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On absolute matrix summability methods

H.S. OzarRsLAN* AND H.N. O&puk!

Abstract. In this paper a theorem on | A, p,, |E summability meth-
ods, which generalizes a theorem of Bor [2] on | N,py |k summability
methods, has been proved.
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1. Introduction

213

Let Y a,, be a given infinite series with the partial sums (s,), and let A = (a,,) be
a normal matrix, i.e., a lower triangular matrix of non-zero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sy,)

to As = (A, (s)), where
An(s) = Zam,sv7 n=20,1,...
v=0

The series Y ay, is said to be summable | A |, k > 1, if (see [5])

anfl | AA,(s) [F< oo,

n=1
where

AA,(s) = An(s) — An_1(s).

Let (py) be a sequence of positive numbers such that

n
Pn=vaHoo as n—oo, (Pj=p_;=0,i>1).

v=0
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The sequence-to-sequence transformation

1 n
= g 2 pese W

defines the sequence (t,) of the (N,p,) mean of the sequence (s, ), generated by
the sequence of coefficients (p,) (see [3]). The series ) ay is said to be summable
| N,pn |, k> 1, if (see [1])

00 k—1

P,
> (—) | tn —tn_1 |F< 00, (5)
“—\pn

and it is said to be summable | A, p, |k, k > 1, if (see [4])

g (5—:)“ | DA (s) < o (6)

In the special case when p, = 1 for all n, | A,p, |, summability is the same as
| A |, summability. Also if we take an, = f;—:, then | A, p, |x summability is the
same as | N, p, |x summability.

Bor [2] has proved the following theorem for | N, p,, |x summability of infinite
series.

Theorem A. Let (p,) be a sequence of positive numbers such that

P, = O(np,) as n — 0. (7)

If (X)) is a positive monotonic non-decreasing sequence such that

|)\n|Xn:O(1) as n — 00, (8)
D nX, | A%, |=0(1), (9)
n=1

o0 p_n N
> B |t I'= 0(%), (10)

where

1 n
tyn = VQy,
" n—|—1; Y

then the series Y an\, is summable | N, py |k, k > 1.
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2. The main result

The aim of this paper is to generalize Theorem A for absolute matrix summability.
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (a,,), we associate two lower semimatrices A = (@)
and A = (o) as follows:

n
Upy = § Qni, TL,”U:O,L... (11)
1=v
and
apo = oo = 400, Gny = Gny — An—1,0, N =1,2,... (12)

It may be noted that A and A are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) = i ApySy = i Any i a;
v=0 v=0 =0
= ZaiZam Zamai (13)
=0 =0

v=1

and

n n—1
AA,(s) = Upia; — g Uy 1,304
i=0

1=0
n—1
= Gpn + E (ani - anfl,i)ai
=0

n—1 n
= Qnn + § UniQy = § Qni Q. (14)
=0 i=0

Now we shall prove the following theorem.
Theorem. Let A = (any) s a positive normal matriz such that

Gno=1,n=0,1,..., (15)

an—1,v Z Any, fO’/‘ n Z v+ 17 (16)

nn = O (2—2) , (17)

Gnort = OV | Ayns |)- (18)
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If (X,,) is a positive monotonic non-decreasing sequence such that conditions (8)-
(10) of Theorem A are satisfied, then the series Y anhy, is summable | A,py |k,
E>1.

It should be noted that if we take a,, = ;—Z, then we get Theorem A. Further-
more, in this case condition (18) reduces to condition (7).

We need the following lemma for the proof of our theorem.

Lemma ([2]). Under the conditions of Theorem A, we have that

D> X | Al < o0, (19)
n=1
nX, | AN, |= O(1) as n — . (20)

3. Proof of the Theorem

Let (T},) denotes an A-transform of the series ) apA,. By (13) and (14) then we
have

AT, = z”: WO Ay -

v=0
Applying Abel’s transformation, we get that

n o~

— A
AT, =Y Grvto o,
v=1 v
n—1 ~
[N n+1_
=> A, ( e “) (v+ 1)ty + AnnAntn
—1 v n
n—1 n—1
v+1 . v4+1_
- Z Av (anv)Avtv + Z an,v—i—lAAvtv
v=1 v v=1 v
n—1 ~
a Avg1t n+1
+ Z n,v—i—lv v+1by + ann)\ntn
v=1

=T, (1) + Tn(2) + T,,(3) + T (4), say.
Since
| T (1) 4 T (2)+ Tn(3)+ Tp(4) [F< 4 (| To(1) P4 T (2) |4+ T (3) |F+ | Tu(4) |¥)

to complete the proof of the Theorem, it is sufficient to show that

oo P k-1

Z (—n) | T (r) |F < 00, forr=1,2,3,4.
Pn

n=1
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Applying Holder’s inequality with indices k& and k', where k > 1 and % + k—l/ =1
we have that

m+1 k—1 m+1 k=1 /n—1 k
3 (%) ESOIESY (ﬂ) (Z | Ay (@no) [| Ao [| to |>
n=2 n = v=1
k—1 /n—1
=0(1) > &> (va(am)IIAv 1] £ |’“>
= v=1

)

Since

Av (anv) = Qnpy — An,u+1
= QUpy — anfl,v - an,v+1 + anfl,v+l

= Apy — Qn—1,v, (21)

by using (15) and (16), we get that

n—1 n—1
Z | Av(anv) |: Z(anfl,v - anv) =1-1+ Apn = Apn- (22)
v=0 v=0

Hence we get

m—+1 P k—1 m
3 (—) Ta0) = 0) S [ a1 A 118 [F
v=1

2 DPn
m+1 k—1
P, "
S (—) aE ] (i) |

n=v-+1 Dn
m m+1
v=1 n=v+1
By (21), we have that
m+1 m+1 m m+1
Z | Avanv | Z (an—l,v - anv) Z Apy — Z AnyAyy — am+1,v S Ayy-
n=v+1 n=v+1 n=uv n=v-+1

Thus, we obtain

| Ao H ty |k Qyy

NE

b (2 mw = o)

n=2 v

1

3

= O(l) | Ay || (2% |k

Pu
1 Py

S
Il



218 H.S. OzARsLAN AND H. N. O&pik

—1
DPr Do
=0(1) Y _A( Z—|t|+0 |Am|Z—|t|’“

=0(1) |A)\ | X, +O)| A | Xoro = O0(1) as m — o0,

v

Il
-

by virtue of the hypothesis of the Theorem and Lemma. By using (18) and (22),
we have that

b (&)kfn@) fom'S (

o \Pn

n—1 k
) (Z EL\n,v+1 | A)\v || ty |>
v=1
m+1 P k—1 /n—1 k

n=2 v=1
m+1 P k—1 /n—1
=0(1) Y (p—” (Z(v | A, |ty |F] Ayl |>
n=2 n v=1
n—1 k-1
x (Z | Ayline |>
v=1
m m+1
=0(1) Z(U | AN, |)k_1(v | AN |) | to |k Z | Avny |
v=1 n=v+1
=01) ) vl AN [ty [* av,
v=1

m—1 v

Pr
=0(1) Av [ A, |) FHT |k
v=1 r=1""

Pv
+ ()mlAAmIZ—It i
v=1
m—1

=0(1) A | ANy |) | Xo +OQ)m | AN, | X,

v=1
m—1 m—
=0(1) ) vX, | A%\, | +0(1 Z | Ayt | X,
v=1 v=1
+O0(L)m | AN, | X

=0(1) asm — oo,

by virtue of the hypothesis of the Theorem and Lemma.
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Again using Holder’s inequality, as in T,,(1), we have that

mil o p kel i mtl A Gt | Aot | '
7;2 (p_n> | T.(3) |* = O(1) Z ( ) ;an,zH»lT | to |
m—+1 k—1 /n—1 k
n v=1

n=2

m—+1 Pn k—1 /n—1 N X A
= O(].) Z p— Z | Ay H )\v+1 | |tv |

n=2 n v=1

o \Pn
m m—+1
]‘)Z | )‘U+1 |k| tU |k Z | Avanv |
v=1 n=v-+1
]-)Zavv | )\v+l |k71| )‘v+l H 2% |k
v=1
— P k_
=0(1) F|)\v+1|\tv| =0(1) asm — oco.
v=1""Y

Finally, again as in T,,(1), we get

m

k—1
> (32) 1mwr

Pn

=0()

[ Al ta [F=0(1) as m — oo,

uMs uMs

( ) aE | ] [P
Pn
P

by virtue of the hypothesis of the Theorem and Lemma. Therefore, we have that

m P k—1
Z (—") |Tn(r)k=O(1), as m — oo, forr=1,234.
Pn

This completes the proof of the Theorem.
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