = min I.
The other three cases can be proved in a similar manner.

Hence, σ(X) = σ0(X) = σ∗(X) = σ∗

0(X) = s(X) = s∗(X) =

max{q
′

j+3, min I, min II, min III, min IV} = fss(X).

Theorem 3.2. Let Z be a continuum such that Z ⊆ Y , where Y is the

closure of the bounded component of R2 −X and X is a five star-like simple

closed curve, then α(Z) ≤ fss(X), where α = σ, σ0, σ
∗, σ∗

0 , s, s∗.

Proof. Since each of the functions pi for i = 0, 1, 2, 3, 4 were defined for
any continuum Z ⊆ Y where Y is the closure of the bounded component of
R2−X , we see that for any such Z, α(Z) ≤ fss(X), where α = σ, σ0, σ

∗, σ∗

0 , s,

and s∗.

Corollary 3.3. Let Z be a simple closed curve such that Z ⊆ Y where

Y is the closure of the bounded component of R2−X and X is a five star-like

simple closed curve, then

σ(Z) ≤ σ(X) .

So, in this situation, the question by Howard Cook is answered in the affir-

mative.

Corollary 3.4. Let Y be a plane separating continuum and X be a five

star-like simple closed curve contained in the closure of a bounded component

of R2 − Y , then

σ(X) ≤ σ(Y ).

Proof. Let Y be a plane separating continuum such that X is contained
in one of the bounded components of R2−Y . We can assume that the origin,
O, is in the bounded component of R2 −Q. There is an r > 0 such that the
circle with center the origin and radius r, C(O, r), is such that Y is contained
in the bounded component of R2−C(O, r). We will show that σ(Y ) ≥ σ(X).

We will consider the case where σ(X) = min II. The lines
←−−→
Q2Q1 and

←−−→
Q2Q4

separate the bounded component of R2−C(O, r) into four wedges. We let V0

be the closure of the wedge that contains Q
′

4 and Q
′

0 and W0 be the closure
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of the wedge that is opposite V0. The set V0− (Q4Q
′

4∪Q
′

4Q0∪Q0Q
′

0∪Q
′

0Q1)

has two components. Let W
′

0 be the closure of the component that intersects

C(O, r). For each z ∈ W0 ∩ Y , let r(z) ∈
←→
Q2z ∩W0 ∩ C(O, r) and for each

z ∈ W
′

0 ∩ Y , let r(z) ∈
←→
Q2z ∩ W

′

0 ∩ C(O, r). The lines
←−−→
Q4Q2 and

←−−→
Q4Q1

separate the bounded component of R2 − C(O, r) into four wedges. Let V1

be the closure of the wedge that contains Q
′

1. Let W1 be the closure of

the wedge that is opposite V1. The set Q1Q
′

1 ∪ Q
′

1Q2 separates V1 into two

components. Let W
′

1 be the closure of the component that intersects C(O, r).

For z ∈ W1 ∩ Y , let r(z) ∈
←→
Q4z ∩ W1 ∩ C(O, r), and for z ∈ W

′

1 ∩ Y , let

r(z) ∈
←→
Q4z ∩W

′

1 ∩ C(O, r). Similarly, using the lines
←−−→
Q1Q4 and

←−−→
Q1Q2, we

define the sets W2 and W
′

2. Note that Q1 ∈W2 and Q
′

2, Q
′

3 ∈W
′

2. We define

r for z ∈ W2 ∩ Y by r(z) ∈
←→
Q1z ∩ W2 ∩ C(O, r) and for z ∈ W

′

2 ∩ Y by

r(z) ∈
←→
Q1z∩W

′

2∩C(O, r). Observe that for either x ∈ W0 and y ∈ W
′

0∩
←−→
Q2x,

or x ∈ W1 and y ∈ W
′

1 ∩
←−→
Q4x, or x ∈W2 and y ∈ W

′

2 ∩
←−→
Q1x, d(x, y) ≥ min II.

We can rotate X ∪ Y in the plane about the origin so that the ray
−→
Ox

corresponds to the positive x-axis, where {x} = W0 ∩W
′

2 ∩
←−−→
Q1Q2 ∩ C(O, r).

Let θj for j = 0, 1, 2, 3, 4, 5, 6, be angles in the rotated position such that

0 = θ0 < θ1 < θ2 < θ3 < θ4 < θ5 < θ6 = 2π, where reiθ0 , reiθ3 ∈
←−−→
Q1Q2 ∩

C(O, r), reiθ1 , reiθ4 ∈
←−−→
Q2Q4 ∩ C(O, r), and reiθ2 , reiθ5 ∈

←−−→
Q4Q1 ∩ C(O, r).

Let f : [0, 2π] → [0, 2π] be a piecewise linear, surjective function, such that

f(θj) = j(π
3 ), and for θ ∈ [θj , θj+1], f(θ) = j(π

3 ) + (
θ−θj

θj+1−θj
)(π

3 ) for each

j = 0, 1, 2, 3, 4, 5.
Let h : C(O, r) → C(O, r) be the homeomorphism given by h(reiθ) =

h(reif(θ)).
We define p : Y → C(O, r) by p(y) = h ◦ r(y) = h(reiθy) = reif(θy) where

r(y) = reiθy. We see that p is an essential map from Y onto C(O, r). Also,
for each y, z ∈ Y such that p(y) and p(z) are diametrically opposed to each
other on C(O, r), d(p−1{p(y)}, p−1{p(z)}) ≥ min II.

So in this case, by Theorem L, σ(Y ) ≥ σ(X) = min II. The cases where
σ(X) = min{qi}

4
i=0, min I, min III, or min IV can be shown in a similar

manner. We conclude that in all cases σ(Y ) ≥ σ(X).

When Y is a simple closed curve, the question by Howard Cook is an-
swered in the affirmative in this situation.
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