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Triangles from products of sides with cevians

Zvonko Čerin
∗

Abstract.We consider the problem of determining for which central
points X of the triangle ABC the products of lengths of sides and cevians
of X will be sides of a triangle. We shall prove that twenty-seven out
of hundred and one central points from the Kimberling’s list have this
property. The algebraic method of proof for this result is also used to
obtain some new examples of three segments that are sides of a triangle
and are built from elements of a given triangle.

Key words: triangle, cevian, triangular, central point, isogonal con-
jugate

Sažetak. Trokuti iz produkata stranica s čevijanima. Ovaj
članak proučava problem traženja sredǐsnjih točaka trokuta ABC takvih
da su produkti duljina stranica s odgovarajućim njezinim čevijanima
stranice nekog trokuta. Pokazano je da čak dvadeset i sedam od sto
i jedne sredǐsnje točke iz Kimberlingovog popisa ima to svojstvo. Dokazi
su potpuno algebarski i zbog kompliciranih izraza najlakše se provode uz
pomoć računala.

Ključne riječi: trokut, čevijan, sredǐsnja točka trokuta, duljina,
trokutasta trojka, izogonalni konjugat
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1. Introduction

One of the basic problems in triangle geometry is to decide when three given seg-
ments are sides of a triangle. The opening chapter of the book Recent Advances
in Geometric Inequalities by Mitrinović, Pečarić, and Volenec [6] gives an extensive
survey of results on this question.

The present article is looking for ways of associating to a triangle ABC a point
X of the plane such that the products a|AXa|, b|BXb|, and c|CXc| of the lengths of
segments AXa, BXb, and CXc with the lengths a, b, c of the corresponding sides of
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ABC are always sides of a triangle, where Xa, Xb, and Xc are the intersections of
lines AX , BX , and CX with the sidelines BC, CA, and AB, respectively. Recall
[3] that the segments AXa, BXb, and CXc are called the cevians of the point X .

The orthocenter H is an easy example of such a point X . Indeed, the segments
AHa, BHb, and CHc are the altitudes so that the products a |AHa|, b |BHb|, and
c |CHc| being all equal to twice the area of ABC are sides of an equilateral triangle.

Since H is just one of central points of a triangle ABC listed in Table 1 of [4],
we can state a problem that we completely answer in this paper.

Problem 1. For what natural numbers i less than 102 will the central point Xi

of the triangle ABC from the Kimberling’s list have the property that the products
a |AXia|, b |BXib|, and c |CXic| of the sides with the cevians of Xi are sides of a
triangle?

We shall get the solution of this problem with an entirely algebraic proof in an
analytic approach. Our main result is the following theorem.

Theorem 1. From 101 centers Xi of the triangle ABC from the Kimberling’s
Table 1, only the values 2, 4, 6, 7, 8, 10, 19, 25, 27, 28, 31, 32, 34, 39, 42, 56,
57, 58, 65, 69, 75, 76, 78, 81, 82, 83, and 89 of the index i have the property that
the products a|AXia|, b|BXib|, and c|CXic| are sides of a triangle regardless of the
shape of ABC.

Perhaps, some readers will be disappointed with our method which we outline
below. They can rescue the old-fashioned geometry with their own more traditional
proofs. However, they should give the author freedom to prove these (we hope) new
results in any correct way including the present that could be easily followed with
personal computers with very modest hardware requirements (Pentium 90Mhz with
32MB memory extension) and with the already standard software package Maple
V (version 4). We also beg pardon to those wishing more details with the simple
excuse that writing them all down would make this paper too long to be taken for
publication in any journal.

With the power of computers at our disposal, we can now consider and open up
new areas of research in geometry of triangles (see [1] and [7]). This paper is simply
an example of such a computer aided discovery in mathematics (see [2] and [5]).

The author is thankful to Professors G. M. Gianella and V. Volenec for help
during the work on this paper.

2. Preliminaries

For an expression f , let [f ] denote a triple (f, ϕ(f), ψ(f)), where ϕ(f) and ψ(f)
are cyclic permutations of f . For example, if f = sinA and g = b+ c, then

[f ] = (sinA, sinB, sinC) and [g] = (b+ c, c+ a, a+ b).

Let us call a triple [a] of real numbers triangular provided a, b, and c are sides of a
triangle. The letter Ω is reserved for the set of all triangular triples.

Let T denote a function that maps each triple [a] of real numbers to a number

2 a2 b2 + 2 a2 c2 + 2 b2 c2 − a4 − b4 − c4.
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Since T ([a]) = (a+ b + c)(b+ c− a)(a− b+ c)(a+ b− c), it is clear that for a triple
[a] of positive real numbers [a] ∈ Ω if and only if T ( [a] ) > 0. Let Ti be a short nota-
tion for T ([a |AXia|]), where Xi is the i-th central point of ABC and i = 1, . . . , 101.

3. Discussion of the general problem

Some readers might be tempted in thinking that the general problem in the second
paragraph of the introduction has an easy solution so that our task of identifying
only twenty-seven strange points in the plane of the triangle ABC which have the
required property might appear insignificant. In this section we shall argue that
the general problem is extremely complicated and that even with computers it is
impossible to describe precisely its solution so that our modest theorem is the only
information and positive result available.

For a moment, assume that the vertices of ABC are at the complex numbers u,
v, and w on the unit circle in the Gauss complex plane. Let X be a point whose
affix is a complex number x and let y denote the complex conjugate x̄ of x. Then
the product of the lenghts of the side BC and the cevian AXa is

|BC| · |AXa| =

√
(v − w)2 (w − u)2 (u− v)2 (u− x) (u y − 1)

u v w (u x+ u v w y − u2 − v w)2
.

Of course, the other two products |CA| · |BXb| and |AB| · |CXc| are the cyclic
permutations of |BC| · |AXa|. The triangle test has the form

T ([ |BC| · |AXa| ]) =
−(v − w)4 (w − u)4 (u − v)4 (

∑10
i=0(

∑κi

j=0 λi j y
j)xi)

(u v w)2 p4
a p

4
b p

4
c

,

where the numbers κi are given in the Table 1, the coefficients λi j are polynomials
in u, v, and w, and pa = u x+ u v w y − u2 − v w is the equation of the parallel
through A to BC, while pb and pc are its cyclic permutations.

i 0 1 2 3 4 5 6 7 8 9 10
κi 10 10 10 9 8 7 6 5 4 3 2

Table 1.

When completely expanded the above polynomial in x and y has 4365 terms so
that it is difficult for printing (it would take several pages!). This polynomial is
the equation of the curve of order 12 which is the boundary for the region where
T ([ |BC| · |AXa| ]) > 0. The following figure shows the triangle ABC, its anticom-
plementary triangle AaBaCa (whose sidelines must be excluded), and this curve.
Not much could be said about its properties because of the enormous size of its
equation. In particular, it is not true that all of the interior of ABC is in the above
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region as the figure might suggest.

Figure 1. ABC, AaBaCa (dashed), and the curve T ([ |BC| · |AXa| ]) = 0.

4. Placement of ABC

We shall position the triangle ABC in the following fashion with respect to the
rectangular coordinate system in order to simplify our calculations. The vertex
A is the origin with coordinates (0, 0), the vertex B is on the x-axis and has
coordinates (r h, 0), and the vertex C has coordinates (g q r/k, 2 f g r/k), where
h = f + g, k = f g − 1, p = f2 + 1, q = f2 − 1, s = g2 + 1, t = g2 − 1, u = f4 + 1,
and v = g4 + 1. The three parameters r, f , and g are the inradius and the cotan-
gents of half of angles at vertices A and B. Without loss of generality, we can
assume that both f and g are larger than 1 (i. e., that angles A and B are acute).

Nice features of this placement are that all central points from Table 1 in [4]
have rational functions in f , g, and r as coordinates and that we can easily switch
from f , g, and r to side lengths a, b, and c and back with substitutions

a =
r f s

k
, b =

r g p

k
, c = r h,

f =
(b+ c)2 − a2√

T ([a])
, g =

(a+ c)2 − b2√
T ([a])

, r =

√
T ([a])

2 (a+ b+ c)
.

Moreover, since we use the Cartesian coordinate system, computation of distances
of points and all other formulas and techniques of analytic geometry are available
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and well-known to the widest audience. A price to pay for these conveniences is
that symmetry has been lost.

The third advantage of the above position of the base triangle is that we can
easily find coordinates of a point with given trilinears. More precisely, if a point
P with coordinates x and y has projections Pa, Pb, and Pc onto the sidelines BC,
CA, and AB and λ = PPa/PPb and µ = PPb/PPc, then

x =
g h (p µ+ q) r

f s λµ+ g p µ+ h k
, y =

2 f g h r
f s λµ+ g p µ+ h k

.

These formulas will greatly simplify our exposition because there will be no need
to give explicitly coordinates of points but only its first trilinear coordinate. For
example, we write X6[a] to indicate that the symmedian point X6 has trilinears
equal to a : b : c. Then we use the above formulas with λ = a/b and µ = b/c to get
the coordinates

(
(f q t+ 2 g u) g h r

2 (f2 v + f g q s+ g2 u)
,

f g h2 k r

f2 v + f g q s+ g2 u
).

of X6 in our coordinate system.

5. The elimination of 74 central points

An easy task is to eliminate 74 central points Xi by exhibiting a triangle for which
Ti ≤ 0. In fact, only eight triangles all with r = 1 and

t1 = {f = 106, g = 10}, t2 = {f =
106 + 1

106
, g = 10}, t3 = {f = 2, g = 20},

t4 = {f = 2, g = 7}, t5 = {f = 2 +
√

3, g =
√

3}, t6 = {f = 103, g =
102
100

},
t7 = {f = 30, g = 300}, t8 = {f = 3, g = 16},

will suffice. Indeed, for j = 1, . . . , 8, Ti ≤ 0 or Ti is not well-defined for the triangle
tj and i ∈ Ij , where

I0 = { 1, . . . , 101 }, I2 = { 3, 22, 23, 26, 40, 52, 64, 68, 73, 77 },
I3 = { 24, 48, 50, 74, 93, 95, 97, 98, 101}, I4 = { 51, 67, 70, 94 },

I5 = { 20, 30, 53, 96 }, I6 = { 5, 59, 84 }, I7 = { 41, 88 }, I8 = { 54 },
I9 = {2, 4, 6, 7, 8, 10, 19, 25, 27, 28, 31, 32, 34, 39, 42, 56, 57, 58,

65, 69, 75, 76, 78, 81, 82, 83, 89 } ,
and I1 = I0 − I2 − I3 − I4 − I5 − I6 − I7 − I8 − I9.

The above statement is simple to state but the reader should be aware that there
is a lot of work behind it because we must know coordinates of each central point
from the Kimberling’s list. Under the assumption that one believes that the above
claim is true, we can proceed to show that for indices in the set I9 the triangle test
Ti is positive regardless of the shape of ABC.
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6. X2[
1
a
] - the Centroid

X2 is the intersection of medians which join vertices with midpoints of opposite
sides. Its coordinates are (r (k (h+ f) + f − g)/(3 k), 2 r f g/(3 k)). Hence,

T2 =
4 r8 f2 g2 h2 (f2 v + f g q t+ g2 u)2

k6

is always positive.

7. X4[ sec A ] - the orthocenter

X4 is the intersection of altitudes which are perpendiculars through vertices to
opposite sides. Hence,

T4 =
48 r8 f4 g4 h4

k4

is always positive.

8. X7[ sec
2 A

2
] - the Gergonne point

X7 is the concurrence point of lines AAp, BBp, and CCp, where Ap, Bp, and Cp

are projections of the incenter I onto the sidelines BC, CA, and AB, respectively.
One can easily find that

T7 =
16 f2 g2 h2 r8 (f2 g2 + f2 + g2 + f g)2

k4

is always positive.

9. X8[ csc
2 A

2
] - the Nagel point

X8 is the intersection of lines AAea, BBeb, and CCec, where Aea, Beb, and Cec are
projections of excenters Ae, Be, and Ce onto sidelines BC, CA, and AB, respec-
tively. One can easily find

T8 =
16 f4 g4 h4 r8 S8

k6
,

where S8 = (k2 − k + 1)h2 − 3 k3. Let us use the inequality h
2 ≥ √

k + 1 between
the arithmetic and geometric means of positive numbers f and g to write h = 2

√
k + 1

+η for some η ≥ 0. When we substitute this value for h into S8 it becomes(
k2 − k + 1

)
η2 + 4

√
1 + k

(
k2 − k + 1

)
η + 4 + k3.

Since the polynomial k2 − k + 1 is always positive we conclude that S8 and therefore
also T8 is always positive.
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10. The central point X69[ cos A csc2 A ]

X69 is the isogonal conjugate of the central point X25 – the center of homothety of
the orthic triangle AoBoCo and the tangential triangle AtBtCt of a given triangle
ABC. It can also be described as the intersection of the line joining the Gergonne
point X7 with the Nagel point X8 and the line joining the centroid X2 with the
Grebe-Lemoine point X6.

In the same way as above we obtain

T69 =
16 f2 g2 h2 r8 S69

k6
,

where S69 =
(
k2 + k + 1

)2
h4 − k2 (1 + k)

(
2 k2 + 11 k + 11

)
h2 + k4 (1 + k)2.

In order to see that S69 > 0, we shall use again the inequality h
2 ≥ √

k + 1 be-
tween the arithmetic and geometric means of positive numbers f and g to represent
the sum h as 2

√
k + 1 + η for some η ≥ 0. When we put this value for h into S69

this expression becomes

(
k2 + k + 1

)2
η4 +8

√
1 + k

(
k2 + k + 1

)2
η3

+ (1 + k)
(
22 k4 + 37 k3 + 61 k2 + 48 k + 24

)
η2

+4 (1 + k)3/2 (
6 k4 + 5 k3 + 13 k2 + 16 k + 8

)
η

+
(
9 k4 − 12 k3 + 4 k2 + 32 k + 16

)
(1 + k)2 .

The first three terms of the first parenthesis of the trailing coefficient of this poly-
nomial in η is (3 k − 2)2 k2 so that S69 and therefore also T69 is obviously always
positive.

11. X75[
1
a2 ] - the isogonal conjugate of the 2nd power point

X75 is the isogonal conjugate of the 2nd Power Point X31[ a2 ]. It can also be
described as the intersection of the line joining the Gergonne point X7 with the
Nagel point X8 and the line joining the Spieker center X10 with the 3rd Brocard
point X76. It follows that

T75 =
16 f2 g2 h2 p2 s2 r8 S75

k6 (k + 2)4 (p+ 2 k)4 (s+ 2 k)4
,

where S75 =
∑5

i=0 ki h
2i kλi with λi = 10, 8, 6, 4, 2, 0, for i = 0, . . . , 5 and ki is a

(product of) polynomial(s) in the variable k represented as sequences (a0, . . . , an) of
their integer coefficients as follows: k0 (2, 1)2 (1, 1)2 k1 −2 (1, 1) (86, 232, 248, 133,

36, 4) k2 (296, 1128, 1830, 1648, 888, 280, 45, 2) k3 −2 (204, 1204, 3246, 5060,

4895, 2990, 1131, 245, 24) k4 (148, 972, 2837, 4698, 4815, 3152, 1293, 294, 20, −4)

k5 2 (−1, 1)2 (1, 1)2 (1, 6, 6, 2) (2, 6, 6, 1).
It is not clear how one can argue that the polynomial S75 is always positive.

But, the following miraculous method will accomplish this goal.
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Write S75 in terms of f and g. We get a polynomial U75 with 138 terms. Since
both f and g are larger than 1, we shall replace them with 1 + f ′ and 1 + g′, where
new variables f ′ and g′ are positive. This substitution will give us a new polynomial
V75 with 386 terms only 17 of which have negative coefficients. If all coefficients were
positive, we would be done. In order to get rid of these 17 troublesome terms, we
must perform two more substitutions that reflect cases f ′ ≥ g′ and g′ ≥ f ′. Hence,
if we replace f ′ with g′ + δ for δ ≥ 0, from V75 we shall get a polynomial P75 in g′

and δ with 437 terms and all coefficients positive. Similarly, if we substitute g′ with
f ′ + ε for ε ≥ 0, from V75 we shall get a polynomial Q75 in f ′ and ε also with 437
terms and all coefficients positive. This concludes our proof that T75 > 0.

12. X10[
b+c
a

] - the Spieker center

X10 is the incenter of the medial triangle AmBmCm whose vertices are midpoints
of sides. It follows that

T10 =
16 f4 g4 h4 r8 S10

k6 (3 k + 2)4 (3 p+ 2 k)4 (3 s+ 2 k)4
,

where S10 =
∑6

i=0 ki h
2i kλi with λi = 12, 10, 8, 4, 2, 0, 0 for i = 0, . . . , 6 and ki is a

(product of) polynomial(s) in the variable k represented as sequences (a0, . . . , an) of
their integer coefficients as follows: k0 −(3, 4) (16, 48, 39, 4) k1 −2 (880, 4432,8363,

7138, 2569, 260) k2 −(22544,128368,289059,324460, 187350,50956,4669) k3

−4 (−1024, −10240, −15408,72560, 298837,463178, 370601,157528,32085, 2148)
k4 −(24576,229376,111 5984, 3380912, 6499947,7911104,5999916,2709672,

648142, 55344, −2448) k5 (36864, 319488,1212448,2682464,3958282, 4310828,

3704374,2479304,1171308,332880, 41760) k6 (−1, 1)2 (3, 4) (4, 3) (12, 31, 17) ( 17,
31, 12).

The method of proof that T10 > 0 is the same as the above proof for T75 > 0.
Polynomials U10, V10, and P10, are somewhat larger having 171, 405, and 479 terms.
This time, only eight terms of V10 have negative coefficients.

13. The proofs for the other points

The proofs that Tj > 0 for j = 6, 19, 25, 27, 28, 31, 32, 34, 39, 42, 56, 57, 58, 65,
76, 78, 81, 82, 83, and 89 use the same method and follow the same steps as the
above proofs for j = 75 and 10. The only difference is that polynomials Sj , Uj , Vj ,
Pj , and Qj are much larger so that in some cases even with our efficient notation
it is practically impossible to write them down. The above table gives information
on their sizes.
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j Uj Vj No. neg. coeff. Vj Pj (and Qj)
6 441 1471 3 1677
19 805 1947 25 2471
25 1081 2638 47 3299
27 654 1348 9 1809
28 905 1947 32 2471
31 937 2843 58 3245
32 2025 6931 125 7917
34 865 1897 43 2441
39 2025 6931 31 7917
42 929 2843 23 3245
56 397 1011 31 1217
57 282 604 17 771
58 541 1471 32 1677
65 271 763 13 895
76 729 2458 63 2805
78 542 1036 1 1521
81 378 980 8 1149
82 1169 3311 22 3837
83 949 2898 18 3359
89 390 984 12 1151

Table 2.

14. The new triangular triples

We can now compute the lengths of cevians of central points Xj for j = 2, 8, 7,
69, 75, 10, 6, 25, 19, 31, 32, 39, 42, 56, 57, 58, 76, 65, 81, and 83 and apply the
transformation formulas to get the following corollary.

Corollary 1. If the triple [a] is triangular, then the triples[
a

√
2 (b2 + c2) − a2

]
,

[√
2 (b− c)2 + a (b+ c− a)

]
,

[ √
(3 b2 + 3 c2 − 2 b c) a2 − 2 (b+ c) (b− c)2 a− a4

]
,

[ √
2 (b2 + c2) a2 + 3 (b2 − c2)2 − a4

]
,

⎡
⎣ a

√
(b2 − b c+ c2) (b+ c)2 − a2 b c

b+ c

⎤
⎦,

[ √
(2 b2 + 2 c2 − b c) a3 + (c+ b) (b2 − b c+ c2) a2 − a5

2 a+ b+ c

]
,

[ √
2 b2 + 2 c2 − a2

b2 + c2

]
,

[
a

√
2 a2 (b2 + c2) + 3 (b2 − c2)2 − a4

a2 (b2 + c2) + (b2 − c2)2

]
,
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⎡
⎣

√
a5 (b+ c)2 + a3 (b2 − c2)2 − a (b+ c)2 (b− c)4 − a7

(b+ c)
(
a2 + (b− c)2

)
⎤
⎦ ,

[ √
(b+ c)2 (b2 − b c+ c2) − a2 b c

(b+ c) (b2 − b c+ c2)

]
,

[ √
(b2 + c2) (b4 + c4) − a2 b2 c2

b4 + c4

]
,

[ √
a4 (b2 + c2) + a2 (b4 + 5 b2 c2 + c4) + 2 b2 c2 (b2 + c2) − a6

a2 (b2 + c2) + 2 b2 c2

]
,

[ √
a2 (2 b2 − b c+ 2 c2) + a (b+ c)3 − a3 (b + c) − a4 + b c (b+ c)2

a (b2 + c2) + b c (b+ c)

]
,

[ √
a (a (b+ c) − a2 + 2 (b− c)2)
a (b2 + c2) + (b+ c) (b− c)2

]
,

[ √
a (2 a2 (b2 + c2) − a4 − (b− c)4)

a (b+ c) + (b − c)2

]
,

[ √
a (2 b2 − b c+ 2 c2) − a3 + b3 + c3

a (b2 + c2) + b3 + c3

]
,

[
a

√
(b2 + c2) (b4 + c4) − a2 b2 c2

b2 + c2

]
,

[ √
a2 (2 b2 − b c+ 2 c2) + a b c (b+ c) − a4 − (b2 + c2) (b − c)4)

a (b+ c) + b2 + c2

]
,

⎡
⎣

√
a (a2 (b2 + b c+ c2) + a (b+ c)3 + 2 b c (b2 + c2) − a3 (b + c) − a4)

a (b+ c) + b2 + c2

⎤
⎦,

and [
a

√
a4 (b2 + c2) + a2 (b4 + 5 b2 c2 + c4) + 2 b2 c2 (b2 + c2) − a6

2 a2 + b2 + c2

]
,

are also triangular.
Corollary 2. Products of sides with corresponding medians, symmedians, Ger-

gonne cevians, Nagel cevians, and Spieker cevians are sides of a triangle.
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