A class of Siamese twin Menon designs

Dean Crnković ${ }^{*}$

Abstract

A\{0, \pm 1\}\)-matrix S is called a Siamese twin design sharing the entries of I, if $S=I+K-L$, where I, K, L are non-zero $\{0,1\}$-matrices and both $I+K$ and $I+L$ are incidence matrices of symmetric designs with the same parameters. Let p and $2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. We describe a construction of a Siamese twin Menon design with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$, yielding a Siamese twin Hadamard design with parameters $\left(4 p^{2}-1,2 p^{2}-1, p^{2}-1\right)$.

Key words: Hadamard matrix, symmetric design, Menon design, Siamese twin design

AMS subject classifications: 05B20, 05B05
Received February 8, 2007
Accepted June 28, 2007

1. Introduction

A symmetric (v, k, λ) design is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

1. $|\mathcal{P}|=|\mathcal{B}|=v$;
2. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P};
3. every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

The elements of the set \mathcal{P} are called points and the elements of the set \mathcal{B} are called blocks.

A Hadamard matrix of order m is an $(m \times m)$ matrix $H=\left(h_{i, j}\right), h_{i, j} \in\{-1,1\}$, satisfying $H H^{T}=H^{T} H=m I_{m}$, where I_{m} is an $(m \times m)$ identity matrix. A Hadamard matrix is regular if the row and column sums are constant. It is well known that the existence of a symmetric $\left(4 u^{2}, 2 u^{2}-u, u^{2}-u\right)$ design is equivalent to the existence of a regular Hadamard matrix of order $4 u^{2}$ (see [10, Theorem 1.4]). Such symmetric designs are called Menon designs.

A $\{0, \pm 1\}$-matrix S is called a Siamese twin design sharing the entries of I, if $S=I+K-L$, where I, K, L are non-zero $\{0,1\}$-matrices and both $I+K$ and $I+L$ are incidence matrices of symmetric designs with the same parameters. If $I+K$

[^0]and $I+L$ are incidence matrices of Menon designs, then S is called a Siamese twin Menon design. Some infinite classes of Siamese twin Menon designs obtained from Bush-type Hadamard matrices are described in [3], [4], [5] and [6]. These Siamese twin Menon designs have parameters
\[

$$
\begin{aligned}
& v=36\left(49^{m}+49^{m-1}+\cdots+49+1\right), k=21(49)^{m}, \lambda=12(49)^{m} \\
& v=100\left(121^{m}+121^{m-1}+\cdots+121+1\right), \quad k=55(121)^{m}, \lambda=30(121)^{m} \\
& v=324\left(361^{m}+361^{m-1}+\cdots+361+1\right), k=171(361)^{m}, \lambda=90(361)^{m}
\end{aligned}
$$
\]

where m is a positive integer. Construction of a series of Siamese twin designs with parameters

$$
v=4 p^{2}\left(q^{m+1}+\cdots+q+1\right), k=\left(2 p^{2}+p\right) q^{m+1}, \lambda=\left(p^{2}+p\right) q^{m+1}
$$

where $p=53208, q=106417$, and m is any positive integer, is described in [7]. In [2] the author describes a construction of Siamese twin designs with parameters $\left(4(p+1)^{2}, 2 p^{2}+3 p+1, p^{2}+p\right)$, whenever p and $2 p+3$ are prime powers and $p \equiv 3(\bmod 4)$.

Recently, the notion of Siamese twin designs have been generalized, and the concept of Siamese combinatorial objects have been introduced (see [8]). Beside Siamese twin designs, other Siamese combinatorial structures have been studied, such as Siamese colour graphs, Siamese association schemes, and Siamese Steiner designs.

Let p and $2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Then there exists a symmetric design with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ (see [1]). In this article twins of Menon designs of the designs described in [1] are constructed, which leads us to a series of Siamese twin Menon designs. Parameters of the Siamese twin designs constructed in this article do not belong to any of the known series of Siamese twin designs.

In order to make this article self-contained, in the next section we state some facts about developments of Paley difference sets and Paley partial difference sets which can be found in [1] and [2].

2. Nonzero squares in finite fields

Let p be a prime power, $p \equiv 3(\bmod 4)$ and F_{p} a field with p elements. Then a $(p \times p)$ matrix $D=\left(d_{i j}\right)$, such that

$$
d_{i j}=\left\{\begin{array}{l}
1, \text { if }(i-j) \text { is a nonzero square in } F_{p} \\
0, \text { otherwise }
\end{array}\right.
$$

is an incidence matrix of a symmetric $\left(p, \frac{p-1}{2}, \frac{p-3}{4}\right)$ design. Such a symmetric design is called a Paley design (see [9]). Let \bar{D} be an incidence matrix of a complementary symmetric design with parameters $\left(p, \frac{p+1}{2}, \frac{p+1}{4}\right)$. Since -1 is not a square in F_{p}, D is a skew-symmetric matrix. Further, D has zero diagonal, so $D+I_{p}$ and $\bar{D}-$ I_{p} are incidence matrices of symmetric designs with parameters $\left(p, \frac{p+1}{2}, \frac{p+1}{4}\right)$ and
($p, \frac{p-1}{2}, \frac{p-3}{4}$), respectively. Matrices D and \bar{D} have the following properties:

$$
\begin{gathered}
D \cdot \bar{D}^{T}=\left(\bar{D}-I_{p}\right)\left(D+I_{p}\right)^{T}=\frac{p+1}{4} J_{p}-\frac{p+1}{4} I_{p}, \\
{\left[D \mid \bar{D}-I_{p}\right] \cdot\left[\bar{D}-I_{p} \mid D\right]^{T}=\frac{p-1}{2} J_{p}-\frac{p-1}{2} I_{p},} \\
{[D \mid D] \cdot\left[D+I_{p} \mid \bar{D}-I_{p}\right]^{T}=\frac{p-1}{2} J_{p}} \\
{[\bar{D} \mid D] \cdot\left[\bar{D}-I_{p} \mid \bar{D}-I_{p}\right]^{T}=\frac{p-1}{2} J_{p}}
\end{gathered}
$$

where J_{p} is the all-one matrix of dimension $(p \times p)$.
Let $\Sigma(p)$ denote the group of all permutations of F_{p} given by

$$
x \mapsto a \sigma(x)+b,
$$

where a is a nonzero square in F_{p}, b is any element of F_{p}, and σ is an automorphism of the field $F_{p} . \Sigma(p)$ is an automorphism group of symmetric designs with incidence matrices $D, D+I_{p}, \bar{D}$ and $\bar{D}-I_{p}$ (see $[9$, p. 9]). If p is a prime, $\Sigma(p)$ is isomorphic to a semidirect product $Z_{p}: Z_{\frac{p-1}{2}}$.

Let q be a prime power, $q \equiv 1(\bmod 4)$, and $C=\left(c_{i j}\right)$ be a $(q \times q)$ matrix defined as follows:

$$
c_{i j}=\left\{\begin{array}{l}
1, \text { if }(i-j) \text { is a nonzero square in } F_{q} \\
0, \text { otherwise }
\end{array}\right.
$$

C is a symmetric matrix, since -1 is a square in F_{q}. There are as many nonzero squares as nonsquares in F_{q}, so each row of C has $\frac{q-1}{2}$ ones and $\frac{q+1}{2}$ zeros. Let $i \neq j$ and $C_{i}=\left[c_{i 1} \ldots c_{i q}\right], C_{j}=\left[c_{j 1} \ldots c_{j q}\right]$ be the $i^{t h}$ and the $j^{\text {th }}$ row of the matrix C, respectively. Then

$$
C_{i} \cdot C_{j}^{T}= \begin{cases}\frac{q-1}{4}, & \text { if } c_{i j}=c_{j i}=0, \\ \frac{q-1}{4}-1, & \text { if } c_{i j}=c_{j i}=1\end{cases}
$$

The matrix $\bar{C}-I_{q}$ has the same property. Let $i \neq j$ and $\bar{C}_{i}=\left[\bar{c}_{i 1} \ldots \bar{c}_{i q}\right], \bar{C}_{j}=$ $\left[\bar{c}_{j 1} \ldots \bar{c}_{j q}\right]$ be the $i^{\text {th }}$ and the $j^{\text {th }}$ row of the matrix \bar{C}, respectively. Then

$$
\bar{C}_{i} \cdot \bar{C}_{j}^{T}= \begin{cases}\frac{q-1}{4}, & \text { if } \bar{c}_{i j}=\bar{c}_{j i}=0, \\ \frac{q-1}{4}+1, & \text { if } \bar{c}_{i j}=\bar{c}_{j i}=1\end{cases}
$$

The matrix $C+I_{q}$ has the same property. Further,

$$
\begin{gathered}
C \cdot\left(C+I_{q}\right)^{T}=\bar{C} \cdot\left(\bar{C}-I_{q}\right)^{T}=\frac{q-1}{4} J_{q}+\frac{q-1}{4} I_{q}, \\
C \cdot\left(\bar{C}-I_{q}\right)^{T}=\frac{q-1}{4} J_{q}-\frac{q-1}{4} I_{q}, \\
\left(C+I_{q}\right) \cdot \bar{C}^{T}=\frac{q+3}{4} J_{q}-\frac{q-1}{4} I_{q},
\end{gathered}
$$

$$
\begin{aligned}
& {\left[C \mid C+I_{q}\right] \cdot\left[C \mid C+I_{q}\right]^{T}=\frac{q-1}{2} J_{q}+\frac{q+1}{2} I_{q},} \\
& {\left[\bar{C} \mid \bar{C}-I_{q}\right] \cdot\left[\bar{C} \mid \bar{C}-I_{q}\right]^{T}=\frac{q-1}{2} J_{q}+\frac{q+1}{2} I_{q},} \\
& {\left[C \mid C+I_{q}\right] \cdot\left[\bar{C} \mid \bar{C}-I_{q}\right]^{T}=\frac{q+1}{2} J_{q}-\frac{q+1}{2} I_{q} .}
\end{aligned}
$$

$\Sigma(q)$ acts as an automorphism group of incidence structures with incidence matrices $C, C+I_{q}, \bar{C}$ and $\bar{C}-I_{q}$.

For the proof of the properties of the matrices C and D listed in this section we refer the reader to [2].

3. Siamese twin Menon designs

Let $H=\left(h_{i j}\right)$ and K be $m \times n$ and $m_{1} \times n_{1}$ matrices, respectively. Their Kronecker product is an $m m_{1} \times n n_{1}$ matrix

$$
H \otimes K=\left[\begin{array}{cccc}
h_{11} K & h_{12} K & \ldots & h_{1 n} K \\
h_{21} K & h_{22} K & \ldots & h_{2 n} K \\
\vdots & \vdots & & \vdots \\
h_{m 1} K & h_{m 2} K & \ldots & h_{m n} K
\end{array}\right]
$$

Following the notation used in [1], for $v \in N$ we denote by j_{v} the all-one vector of dimension v, by 0_{v} the zero-vector of dimension v, and by $0_{v \times v}$ the zero-matrix of dimension $v \times v$.

Let p and $2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Put $q=2 p-1$. Then $q \equiv 1(\bmod 4)$. Let D, \bar{D}, C and \bar{C} be defined as above. Define a $\left(4 p^{2} \times 4 p^{2}\right)$ matrix M_{1} in the following way:

$$
M_{1}=\left[\begin{array}{c|c|c|c}
0 & 0_{q}^{T} & j_{p \cdot q}^{T} & 0_{p \cdot q}^{T} \\
\hline 0_{q} & 0_{q \times q} & \left(\bar{C}-I_{q}\right) \otimes j_{p}^{T} & \bar{C} \otimes j_{p}^{T} \\
\hline j_{p \cdot q} & C \otimes j_{p} & \left(C+I_{q}\right) \otimes D & C \otimes D \\
& & \bar{C} \otimes\left(\bar{D}-I_{p}\right) & \left(\bar{C}-I_{q}\right) \otimes \bar{D} \\
\hline 0_{p \cdot q} & \left(C+I_{q}\right) \otimes j_{p} & C \otimes\left(D+I_{p}\right) & \left(C+I_{q}\right) \otimes\left(\bar{D}-I_{p}\right) \\
& & \left.+\bar{C}-I_{q}\right) \otimes\left(\bar{D}-I_{p}\right) & \bar{C} \otimes D
\end{array}\right]
$$

The author proved in [1], using the properties of the matrices D, \bar{D}, C and \bar{C} listed in Section 2., that the matrix M_{1} is the incidence matrix of a symmetric design with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ having an automorphism group isomorphic to $\Sigma(p) \times \Sigma(2 p-1)$. In a similar way one proves that the matrix
$M_{2}=\left[\begin{array}{c|c|c|c}0 & 0_{q}^{T} & j_{p \cdot q}^{T} & 0_{p \cdot q}^{T} \\ \hline 0_{q} & 0_{q \times q} & \left(\bar{C}-I_{q}\right) \otimes j_{p}^{T} & \bar{C} \otimes j_{p}^{T} \\ \hline j_{p \cdot q} & C \otimes j_{p} & \left(C+I_{q}\right) \otimes D & C \otimes\left(\bar{D}-I_{p}\right) \\ & & \bar{C} \otimes\left(\bar{D}-I_{p}\right) & \left(\bar{C}-I_{q}\right) \otimes\left(D+I_{p}\right) \\ \hline 0_{p \cdot q} & \left(C+I_{q}\right) \otimes j_{p} & C \otimes \bar{D} & \left(C+I_{q}\right) \otimes\left(\bar{D}-I_{p}\right) \\ & & + \\ \left(\bar{C}-I_{q}\right) \otimes D & \bar{C} \otimes D\end{array}\right]$
is also the incidence matrix of a symmetric $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ design. It is easy to see that $M_{2} \cdot J_{4 p^{2}}=\left(2 p^{2}-p\right) J_{4 p^{2}}$. We have to prove that $M_{2} \cdot M_{2}^{T}=$ $\left(p^{2}-p\right) J_{4 p^{2}}+p^{2} I_{4 p^{2}}$. Using properties of the matrices D, \bar{D}, C and \bar{C} which we have menitioned before, one computes that the product of block matrices M_{2} and M_{2}^{T} is:

$$
M_{2} \cdot M_{2}^{T}=\left[\begin{array}{c|c|c|c}
p q & \left(p^{2}-p\right) j_{q}^{T} & \left(p^{2}-p\right) j_{p q}^{T} & \left(p^{2}-p\right) j_{p q}^{T} \\
\hline\left(p^{2}-p\right) j_{q} & \begin{array}{c}
\left(p^{2}-p\right) J_{q} \\
+ \\
p^{2} I_{q}
\end{array} & \left(p^{2}-p\right) J_{q \times p q} & \left(p^{2}-p\right) J_{q \times p q} \\
\hline\left(p^{2}-p\right) j_{p q} & \left(p^{2}-p\right) J_{p q \times q} & \begin{array}{c}
\left(p^{2}-p\right) J_{p q} \\
+ \\
p^{2} I_{p q}
\end{array} & \left(p^{2}-p\right) J_{p q \times p q} \\
\hline\left(p^{2}-p\right) j_{p q} & \left(p^{2}-p\right) J_{p q \times q} & \left(p^{2}-p\right) J_{p q \times p q} & \begin{array}{c}
\left(p^{2}-p\right) J_{p q} \\
+ \\
p^{2} I_{p q}
\end{array}
\end{array}\right]
$$

where $J_{m \times n}$ is the all-one matrix of dimension $m \times n$. Thus,

$$
M_{2} \cdot M_{2}^{T}=\left(p^{2}-p\right) J_{4 p^{2}}+p^{2} I_{4 p^{2}}
$$

which means that M_{2} is an incidence matrix of a symmetric design with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ having an automorphism group isomorphic to $\Sigma(p) \times \Sigma(2 p-1)$. Incidence matrices M_{1} and M_{2} share the entries of
$I=\left[\begin{array}{c|c|c|c}0 & 0_{q}^{T} & j_{p \cdot q}^{T} & 0_{p \cdot q}^{T} \\ \hline 0_{q} & 0_{q \times q} & \left(\bar{C}-I_{q}\right) \otimes j_{p}^{T} & \bar{C} \otimes j_{p}^{T} \\ \hline j_{p \cdot q} & C \otimes j_{p} & \left(C+I_{q}\right) \otimes D \\ + \\ \bar{C} \otimes\left(\bar{D}-I_{p}\right) & \left(\bar{C}-I_{q}\right) \otimes I_{p} \\ \hline 0_{p \cdot q} & \left(C+I_{q}\right) \otimes j_{p} & C \otimes I_{p} & \begin{array}{c}\left(C+I_{q}\right) \otimes\left(\bar{D}-I_{p}\right) \\ + \\ \bar{C} \otimes D\end{array}\end{array}\right]$

Thus, the following theorem holds

Theorem 1. Let p and $q=2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Further, let the matrices D, \bar{D}, C, \bar{C} and I be defined as above. Then the matrix

$$
S=\left[\begin{array}{c|c|c|c}
0 & 0_{q}^{T} & j_{p \cdot q}^{T} & 0_{p \cdot q}^{T} \\
\hline 0_{q} & 0_{q \times q} & \left(\bar{C}-I_{q}\right) \otimes j_{p}^{T} & \bar{C} \otimes j_{p}^{T} \\
\hline j_{p \cdot q} & C \otimes j_{p} & \left(C+I_{q}\right) \otimes D & C \otimes\left(D-\bar{D}+I_{p}\right) \\
\hline & & \bar{C} \otimes\left(\bar{D}-I_{p}\right) & \left(\bar{C}-I_{q}\right) \otimes(\bar{D}-D) \\
\hline 0_{p \cdot q} & \left(C+I_{q}\right) \otimes j_{p} & C \otimes\left(D+2 I_{p}-\bar{D}\right) & \left(C+I_{q}\right) \otimes\left(\bar{D}-I_{p}\right) \\
& & \left.+\bar{C}-I_{q}\right) \otimes\left(\bar{D}-I_{p}-D\right) & + \\
& & \bar{C} \otimes D
\end{array}\right]
$$

is a Siamese twin design with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ sharing the entries of I.

4. Siamese twin Hadamard designs

From each Hadamard matrix of order m with $m \equiv 0(\bmod 4)$, one can obtain a symmetric $\left(m-1, \frac{1}{2} m-1, \frac{1}{4} m-1\right)$ design, by normalizing and deleting the first row and column and changing all entries -1 to 0 (see [9]). Also, from any symmetric ($m-1, \frac{1}{2} m-1, \frac{1}{4} m-1$) design one can recover a Hadamard matrix. Symmetric designs with parameters ($m-1, \frac{1}{2} m-1, \frac{1}{4} m-1$) are called Hadamard designs.

Let M_{1} and M_{2} be the matrices from the previous section. Further, let H_{1} and H_{2} be regular Hadamard matrices corresponding to the incidence matrices M_{1} and M_{2}, respectively. By normalizing and deleting the first row and column, these Hadamard matrices lead to the following incidence matrices of Hadamard designs:

$$
N_{1}=\left[\right]
$$

$$
N_{2}=\left[\right]
$$

Hadamard designs with the incidence matrices N_{1} and N_{2} admit an automorphism group isomorphic to $\Sigma(p) \times \Sigma(2 p-1)$. Further, N_{1} and N_{2} share the entries of

$$
I_{1}=\left[\begin{array}{c|c|c}
J_{q \times q} & \left(\bar{C}-I_{q}\right) \otimes j_{p}^{T} & C \otimes j_{p}^{T} \\
\hline C \otimes j_{p} & \begin{array}{c}
C \otimes \bar{D} \\
+I_{p \cdot q}+ \\
\left(\bar{C}-I_{q}\right) \otimes\left(D+I_{p}\right)
\end{array} & \left(\bar{C}-I_{q}\right) \otimes I_{p} \\
\hline\left(\bar{C}-I_{q}\right) \otimes j_{p} & C \otimes I_{p} & \begin{array}{c}
C \otimes\left(D+I_{p}\right) \\
+I_{p \cdot q}+ \\
\left(\bar{C}-I_{q}\right) \otimes \bar{D}
\end{array}
\end{array}\right]
$$

which proves the following theorem
Theorem 2. Let p and $q=2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Further, let the matrices D, \bar{D}, C, \bar{C} and I_{1} be defined as above. Then the matrix

$$
S_{1}=\left[\right]
$$

is a Siamese twin design with parameters $\left(4 p^{2}-1,2 p^{2}-1, p^{2}-1\right)$ sharing the entries of I_{1}.

Parameters of Siamese twin designs belonging to the classes described in this paper, for $p \leq 100$, are given below.

p	$2 p-1$	$4 p^{2}$	Siamese twin Menon designs	Siamese twin Hadamard designs
3	5	36	$(36,15,6)$	$(35,17,8)$
7	13	196	$(196,91,42)$	$(195,97,48)$
19	37	1444	$(1444,703,342)$	$(1443,721,360)$
27	53	2916	$(2916,1431,702)$	$(2915,1457,728)$
31	61	3844	$(3844,1891,930)$	$(3843,1921,960)$
79	157	24964	$(24964,12403,6162)$	$(24963,12481,6240)$

Table 1. Table of parameters for $p \leq 100$

References

[1] D. Crnković, A series of regular Hadamard matrices, Des. Codes Cryptogr. 39(2006), 247-251.
[2] D. Crnković, A series of Siamese twin designs, Discrete Math., to appear.
[3] D. Crnković, D. Held, Some new Bush-type Hadamard matrices of order 100 and infinite classes of symmetric designs, J. Combin. Math. Combin. Comput. 47(2003), 155-164.
[4] Z. Janko, The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs, J. Combin. Theory Ser. A 95(2001), 360-364.
[5] Z. Janko, H. Kharaghani, V. D. Tonchev, Bush-type Hadamard matrices and symmetric designs, J. Combin. Des. 9(2001), 72-78.
[6] Z. Janko, H. Kharaghani, V. D. Tonchev, The existence of a Bush-type Hadamard matrix of order 324 and two new infinite classes of symmetric designs, Des. Codes Cryptogr. 24(2001), 225-232.
[7] F. Kamali, H. Kharaghani, G. B. Khosrovshahi, Some Bush-type Hadamard matrices, J. Statist. Plann. Inference 113(2003), 375-384.
[8] M. Klin, S. Reichard, A. Woldar, Siamese objects, and their relation to color graphs, association schemes and Steiner designs, Bull. Belg. Math. Soc. Simon Stevin 12(2005), 845-857.
[9] E. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge, 1983.
[10] W. D. Wallis, A. P. Street, J. S. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard matrices, Springer-Verlag, Berlin, 1972.

[^0]: *Department of Mathematics, Faculty of Philosophy, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia, e-mail: deanc@mapef.ffri.hr

