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Abstract: Two indices of molecular complexity, the Patency Index (2017) and the Spanning-Tree Density (2003), are applied to three homolo-
gous series of condensed benzenoid hydrocarbons. Calculation of the Spanning-Tree Density requires finding the number of spanning trees in 
a given molecular graph, which may be achieved by applying the Cycle Theorem (2004) or, in the case of planar graphs in a planar embedding, 
the theorem of Gutman, Mallion & Essam (1983). To compute the Patency Index, it is necessary to count the number of ladders in the embedded 
molecular graph. This is done by means of the Dual Cycle Theorem (2017). In the latter, a ladder is conceived of as the edge-set relating to faces 
as the edge-set of a spanning tree relates to vertices. For a planar graph in a planar embedding, the number of ladders is equal to the number 
of spanning trees. The three homologous series investigated here are the Linear [n]-Acenes (An), the [n]-Phenacenes (Phn) and the [n]-Helicenes 
(Hn) (the latter of which are geometrically non-planar but graph-theoretically planar). For these three series, the Spanning-Tree Densities and 
the Patency Indices may be obtained in closed form and so their behaviour as n → ∞ is easily examined. Though neither index distinguishes 
between individual members of the three series (An, Phn and Hn) for a specified value of n, this does not preclude the possibility that, within 
each series, either index may exhibit correlation with physical or chemical data. 
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INTRODUCTION 
OW INTRICATE[1] a molecular structure is has, in re-
cent years, frequently been called the complexity of 

the molecule; for reviews, see, for example, Ref. [1] (and 
the Refs. [1–7,11–13,19,22,24–26] that are cited in Ref. 
[1]), Ref. [2] (and Refs. [11–24] cited there) and see also 
Refs. [3–6] of the present paper. This appellation is perhaps 
unfortunate because much of this work involves the appli-
cation of Graph Theory and the term ‘complexity’ was al-
ready long used by graph-theorists (e.g., Ref. [7]) to denote 
the number of spanning trees in a graph. (Recall that a 
spanning tree — necessarily of a one-component graph G 
— is a connected acyclic sub-graph that contains all  

the vertices of G[8].) Deliberately avoiding the word 
‘complexity’ — and introducing instead the word ‘intricacy’ 
— Trinajstić and one of the present authors (RBM) 
defined[1] what they called the Spanning-Tree Density of a 
molecular graph (STD(G)) as the ratio 
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where t(G) is the number of spanning trees in the molecular 
graph (G), which is taken to have e edges and v vertices. 
(eC(v–1), often also written as 
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is the number of ways in which (v–1) distinct objects can be 
selected from e unlike objects.) STD(G) thus effectively rep-
resents the probability that, if precisely (v–1) edges are re-
moved at random from the graph, that process results in 
the creation of a spanning tree of the graph. t(G) may be 
computed in many ways (for reviews see, for example, Refs. 
[9–14]) but the present authors[2] have frequently applied 
what Kirby et al. called the Cycle Theorem[15,16] for suitably 
embedded general one-component molecular-graphs or 
the theorem of Gutman, Mallion & Essam[17] for the special 
case of planar graphs in a planar embedding. In an attempt 
to relate STD(G) for a molecular graph to the ‘complexity’ 
of that molecule, Mallion & Trinajstić[1] considered the re-
ciprocal of the Spanning-Tree Density and postulated that 
the greater the ‘Reciprocal Spanning-tree Density’ of a 
given molecular graph, the more intricate (in the sense of  
being ‘complicated’) that molecular structure should be 
considered to be. 
 Very recently, Kirby and the present authors have of-
fered (in this journal)[2] a Dual of the Cycle Theorem, for a 
graph embedded on a closed surface, in which the entities 
counted are not spanning trees[8] but, rather, what might 
be regarded as ‘duals’ of the edge-sets of spanning-trees. 
These we define in Ref. [2] as ladders. An index for a molec-
ular graph G, called by Kirby et al.[2] the Patency Index (P(G)) 
of G, was there defined as follows: 
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where l(G) is the number of ladders[2] in G, which has e 
edges, v vertices and f faces. The method of calculating l(G) 
is described in Ref. [2]. It was shown there[2] that, for a pla-
nar graph on a ‘planar’ embedding (i.e., one not using ge-
neric circuits, defined in Ref. [15], even if the surface is 
capable of sustaining such), 

 P(G) = STD(G). (3) 

 In this note we apply these two indices to some 
control sets of structures which constitute well-known 
homologous series of condensed benzenoid hydrocarb-
ons[18,19] — in the first instance, we consider the Linear [n]-
Acenes — and we show that, for these series, it is possible 
to solve for P(G) and STD(G) in closed form and we are, 
thereby, able to examine the limiting behaviour of these 
two indices as n → ∞. We label the molecular graphs of this 
first series of conjugated systems, the Linear Acenes, as An 
(with A1 standing for Benzene, A2 for Naphthalene, etc.) 
Figure 1 shows A4 (Tetracene) embedded on the surface of 
a sphere (denoted by the red circle — please see Ref. [2] for 
details of the implications of this notation.) Consideration 
is then extended to two analogous homologous series (the 
[n]-Phenacenes and the [n]-Helicenes — illustrated later),  

as well as to some more-compact tessellations of n hexagons 
that constitute the molecular graphs of other condensed, 
benzenoid hydrocarbons.  
 

ALGEBRAICAL ARGUMENTS TO 
OBTAIN EXPRESSIONS FOR STD(An) 

AND P(An) IN CLOSED FORM 
The sub-determinant within the face-to-face incidence-ma-
trix[2,20] for A4 (say, f(4)), obtained by retaining only the en-
tries relating to the hexagonal faces — or, alternatively, the 
corresponding determinant obtained by an application of 
the theorem of Gutman et al.[17] — is 
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and equals the number of spanning trees (and also the 
number of ladders[2]) in A4. It is not difficult to see that  

 = − − −( ) 6 ( 1) ( 2)f n f n f n , (4) 

and also that f(1) = 6 and f(2) = 35. The recurrence relation 
(4), with these initial conditions, can be solved in the usual 
way to give 
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APPROXIMATIONS AND 
NUMERICAL CALCULATIONS 

As f(n) is an integer the expression in equation (5) can be 
replaced by 

 f(n) = the integral part of 
++ 1(3 8)

32

n

 , 

 

Figure 1. An embedded on the surface of a sphere (with, 
here, n = 4). The red circle has the significance that was 
explained in Ref. [2] — effectively, it makes this representa-
tion of the sphere topologically faithful. 
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i.e.,  
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As a check on this we may note that  
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and, using equation (6), we find that  

 
+

= =
4(3 8)

(3) the integral part of   [204.00015] = 204.
32

f  

 It is noteworthy that, even for a small value of n, the 
decimal part of  
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is very small. If the Patency Index for An is evaluated from 
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then sufficient accuracy for ( )nP A is obtainable simply by 
using 

 
1(3 8)

32
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for f(n), without the need for the second (subtractive) term 
in equation (5), or for the process of extracting the ‘inte-
gral-part-of’, as is done in equation (6), above. Table 1 
shows (correct to 4 decimal places) values of An, so calcu-
lated, for several n in the range 1 20n≤ ≤ . It will be seen 
from the Table that, by about n = 17, P(An) is effectively 
zero. (In a chemical context, however, this is in fact irrele-
vant because stable Linear Acenes do not exist beyond n = 
5 (Pentacene)[21,22].) It will be observed that P(An) is roughly 
halved as one goes along the series — that is, each time n 
is increased by 1. Between n = 1 and about n = 15, P(An) thus 
can be said approximately to exhibit an exponential decay, 
as is illustrated in Figure 2. 
 

EXTENSION TO OTHER  
HOMOLOGOUS BENZENOID  

SERIES  
Such an exponential decrease is not observed in the case of 
some physical or chemical properties,[23] such as melting 
points and boiling points, in the first five (chemically stable) 
members of the Linear-Acene series, An. (Inverse) correlation 
with such properties might possibly have been hoped for if 
the indices of Patency and Spanning-Tree Density are in some 
way quantifying ‘molecular complexity’. However, this lack of 
correlation in the Linear Acene series just referred to is, 
perhaps, only to be expected when it is realised that 
successive annellation to form the Linear-Acene series (An) is 
not the only way in which benzenoid rings may be linearly 
tessellated: in addition to the [n]-Acenes, there are also 

 

Figure 2. Plot of P(An) (along the ordinate) vs. n (along the 
abscissa) for Linear Acenes A1–A20. 
 

Table 1. Approximate values of P(An) (to 4 decimal places), 
calculated from equation (7), for Linear Acenes A1–A20 

n P(An) (to 4 decimal places) 

1 1.0000 

2 0.6364 

3 0.3643 

4 0.1987 

5 0.1054 

6 0.0549 

7 0.0282 

8 0.0144 

9 0.0073 

10 0.0036 

11 0.0018 

12 0.0009 

13 0.0005 

14 0.0002 

15 0.0001 

16 0.0001 

17 0.0000 

18 0.0000 

19 0.0000 

20 0.0000 
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(a) the [n]-Phenacene series (Phn) — n > 2 — in which 
successive addition of benzenoid rings is effected in 
a zig-zag fashion to yield the structures of Phenan-
threne ([3]-Phenacene), Chrysene ([4]-Phenacene), 
Picene ([5]-Phenacene), etc., as in Figure 3, and  

(b) the [n]-Helicene series (Hn) — n > 3 — in which rings 
overlap physically in space and, helped also by their 
attached protons, crowd each other out so that the 
molecule itself is geometrically (though not graph-
theoretically) non-planar.[24–28] This results in struc-
tures such as [4]-Helicene (also known as 3,4 Benzo-
phenanthrene and Tetrahelicene), [5]-Helicene 
(Pentahelicene), [6]-Helicene (Hexahelicene), etc. 
Some of these are illustrated in Figure 4. 

 However, the graphs that are the inner-duals†,[17,29] 
arising in the spanning-tree counting theorem of Gutman  

et al.[17] for the molecular graphs of the series An, Phn, and Hn  

(when embedded on a sphere or a plane) are in fact the same 
(for the identical values of n) — these inner duals are shown 
in Figure 5 for n = 4, 5 and 6 — and, in addition, because the 
number of edges and vertices in the molecular graphs An, Phn 
and Hn are likewise all the same (for a given value of n), it thus 
follows that (again, for a specified value of n) 

 ( ) ( ) ( )n n nSTD A STD Ph STD H= = . 

 Furthermore, because of the result presented in Ref. 
[2] ensuring that P(G) = STD(G) for (graph-theoretically) 
planar G in a planar embedding, and, in addition, because the 
number of edges and faces (rings) in the molecular graphs An, 
Phn and Hn are again all the same (for a given value of n), it 
thus also follows that (once more, for a specified value of n): 

 ( ) ( ) ( )n n nP A P Ph P H= = . 

                   

Figure 3. The molecular graphs of the first three members of the [n]-Phenacene series (Phn, with n = 3, 4 and 5). 
 

                         

Figure 4. The molecular graphs of the first three members of the [n]-Helicene series (Hn, with n = 4, 5 and 6). 
 

                                         

                               (a)                                                               (b)                                                                          (c) 

Figure 5. The inner duals [17, 29] of the molecular graphs (when embedded on a sphere or a plane) of (a) A4 , Ph4 and H4; (b) A5, 
Ph5 and H5; (c) A6 , Ph6 and H6. 
 

† It should be noted in passing that although (for a common value of n) the graphs that are the inner duals of the three series An, Phn and Hn 
(when the molecular graphs of these homologous series are embedded on a sphere or a plane) are identical, what Balaban & Harary[30] called 
the ‘characteristic graphs’ of An, Phn and Hn are different. This is because[17] the so called ‘characteristic graphs’ of benzenoid systems, as 
defined by Balaban & Harary in Ref. [30], are in fact not actually graphs at all, because they contain geometrical information, in addition to 
information about the connectivity of the benzenoid rings — which is solely what is conveyed by the inner duals of the molecular graphs of 
these three series, An, Phn and Hn (illustrated in Figure 5 for n = 4, 5 and 6). 
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APPLICATION TO OTHER TYPES  
OF CONDENSED BENZENOID  

SYSTEMS 
Because of the identity of the inner duals[17,29] for corre-
sponding members of the three series , , and n n nA Ph H  (that 
is, members of these series for a specified value of n),  
and because, furthermore, analogous members of

,  , and n n nA Ph H contain exactly the same number of edges, 
vertices and rings, the Patency Index[2] and the Index of 
Spanning-Tree Density[1] are not able to distinguish be-
tween corresponding members of the three series. This is 
clearly a shortcoming and it is possible that the molecular 
graphs of non-linear benzenoids, variously condensed — 
such as Pyrene, Triphenylene and Coronene (Figure 6) — 
would be more fruitful benzenoid systems for exploring the 
utility of the novel index P(G) and the longer-established 
one, STD(G), though it would be more difficult to obtain re-
sults for them in closed form.  
 The three homologues series , , and n n nA Ph H — 
with identical inner duals[17] (see Figure 5), when the mo-
lecular graphs of the series are embedded on a sphere or in 
a plane — do, though, have the advantage that, as shown 
in this note, their indices whose reciprocals are claimed to 
reflect the intricacy [1,2] of the individual members of these 
three series — namely, STD(G) and P(G) — may be ex-
pressed in closed form whereas, for more randomly con-
densed systems such as the four-ringed benzenoids Pyrene 
and Triphenylene (left-hand and middle of Figure 6, respec-
tively) or even symmetrically condensed systems such as 
the seven-ringed Coronene (right-hand of Figure 6), each 
structure would have to be considered individually. For ex-
ample, for the above three systems, 

 l(Pyrene) = 

6 1 0 1
1 6 1 1

det
0 1 6 1
1 1 1 6

− − 
 − − − 
 − −
  − − − 

= 1092,  

so that 

 P(Pyrene) = 
19

4

1092
0.2817

C
≈ , 

and 

 l(Triphenylene) = 

6 1 1 1
1 6 0 0

det
1 0 6 0
1 0 0 6

− − − 
 − 
 −
  − 

= 1188, 

so that 

 P(Triphenylene) = 
21

4

1188
0.1985,

C
≈  

indicating, according to the criteria established in Refs. [1] 
& [2], that the less-condensed Tripheylene is more intricate 
than the more-condensed Pyrene, which likewise com-
prises four benzenoid rings. Furthermore: 

l(Coronene) = det 

6 1 0 0 0 1 1
1 6 1 0 0 0 1

0 1 6 1 0 0 1
0 0 1 6 1 0 1
0 0 0 1 6 1 1
1 0 0 0 1 6 1
1 1 1 1 1 1 6

− − − 
 − − − 
 − − −
 

− − − 
 − − − 
− − − 

 − − − − − − 

 = 176400, 

so that 

 P(Coronene) = 
30

7

176400
0.0866

C
≈ , 

indicating that, of the three structures in Figure 6, symmet-
rical, seven-ringed Coronene has the greatest intricacy.  
 

CONCLUDING REMARKS 
As already pointed out, the advantage of considering any or 
all of the three homologous series studied here is that, be-
cause both their Spanning-Tree Densities and Patency Indi-
ces may be expressed in closed form, we have been able to 

                                                  

Figure 6. The molecular graphs of Pyrene (left), Triphenylene (middle) and Coronene (right). 
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show that both indices tend to zero (indicating increasing 
intricacy) as the number of benzenoid rings in each of the 
three series becomes infinitely large. It is clear that, for a 
given n, the value of both the Patency Index and of the In-
dex of Spanning-Tree Density is the same for An, Phn and Hn. 
It thus follows that the value of neither index is likely to be 
directly related to some physical or chemical datum for 
those series of compounds. This, however, does not pre-
clude the possibility that, within each series, either index 
may exhibit correlation with some such datum. This is a 
matter for practical investigation. 
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