ON THE FIXED POINT PROPERTY FOR INVERSE LIMITS OF FANS

Antonio Peláez
Universidad Nacional Autónoma de México, Mexico

Abstract

In 1984, M. M. Marsh gave conditions under which the inverse limit of an inverse sequence of fans has the fixed point property. In this paper we give an extension of that result.

1. Definitions and notation

By a space we mean a topological space. A continuum is a nonempty compact connected metric space. By a map we mean a continuous function. A fixed point of a map $f: X \rightarrow X$ is a point $x \in X$ such that $f(x)=x$. A space X has the fixed point property if every map $f: X \rightarrow X$ has a fixed point.

The symbols \mathbb{N} and \mathbb{R} denote the set of the positive integers and the set of the real numbers, respectively. The diameter of a set A in a metric space will be denoted by $\operatorname{diam}(A)$.

Given a point x in a product $\prod\left\{X_{n}: n \in \mathbb{N}\right\}$ we will write $x=\left(x_{n}\right)_{n \in \mathbb{N}}$. An inverse sequence is a double sequence $\left\{X_{n}, f_{n}\right\}$ of spaces X_{n} and maps $f_{n}: X_{n+1} \rightarrow X_{n}$. The inverse limit of the inverse sequence $\left\{X_{n}, f_{n}\right\}$, which is denoted by $\lim \left\{X_{n}, f_{n}\right\}$ or by X_{∞}, is the space of all points $x \in \prod\left\{X_{n}\right.$: $n \in \mathbb{N}\}$ such that $x_{n}=f_{n}\left(x_{n+1}\right)$. If $X_{n}=X$ for each $n \in \mathbb{N}$, then we write $\left\{X, f_{n}\right\}$ instead of $\left\{X_{n}, f_{n}\right\}$. The projection map from X_{∞} into X_{n} will be denoted by f_{n}^{∞}.

2000 Mathematics Subject Classification. 54H25.
Key words and phrases. Fan, fixed point property, inverse limit.
This research is part of the author's Dissertation at the Universidad Nacional Autónoma de México. This research has been done with the support of a scholarship given by CONACyT.

A finite family $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ of open sets of a space X is a chain (circular chain) provided that $C_{i} \cap C_{j} \neq \emptyset$ if and only if $|i-j| \leq 1(n \geq 3$ and $|i-j| \leq 1$ or $|i-j|=n-1)$.

A family of sets \mathcal{C} is coherent provided that every proper family \mathcal{G} of \mathcal{C} contains an element intersecting an element of $\mathcal{C} \backslash \mathcal{G}$. A finite coherent family \mathcal{C} of open sets of a space X is a tree chain if no subfamily of \mathcal{C} is a circular chain. A junction link of a tree chain \mathcal{C} is an element that intersects at least three other elements of \mathcal{C}. If the diameter of each element of a chain (circular chain, tree chain) is less than ε, then it is called ε-chain (ε-circular chain, ε-tree chain). The elements of a chain, a circular chain or a tree chain are called links.

An ε-map is a map $f: X \rightarrow Y$ between metric spaces such that $\operatorname{diam}\left(f^{-1}(y)\right)<\varepsilon$ for each $y \in Y$.

2. The Theorem

Consider the following well-known result (see [3, (2.33)]):
Lemma 2.1. Let X and Y be nonempty compact metric spaces. If $f: X \rightarrow Y$ is an onto ε-map, then there exists $\delta>0$ such that $\operatorname{diam}\left(f^{-1}[Z]\right)<$ ε whenever $Z \subseteq Y$ and $\operatorname{diam}(Z)<\delta$.

Note that the previous Lemma implies the following:
Lemma 2.2. Let $f: X \rightarrow Y$ be an onto ε-map between continua and let $\delta>0$ be a real number given by 2.1. If \mathcal{D} is a δ-chain (δ-circular chain, δ-tree chain) in Y, then the family $f^{-1}[\mathcal{D}]=\left\{f^{-1}[D]: D \in \mathcal{D}\right\}$ is an ε-chain (ε-circular chain, ε-tree chain).

The main result of this paper is in 2.5 . We prove that the inverse limit of an inverse sequence of fans $\left\{A, f_{n}\right\}$ has the fixed point property. Now, we define the space A that we use in 2.5 .

Construction 2.3. Given a point $a \in \mathbb{R}^{2} \backslash(0,0)$, let $L_{a}=\{t a: 0 \leq t \leq 1\}$. Let B be a finite subset of $\left\{(x, y) \in \mathbb{R}^{2}:\|(x, y)\|=1\right.$ and $\left.y>0\right\}$ and let \mathfrak{C} be the Cantor set contained in $[0,1] \times\{-1\}$.

For each subset D of B, let $T^{D}=\bigcup\left\{L_{a}: a \in \mathfrak{C} \cup D\right\}$, let $A=T^{B}$, and let $T=T^{\emptyset}$.

In the following Lemma, we consider the spaces constructed in 2.3.
Lemma 2.4. Let $b \in B \cup \mathfrak{C}$. For every positive number δ, there exists a δ-tree chain \mathcal{D} covering A such that:
(i) \mathcal{D} has exactly one junction link D_{0},
(ii) $(0,0) \in D_{0}$,
(iii) a chain $\mathcal{D}^{\prime}=\left\{D_{0}, \ldots, D_{n}\right\}$ of links of \mathcal{D} covers L_{b} and $D \cap L_{b}=\emptyset$ for every $D \in \mathcal{D} \backslash \mathcal{D}^{\prime}$,
(iv) if $b \in B$, then $T^{B \backslash\{b\}} \cap D_{i}=\emptyset$ for each $i>0$.

Proof. Let $n \in \mathbb{N}$, such that $\frac{3}{n}<\delta$. For each $k \in\{0,1, \ldots, n-2, n-1\}$, let:
and let:

$$
G_{k}=\left\{(x, y) \in \mathbb{R}^{2}: \frac{k}{n}<\|(x, y)\|<\frac{k+2}{n}\right\}
$$

$$
F_{k}=\left\{(x, y) \in \mathbb{R}^{2}:-\frac{k+2}{n}<y<-\frac{k}{n}\right\} .
$$

From the construction of the Cantor set (see $[3,7.5]$), there exists a pairwise disjoint family of closed subintervals $I_{1}, I_{2}, \ldots, I_{m}$ of $[0,1] \times\{-1\}$ such that $\mathfrak{C} \subseteq I_{1} \cup I_{2} \cup \ldots \cup I_{m}$ and $\operatorname{diam}\left(I_{l}\right)<\frac{2}{n}$ for every $l \in\{1, \ldots, m\}$. Note that each $\mathfrak{C} \cap I_{l}$ is a clopen subset of \mathfrak{C}.

Given $l \in\{1, \ldots, m\}$, let $T_{l}=\bigcup\left\{L_{a}: a \in \mathfrak{C} \cap I_{l}\right\}$. Let $D_{0}=\{(x, y) \in$ $\left.\mathbb{R}^{2}:\|(x, y)\|<\frac{1}{n}\right\} \cap A$, then the family:

$$
\begin{aligned}
\mathcal{D}= & \left\{D_{0}\right\} \cup\left\{G_{k} \cap L_{b}: k \in\{0,1, \ldots, n-2, n-1\} \text { and } b \in B\right\} \\
& \cup\left\{F_{k} \cap T_{l}: k \in\{0,1, \ldots, n-2, n-1\} \text { and } l \in\{1, \ldots, m\}\right\}
\end{aligned}
$$

is a tree chain. Clearly, \mathcal{D} has only one junction link; namely D_{0}. Moreover, the links of \mathcal{D} have diameter less or equal to $\sqrt{\left(\frac{2}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}}=\sqrt{\frac{8}{n^{2}}}<\delta$. Therefore, the family \mathcal{D} is a δ-tree chain.

If $b \in B$, we define $D_{k+1}=G_{k} \cap L_{b}$ for $k \in\{0,1, \ldots, n-2, n-1\}$.
If $b \in I_{l}$, then we define $D_{k+1}=F_{k} \cap T_{l}$ for $k \in\{0,1, \ldots, n-2, n-1\}$.
So, the families $\mathcal{D}^{\prime}=\left\{D_{0}, D_{1}, \ldots, D_{n}\right\}$ and \mathcal{D} satisfy (i), (ii), (iii) and (iv).

Theorem 2.5. Consider the spaces built in 2.3. Suppose that $\left\{A, f_{n}\right\}$ is an inverse sequence with onto bonding maps such that:
(C1) $f_{n}((0,0))=(0,0)$ for each $n \in \mathbb{N}$,
(C2) for every $c \in \mathfrak{C}$, there exists $c^{\prime} \in \mathfrak{C}$ such that $f_{n}\left[L_{c}\right] \subseteq L_{c^{\prime}}$ and,
(C3) $f_{n}\left[L_{b}\right] \subseteq T^{\{b\}}$ for each $b \in B$.
Then A_{∞} has the fixed point property.
Proof. We first note that, by (C2):

$$
\begin{equation*}
f_{n}[T] \subseteq T \tag{2.1}
\end{equation*}
$$

If a point $x \in A_{\infty}$ has its coordinate $x_{k} \in L_{b} \backslash\{(0,0)\}$ for some $b \in B$, then, by (C3) and (2.1):

$$
\begin{equation*}
x_{n} \in L_{b} \backslash\{(0,0)\} \text { for every } n \geq k \tag{2.2}
\end{equation*}
$$

By (C1), the point $a=((0,0))_{n \in \mathbb{N}}\left(a_{n}=(0,0)\right.$ for each $\left.n \in \mathbb{N}\right)$ belongs to A_{∞}.

Let d denote the metric on A_{∞}. Suppose that a map $f: A_{\infty} \rightarrow A_{\infty}$ has no fixed points. Since A_{∞} is compact, there exists $\varepsilon>0$ such that $d(x, f(x)) \geq \varepsilon$ for each $x \in A_{\infty}$. Since $f(a) \neq a$, we have that $f_{k}^{\infty}(f(a)) \neq(0,0)$ for some $k \in \mathbb{N}$.

Consider the case $f_{k}^{\infty}(f(a)) \in L_{b} \backslash\{(0,0)\}$ for some $b \in B$. By the continuity of $f_{k}^{\infty} \circ f$, there exists $\varepsilon^{\prime}>0$, with $\varepsilon^{\prime}<\frac{\varepsilon}{2}$, such that:

$$
\begin{equation*}
d(x, a)<\varepsilon^{\prime} \text { implies } f_{k}^{\infty}(f(x)) \in L_{b} \backslash\{(0,0)\} \tag{2.3}
\end{equation*}
$$

Let $m \geq k$ such that f_{m}^{∞} is an ε^{\prime}-map (see [3, p. 25]).
We claim that:

$$
\begin{equation*}
f_{m}^{\infty} \circ f\left[\left(f_{m}^{\infty}\right)^{-1}((0,0))\right] \subseteq L_{b} \backslash\{(0,0)\} \tag{2.4}
\end{equation*}
$$

To prove this, let $x \in\left(f_{m}^{\infty}\right)^{-1}((0,0))$. Since $x, a \in\left(f_{m}^{\infty}\right)^{-1}((0,0))$ and f_{m}^{∞} is an ε^{\prime}-map, we have that $d(x, a)<\varepsilon^{\prime}$. Then, by $(2.3), f_{k}^{\infty}(f(x)) \in L_{b} \backslash\{(0,0)\}$ and, by $(2.2), f_{m}^{\infty}(f(x))$ belongs to $L_{b} \backslash\{(0,0)\}$. So, the inclusion (2.4) holds.

By 2.1, there exists $\delta>0$ such that $\operatorname{diam}\left(\left(f_{m}^{\infty}\right)^{-1}[Z]\right)<\varepsilon^{\prime}$ whenever $\operatorname{diam}(Z)<\delta$. For δ and b given above, let \mathcal{D} be the δ-tree chain and let $\mathcal{D}^{\prime}=\left\{D_{0}, \ldots, D_{l}\right\}$ be the chain covering L_{b} constructed in 2.4.

Let $\mathcal{C}=\left\{\left(f_{m}^{\infty}\right)^{-1}[D]: D \in \mathcal{D}\right\}$, let $C_{i}=\left(f_{m}^{\infty}\right)^{-1}\left[D_{i}\right]$ and let $\mathcal{C}^{\prime}=$ $\left\{C_{0}, \ldots, C_{l}\right\}$. By 2.2 , the family \mathcal{C} is an ε^{\prime}-tree chain covering A_{∞}.

By 2.4(ii) and (2.4), we have that

$$
\left(f_{m}^{\infty}\right)^{-1}((0,0)) \subseteq C_{0} \cap\left(f_{m}^{\infty} \circ f\right)^{-1}\left[L_{b} \backslash\{(0,0)\}\right] .
$$

Let $U=C_{0} \cap\left(f_{m}^{\infty} \circ f\right)^{-1}\left[L_{b} \backslash\{(0,0)\}\right]$. Let V an open set in A_{∞} such that $\left(f_{m}^{\infty}\right)^{-1}((0,0)) \subseteq V \subseteq \bar{V} \subseteq U$. Let $q \in C_{l}$ and let K be the component of $A_{\infty} \backslash V$ containing q. Then, by [1, 6.1.25], K must intersect the boundary of V at some point y.

Since $\left(f_{m}^{\infty}\right)^{-1}((0,0)) \subseteq V$ and $D \cap L_{b}=\emptyset$ for every $D \in \mathcal{D} \backslash \mathcal{D}^{\prime}$ (see Lemma 2.4(iii)), it follows that $K \subseteq \bigcup\left\{C_{i}: 0 \leq i \leq l\right\}$.

Let

$$
R=\left\{x \in K: \text { if } x \in C_{i} \text { and } f(x) \in C_{j} \text { then } i \leq j\right\}
$$

and let

$$
S=\left\{x \in K: \text { if } x \in C_{i} \text { and } f(x) \in C_{j} \text { then } j \leq i \text { or } C_{j} \notin \mathcal{C}^{\prime}\right\}
$$

It is easy to see that $y \in R, q \in S$ and $K=R \cup S$. Moreover, R and S are disjoint open sets of K. But this contradicts the connectedness of K. Then $f_{k}^{\infty}(f(a)) \in T \backslash\{(0,0)\}$.

We can assume that $f_{n}^{\infty}(f(a)) \in T \backslash\{(0,0)\}$ for every $n \geq k$. For each $n \geq k$, let $c_{n} \in \mathfrak{C}$ such that $f_{n}^{\infty}(f(a)) \in L_{c_{n}}$. Then $f_{n}\left[L_{c_{n+1}}\right] \subseteq L_{c_{n}}$. Let $K=\underset{\leftarrow}{\lim }\left\{L_{c_{n}},\left.f_{n}\right|_{L_{c_{n+1}}}\right\}$. In this case, we choose $\varepsilon^{\prime}=\frac{\varepsilon}{2}$ and $m \geq k$ such that f_{m}^{∞} is an ε^{\prime}-map. We also choose $\delta>0, \mathcal{C}$ and \mathcal{C}^{\prime} as above. Then $K \subseteq \bigcup\left\{C_{i}: 0 \leq i \leq l\right\}$. With similar definitions of R and S, as above, we contradict the connectedness of K.

Hence, such a map does not exist. Therefore, the space A_{∞} has the fixed point property.

References

[1] R. Engelking, General topology, Heldermann Verlag, Berlín, 1989.
[2] M. M. Marsh, A fixed point theorem for inverse limits of fans, Proc. Amer. Math. Soc. 91 (1984), 139-142
[3] S. B. Nadler, Jr., Contiuum Theory: An Introduction, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1992.

Antonio Peláez
Instituto de Matemáticas, UNAM,
Circuito Exterior, Ciudad Universitaria, México D.F., C.P. 04510
México.
E-mail: pelaez@matem.unam.mx
Received: 31.5.2006.

