
Mathematical Communications 3(1998), 67-81 67

Gaussian block algorithms for solving
path problems

Robert Manger∗

Abstract. Path problems are a family of optimization and enu-
meration problems that reduce to determination or evaluation of paths
in a directed graph. In this paper we give a convenient algebraic de-
scription of block algorithms for solving path problems. We also develop
block versions of two Gaussian algorithms, which are counterparts of the
conventional Jordan and escalator method respectively. The correctness
of the two considered block algorithms is discussed, and their complexity
is analyzed. A parallel implementation of the block Jordan algorithm on
a transputer network is presented, and the obtained experimental results
are listed.

Key words: path problems, path algebras, block algorithms, Gaus-
sian elimination, parallel computing

Sažetak.Blok-algoritmi Gaussovog tipa za rješavanje prob-
lema putova. Problemi putova su porodica optimizacijskih i enumeraci-
jskih problema, koji se svode na odred̄ivanje ili vrednovanje putova u us-
mjerenom grafu. U ovom radu dajemo algebarski opis blok-algoritama
za rješavanje problema putova. Takod̄er razvijamo blok-verzije dvaju al-
goritama Gaussovog tipa: riječ je o analogonima standardne Jordanove
odnosno eskalator-metode. Raspravlja se o korektnosti i složenosti dvaju
razmatranih blok-algoritama. Opisuje se paralelna implementacija blok-
Jordanovog algoritma na mreži transputera, te se navode rezultati do-
biveni eksperimentiranjem.

Ključne riječi: problemi putova, algebre putova, blok-algoritmi,
Gaussova eliminacija, paralelno računanje
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1. Introduction

Path problems are frequently encountered in operations research. These problems
reduce to determination or evaluation of paths in a directed graph. The best known
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example is the shortest path problem, stated as follows: in a graph whose arcs
are given lengths determine a shortest path between two given nodes. A similar
optimization problem is to find a longest path, or alternatively a most reliable path,
or a path with maximum capacity. There are also some enumeration problems, e.g.
checking the existence of a path between two given nodes, listing all possible paths,
etc.

Each particular path problem can be treated separately, and solved by dedicated
algorithms. However, a more economic approach is to establish a general framework
for the whole family of problems, and to use general algorithms. The latter can be
achieved by introducing a suitable abstract algebraic structure. To solve a particular
type of the problem, one should apply a general algorithm to an appropriate concrete
instance of the structure.

Few variants of the algebraic approach for solving path problems have been
proposed [9]. Our favorite variant from [1] uses a structure whose instances are
called “path algebras”. Algorithms for solving path problems are developed as
counterparts of the well known methods for inverting matrices. More precisely, the
derived algorithms are interpreted as procedures working on matrices whose entries
belong to a path algebra.

The aim of this paper is to develop Gaussian block algorithms for solving path
problems. These are the algorithms that are based on Gaussian elimination and that
work on block matrices rather than on ordinary (scalar) matrices. We are interested
in general algorithms, which are described within a unifying framework and are
applicable to many different types of path problems. Our motivation for considering
block algorithms is parallel computing: namely, switching to blocks can drastically
reduce otherwise prohibitive communication costs on a parallel computing system.

The paper is organized as follows. Section 2 reviews the theory from [1] and
explains how path algebras are used to generally formulate and solve path prob-
lems. Section 3 extends the theory from [1] in order to cover block matrices and
block algorithms. Section 4 introduces two Gaussian block algorithms for solving
path problems - both methods are presented within the extended algebraic frame-
work and are prepared for parallelization. Section 5 considers the correctness of the
two algorithms, and analyzes their computational and communication complexity.
Section 6 describes an actual parallel implementation of one of the algorithms on a
transputer network, and lists the obtained testing results. The final Section 7 gives
concluding remarks.

2. Path algebras and path problems

We start our review of the chosen approach to path problems by defining a suitable
algebraic structure. A path algebra is a set P equipped with two binary operations,
∨ and ◦, which are called join and multiplication, respectively. The two operations
have the following properties: ∨ is idempotent, commutative and associative; ◦ is
associative, left-distributive and right-distributive over ∨; there exist a zero element
φ and a unit element e such that (for any a) φ ∨ a = a, φ ◦ a = φ = a ◦ φ,
e ◦ a = a = a ◦ e.

One concrete example of a path algebra will be given in the second part of this
section, and two more in Sections 5 and 6, respectively. Additional examples can
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be found in [1, 4]. When evaluating algebraic expressions over a path algebra P ,
we will always assume that the operation ◦ takes the precedence over ∨, unless
otherwise regulated by parentheses. Also, we will sometimes interpret P as an
ordered structure. Namely, a natural ordering ¹ of P can be defined as follows.
For a, b ∈ P , a ¹ b if a ∨ b = b.

Next we define the notion of stability and closure. Let a be any element of a path
algebra P . We consider the powers: a0 = e, a1 = a, a2 = a ◦ a, . . . , ak = ak−1 ◦ a
(k = 1, 2 . . .). The element a is said to be stable if for some non-negative integer q,∨q

k=0 ak =
∨q+1

k=0 ak. The expression a∗ =
∨q

k=0 ak is then called the strong closure
of a, and the expression â = a∗ ◦ a = a ◦ a∗ =

∨q+1
k=1 ak is called the weak closure of

a. It is easy to check that a∗ = (e ∨ a)r if r ≥ q. This enables efficient evaluation
of a∗ and â respectively, by successive squaring of (e ∨ a).

We further consider matrices over a path algebra P . Let Mn(P ) denote the
set of all n × n matrices whose entries belong to P . We define the join and the
product of matrices, by analogy with the sum and the product in ordinary linear
algebra. Thus for A,B ∈ Mn(P ), A = [aij ], B = [bij ], we put A ∨ B = [aij ∨ bij ],
A ◦ B = [

∨n
k=1 aik ◦ bkj ]. It is easy to check that Mn(P ) with these operations is

itself a path algebra. The zero element of Mn(P ) is the matrix Φ whose all entries
are φ. The unit element of Mn(P ) is the matrix E whose diagonal entries are e and
all other entries are φ. Since Mn(P ) is itself a path algebra, one can speak about
stable matrices and their strong or weak closure.

Now we are ready to establish a correspondence between matrices and labeled
graphs. Let P be a path algebra. It is obvious that to any matrix A = [aij ] of
Mn(P ) there corresponds a unique directed graph G with the following properties.
The nodes of G are 1, 2, . . . , n; if aij = φ, then the arc (i, j) of G does not exist,
else (i, j) exists and is labeled with aij . Conversely, it is clear that to any graph G
of the described form corresponds a unique matrix A ∈ Mn(P ), which is called the
adjacency matrix of G.

By using the above equivalence between labeled graphs and matrices, it has been
demonstrated [1, 4, 9] that various path problems can be reduced to computing the
strong or weak closure of a (stable) adjacency matrix. Thereby, to each particular
problem there corresponds a different (suitably constructed) path algebra P .
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Figure 1. A directed graph G with given arc lengths

To illustrate these ideas, let us consider the graph G in Figure 1 whose arcs are
given “lengths”. Suppose that we want to solve the shortest distance problem, i.e.
we want to determine the length of a shortest path connecting any pair of nodes.
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Then the corresponding adjacency matrix A and its closure matrices A∗ and Â,
respectively are given by:

A =

266664
∞ ∞ 3 ∞ ∞
−1 ∞ ∞ 6 ∞

8 4 ∞ ∞ 1
∞ −2 5 ∞ ∞
∞ ∞ 7 2 ∞

377775 , A∗=

266664
0 4 3 6 4

−1 0 2 5 3
0 1 0 3 1

−3 −2 0 0 1
−1 0 2 2 0

377775 , bA =

266664
3 4 3 6 4

−1 3 2 5 3
0 1 3 3 1

−3 −2 0 3 1
−1 0 2 2 3

377775 .

The path algebra P involved here is the set of real numbers augmented by the
symbol ∞, with the standard min as ∨ and the standard + as ◦. It is easy to see
that the solution of the shortest distance problem is determined by any of the two
closure matrices. Namely, the (i, j)-th entry of both A∗ and Â is the length of the
shortest path between node i and node j. The difference between the two solutions
is that A∗ assumes the existence of trivial zero-length paths that connect any node
to itself.

In order to solve path problems, we consider algorithms that evaluate (some
or all) elements of A∗ or Â, where A ∈ Mn(P ) is a stable matrix, and P is an
unspecified (usually arbitrary) path algebra. Thus, our algorithms in principle solve
an “abstract” path problem, which is a generalization of various concrete problems.
The already mentioned idea to evaluate a closure by successive squaring is not very
efficient when applied to matrices. Better algorithms are obtained as counterparts
of the traditional methods for solving linear systems, e.g. Gauss, Jordan, Jacobi,
Gauss-Seidel, . . . .

Finally, we introduce an important class of graphs and matrices. Let G be a
directed graph whose arcs are labeled with elements of a path algebra P . Then G
is said to be absorptive if the product of its arc labels along any circular path is
¹ e. The matrix corresponding to an absorptive graph is also called absorptive.
Meaningful path problems usually lead to absorptive matrices. This is for instance
true for the problem of Figure 1: namely, in that particular example ¹ is equivalent
to the conventional ≥, e is equal to 0, and G contains no cycle with negative length.
It can be shown that an absorptive matrix is always stable.

3. Block matrices and block algorithms

In this section we develop a theoretical framework, which enables a convenient
description of block algorithms for solving path problems. Instead of treating block
algorithms as modifications of scalar algorithms, we interpret them as applications
of scalar algorithms in a modified path algebra. This approach is appealing since
it enables both scalar and block algorithms to be considered together. General
results concerning path problems and algorithms can directly be applied to block
algorithms.

Let P be a path algebra. Then for positive integers n̄ and l we can consider the
matrix algebras Ml(P ) and Mn̄(Ml(P )). The matrices belonging to Mn̄(Ml(P ))
will be called block matrices, and accordingly, the elements of Ml(P ) will be called
blocks.

Let us choose a positive integer l. We further define a function Πl, which
transforms scalar matrices into block matrices with (l × l)-sized blocks. The rule
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to construct Πl(A) for a given A ∈ Mn(P ) is as follows. First, A is extended by
zero-rows and columns on its right and lower edge (if necessary) so that it becomes
a matrix of the size dn/lel×dn/lel. Then, the extended A is divided into (l×l)-sized
blocks. Each block is interpreted as an element of Ml(P ), and the whole extended
A is viewed as a matrix belonging to Mdn/le(Ml(P )).

As an example illustrating our rule, let us consider again the 5×5 scalar matrix
A, which has been used in the previous section. This matrix can be mapped onto
a 3× 3 block matrix Π2(A) with 2× 2 blocks:

A=




∞ ∞ 3 ∞ ∞
−1 ∞ ∞ 6 ∞

8 4 ∞ ∞ 1
∞ −2 5 ∞ ∞
∞ ∞ 7 2 ∞




, Π2(A)=




[ ∞ ∞
−1 ∞

] [
3 ∞
∞ 6

] [ ∞ ∞
∞ ∞

]

[
8 4
∞ −2

] [ ∞ ∞
5 ∞

] [
1 ∞
∞ ∞

]

[ ∞ ∞
∞ ∞

] [
7 2
∞ ∞

] [ ∞ ∞
∞ ∞

]




.

Remember that the path algebra involved in this example is the one associated with
the shortest distance problem.

The next two propositions list some properties of the function Πl. Proposition 1
first shows that Πl is in fact a homomorphism, which embeds the algebra Mn(P )
into the algebra Mdn/le(Ml(P )). Proposition 2 then determines the relationship
between Πl and the matrix closure.

Proposition 1. The function Πl is injective. Also, for A,B ∈ Mn(P ) it holds:

Πl(A ∨B) = Πl(A) ∨Πl(B), (1)
Πl(A ◦B) = Πl(A) ◦Πl(B). (2)

Proof. The injectivity is obvious, i.e. if the (i, j)-th entries in A and B differ,
then they will form different entries in Πl(A) and Πl(B), respectively. To establish
(1), it is sufficient to show that (extended A∨B) = (extended A) ∨ (extended B).
The latter is obvious when taking into account the definition of the matrix join and
the fact that φ ∨ φ = φ. To establish (2), it suffices to show that (extended A◦B)
= (extended A) ◦ (extended B), and this is easily checked by using the definition
of the matrix product and the fact that φ ◦ x = x ◦ φ = φ for all x ∈ P . 2

Proposition 2. A matrix A∈Mn(P ) is stable if and only if Πl(A)∈Mdn/le(Ml(P ))
is stable. The closures of these matrices then satisfy the following equations:

Πl(A∗) = (Πl(A))∗, (3)

Πl(Â) = ̂(Πl(A)). (4)

Proof. If A is stable, then by the definition of stability there exists a non-
negative integer q such that

∨q
k=0 Ak =

∨q+1
k=0 Ak. Accordingly,

Πl(
q∨

k=0

Ak) = Πl(
q+1∨

k=0

Ak).
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By using (1) and (2), we can transform the above equation into

q∨

k=0

(Πl(A))k =
q+1∨

k=0

(Πl(A))k,

hence Πl(A) is stable. The whole reasoning can also be followed backwards, since
Πl is injective by Proposition 1. As a by-product, the equation (3) is established.
The equation (4) is checked similarly. 2

Now we are ready to present a general idea how to use already known algorithms
for solving path problems in a new way. We have seen that a problem in an algebra P
reduces to evaluating the strong or weak closure of a given stable matrix A ∈ Mn(P ).
We act as follows.

• For a chosen l, by applying the function Πl, we map the initial matrix A ∈
Mn(P ) onto the matrix Πl(A) ∈ Mdn/le(Ml(P )).

• By using one of the already known algorithms in the algebra Ml(P ), we find
the strong or weak closure of the matrix Πl(A). This can be done since Πl(A)
is stable by Proposition 2.

• Through the inverse function (Πl)−1 we put the closure of Πl(A) “back” into
the algebra Mn(P ), thereby obtaining the corresponding closure of A. This
also can be done since Πl is injective by Proposition 1, and due to Proposition 2
the “returned” matrix is indeed the closure of the initial matrix A.

The procedure is concisely represented by the “commutative” diagram in Figure 2.

the initial
path problem

in the
algebra P

the solution
of the initial
path problem

the “mapped”
path problem

in the
algebra Ml(P )

the solution
of the mapped
path problem

-

-

?

6

algorithm

algorithm

Πl (Πl)−1

Figure 2. Transforming an algorithm into a block algorithm.

The described method for solving a path problem can be regarded as a newly
defined block algorithm. In fact, a number of block algorithms can be constructed.
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Namely, the basic scalar algorithm can be chosen in many ways. Also, various rules
for choosing the block size l are possible, e.g. l being a constant, or a specified
parameter, or a computed value depending on the matrix size n, . . . , etc.

4. Two Gaussian block algorithms

In this section we develop block versions of two already known Gaussian algorithms
for solving path problems. According to the ideas from the previous section, these
block versions are obtained by using the original (scalar) algorithms in a modified
(block) path algebra. Gaussian algorithms for solving path problems are generally
based on operations that are analogous to the traditional Gaussian eliminations.
The particular two scalar algorithms considered in this section are counterparts of
the conventional Jordan and escalator method, respectively [8].

The Jordan algorithm for solving path problems has been described in [1]. It is a
general path-finding method, whose specialized instances are also known as Floyd’s,
Warshall’s and Murchland’s algorithm, respectively [6]. One possible variant is
given by the following pseudo-code.

Algorithm 1
(∗ P is any path algebra. For a given stable matrix A ∈ Mn(P ), the weak closure Â
is evaluated. Input: the original matrix A = [aij ]. Output: the final transformed
matrix [aij ]. ∗)

for k := 1 to n do
begin

c := (akk)∗ ;
for all j such that 1 ≤ j ≤ n do

akj := c ◦ akj ;
for all i such that i 6= k, 1 ≤ i ≤ n do

aik := aik ◦ c ;
for all (i, j) such that i 6= k, j 6= k, 1 ≤ i, j ≤ n do

aij := aij ∨ aik◦akj

end

Algorithm1 has a simple graph-theoretic interpretation. Namely, in its k-th step
the algorithm partially solves the given problem, by considering paths that connect
any pair of nodes but use only first k nodes as possible intermediate nodes. Each step
adjusts and improves the solution, by introducing one more feasible intermediate
node.

Now, there follows the block version of a slightly modified Algorithm1. Thanks
to the modification, the same scalar algorithm can also be used to compute the
closure of a block within each step of the block algorithm.

Algorithm 2
(∗ P is any path algebra. For a given stable matrix A ∈ Mn(P ), the weak closure Â
is evaluated. Input: the original matrix A = [aij ] and the block size l. Output: the
final transformed matrix [aij ]. ∗)
(∗ Let us denote with Aij the block of A consisting of rows (i− 1)l + 1, (i− 1)l + 2,
. . . , min{il, n} and columns (j − 1)l + 1, (j − 1)l + 2, . . . , min{jl, n}. Let us denote
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with Eij the corresponding block of the unit matrix E ∈ Mn(P ). ∗)
for k := 1 to dn/le do

begin
Akk := (̂Akk) (∗ by using Algorithm1 ∗) ;
for all j such that j 6= k, 1 ≤ j ≤ dn/le do (∗ in parallel ∗)

Akj := (Ekk ∨Akk) ◦Akj ;
for all i such that i 6= k, 1 ≤ i ≤ dn/le do (∗ in parallel ∗)

Aik := Aik ◦ (Ekk ∨Akk) ;
for all (i, j) such that i 6= k, j 6= k, 1 ≤ i, j ≤ dn/le do (∗ in parallel ∗)

Aij := Aij ∨Aik◦Akj

end

The escalator algorithm for solving path problems has been outlined in [1]. This
is again a general method, whose one particular instance is also known as Dantzig’s
algorithm. The solution is again produced in n steps. However, in its k-th step the
method operates only on the submatrix consisting of the first k rows and columns
of the original matrix. The details are specified by the following pseudo-code.

Algorithm 3
(∗ P is any path algebra. For a given stable matrix A ∈ Mn(P ), the strong closure
C = A∗ is evaluated. Input: the original matrix A = [aij ]. Output: the closure
matrix C = [cij ]. ∗)

c11 := (a11)∗ ;
for k := 2 to n do

begin
ckk := (

∨k−1
i,j=1 aki◦cij◦ajk ∨ akk)∗ ;

for all i such that 1 ≤ i ≤ k − 1 do
cik := (

∨k−1
j=1 cij◦ajk) ◦ ckk ;

for all j such that 1 ≤ j ≤ k − 1 do
ckj := ckk ◦ (

∨k−1
i=1 aki◦cij) ;

for all (i, j) such that 1 ≤ i, j ≤ k − 1 do
cij := cij ∨ cik◦ckj

end

Algorithm3 has also a plausible graph-theoretic interpretation. Namely, the k-
th step of the algorithm solves the given problem on the subgraph consisting of the
first k nodes. Each step extends the subgraph by one more node, and adjusts the
solution accordingly.

Next there follows the block version of a slightly improved Algorithm3. Some
common subexpressions are now computed only once, and for this purpose the
auxiliary matrix B has been introduced. The improved scalar algorithm is also
used as a subroutine to compute the closure of a block.

Algorithm 4
(∗ P is any path algebra. For a given stable matrix A ∈ Mn(P ), the strong closure
C = A∗ is evaluated. B ∈ Mn(P ) is an auxiliary matrix. Input: the original matrix
A = [aij ] and the block size l. Output: the closure matrix C = [cij ]. ∗)
(∗ Let us denote with Aij the block of A consisting of rows (i− 1)l + 1, (i− 1)l + 2,
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. . . , min{il, n} and columns (j − 1)l + 1, (j − 1)l + 2, . . . , min{jl, n}. Let us denote
with Bij and Cij the corresponding blocks of B and C respectively. ∗)

C11 := (A11)∗ (∗ by using Algorithm3 ∗) ;
for k := 2 to dn/le do

begin
for all i such that 1 ≤ i ≤ k − 1 do (∗ in parallel ∗)

Bik :=
∨k−1

j=1 Cij◦Ajk ;
for all j such that 1 ≤ j ≤ k − 1 do (∗ in parallel ∗)

Bkj :=
∨k−1

i=1 Aki◦Cij ;
Ckk := (

∨k−1
i=1 Aki◦Bik ∨Akk)∗ (∗ by using Algorithm3 ∗) ;

for all i such that 1 ≤ i ≤ k − 1 do (∗ in parallel ∗)
Cik := Bik ◦ Ckk ;

for all j such that 1 ≤ j ≤ k − 1 do (∗ in parallel ∗)
Ckj := Ckk ◦Bkj ;

for all (i, j) such that 1 ≤ i, j ≤ k − 1 do (∗ in parallel ∗)
Cij := Cij ∨ Cik◦Ckj

end

Remember that we are interested in parallel implementations of block algo-
rithms. The comments within previous pseudo-codes indicate which for loops can
be scheduled for parallel execution. Even more, the tasks from the first and second
parallel loop in Algorithm2 can be put together into one parallel loop. Similarly,
the first and second and respectively the third and fourth loop in Algorithm4 can
be merged together.

5. Analysis of correctness and complexity

The first part of this section is concerned with correctness issues. Up to this point,
it has not been quite clear whether our block algorithms are correct. Moreover,
there has been no guarantee that the proposed methods can even be conducted -
for instance we are not sure whether the blocks in Algorithm2 and 4 whose closures
are required are indeed stable. Fortunately, correctness can be proved for most of
the important path problems, as stated by the following theorem.

Theorem 1. Suppose that the matrix A is absorptive. Then both Algorithms 2 and
4 can be conducted. Also, Algorithm2 correctly evaluates the weak closure Â, and
Algorithm 4 correctly evaluates the strong closure A∗.

Proof. The correctness of the sequential Jordan algorithm for an absorptive
matrix A has been proved in [1]. The proof is general enough to directly cover Al-
gorithm2 in the sequential case. On the other hand, parallel computing cannot spoil
correctness, since all inner for loops in Algorithm2 consist of mutually independent
tasks. The claim for Algorithm4 can be proved by direct algebraic reasoning. An-
other way is to compare the escalator method with the Jordan method. By using
graph-theoretic arguments, it can be shown that the values computed by both al-
gorithms are essentially the same, although the order of operations is different. So
the correctness of Algorithm4 follows from the correctness of Algorithm2. 2
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The matrix A being absorptive is a sufficient condition that guarantees the
correctness of our Gaussian methods. Still, the question remains whether it is
possible to construct a path algebra P and a stable matrix A over P so that the
considered algorithms do not work properly. This question has remained open in
[1]. Now, we give an example showing that the answer to the above question is
positive. Or, differently speaking, Algorithms 1-4 are not generally correct .

Let P be the set of real numbers augmented by the symbols −∞ and ∞. Let us
use the standard min and + as ∨ and ◦ respectively, with (−∞)+∞ = ∞. Then it
is easy to check that P with ∨ and ◦ constitutes a path algebra. Consider the graph
G shown in Figure 3, whose arcs are labeled with elements of P . The corresponding
matrix A ∈ M2(P ) and its powers A2, A3 are given by

A =
[ −1 −∞
−∞ −1

]
, A2 =

[ −∞ −∞
−∞ −∞

]
, A3 =

[ −∞ −∞
−∞ −∞

]
= A2.

A is obviously stable in M2(P ) since
∨2

k=0 Ak =
∨3

k=0 Ak. On the other hand,
(−1) is not stable in P , since min{0,−1,−2,−3, . . .} does not exist. It follows that
Algorithms 1 and 3 (or Algorithms 2 and 4 with the block size l = 1) are not able to
work with A. Namely, the algorithms remain blocked, effortlessly trying to evaluate
(−1)∗. Note that “pivoting”, i.e. renumbering graph nodes would not help since
both diagonal entries in A are (−1).
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Figure 3. An example showing that algorithms 1-4 are not generally correct

The remaining part of this section is devoted to complexity analysis of our block
methods. We introduce two measures of complexity, which roughly correspond to
the effort spent on computing and communicating respectively. First, let us consider
a single algebraic expression. The computational complexity is then defined as
the number of scalar operations that occur in the expression (i.e. ∨, ◦). Namely,
each of these operations should be executed by a processor. The communication
complexity is further defined as the number of input/output scalar values that are
used or produced by the expression. Namely, these values should be read from or
written to a main memory, while intermediate values could temporarily be kept
in registers. Finally, the computational (communication) complexity of a whole
algorithm is obtained by summing the appropriate complexities of all expressions
evaluated by that algorithm.

In our complexity analysis, we will again restrict to path problems defined by
absorptive matrices. Namely, more general situations are intractable since there is,
for instance, no bound on the number of scalar operations needed to evaluate one
scalar closure.

Theorem 2. Suppose that the matrix A is absorptive. Then the computational
complexity of Algorithm2 is O(n3), and the communication complexity is O(n3/l).
The same estimates are also valid for Algorithm4.
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Proof. We assume that the block size l divides the matrix size n (otherwise
let us switch to the next divisible n - this could increase the complexity only by
a constant factor). We also take into account that, thanks to absorptiveness, each
of the required scalar closures within the two algorithms must be equal to the unit
element e (this fact is not quite obvious but it is visible from the full correctness
proof in [1]). With these assumptions and facts in mind, and by counting scalar
operations and data transfers within the algorithms, we obtain the following esti-
mates. Algorithm2: the computational complexity is 2n(n2 − n − l + 1), and the
communication complexity is 4n3

l −2n2. Algorithm4: the computational complexity
is 2n(n2 − n − l + 1), and the communication complexity is 8n3

3l + n2 − 5ln
3 . The

claimed orders of magnitude follow from these expressions. It must also be noted
that l lies between 1 and n. 2

The presented estimates give us an idea how switching to block algorithms
influences complexity. Namely, the scalar Algorithms 1 and 3 are only special cases
of the corresponding block Algorithms 2 and 4 respectively. Thus our Theorem2 is
also applicable to Algorithm1 and 3 respectively. By comparing the same estimate
for l = 1 and for l > 1 we see that introduction of blocks reduces the communication
complexity. Moreover, the communication complexity becomes smaller as the block
size increases. For instance, if we choose l proportional to n, then switching to
blocks decreases the communication complexity by an order of magnitude. At the
same time, the computational complexity stays virtually the same.

6. Implementation on a transputer network

In this section we describe a parallel implementation of Algorithm2 only. Namely,
among the two considered block methods, the chosen algorithm seems to be better
suited for parallel computing. More precisely, Algorithm2 requires the same amount
of work in each iteration of its main loop - this enables uniform load distribution
among the available processors during the whole process. On the other hand, Algo-
rithm4 would not be able to employ many processors initially, but it would require
more and more processors at later stages.

Our experimental program has been developed using the Par.C compiler [7],
on the MicroWay Quadputer 2 expansion board [3] attached to a standard PC. In
accordance with the specification of Algorithm2, most of the code has been written
as to work with an abstract (unspecified) path algebra. The definition of the algebra
has been isolated in a separate module (i.e. an abstract data type). By changing
that module and by recompilation, one can make the same program solve various
types of path problems.

The Quadputer 2 board is a network consisting of four INMOS T800 processors,
so-called transputers [3]. Each pair of transputers is directly connected by a bi-
directional communication link. In addition, one of the transputers, called the
root , is connected through an interface to the PC. Each transputer has its private
memory, but there is no common memory. Still, the whole network can emulate a
tightly coupled multiprocessor with three processors, as illustrated in Figure 4.
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Figure 4. Emulating a multiprocessor by a transputer network

In accordance with the above assignment of roles to transputers, our program
consists of two executable tasks. The first task is a common memory server and
it runs on the root. The second task is a client , which performs computations
using data from the common memory. Three copies of the client task run on the
three remaining transputers. The operations involving the common memory are
realized by message passing between a client and the server. Concurrent access to
the common memory is controlled by semaphores. The server also measures the
performance time of the whole computation. As input data, the program takes:
the block size l, the number of active working processors m (≤ 3), the size n of the
matrix A, and the matrix A itself. As output, the program prints the weak closure
Â and the performance time.

The program was tested on various examples of path problems, expressed in
different path algebras. Among other things, testing enabled to monitor how the
block size l influences the performance time for a chosen matrix A (with a size
n) and a chosen number of processors m. It was observed that as l increases, the
performance time initially drops and then again rises. This behaviour can easily be
explained. The initial drop of performance time is due to the fact that bigger blocks
imply smaller communication costs. The final rise of performance time occurs when
the blocks become too big, so that there are too few parallel tasks left to employ the
available processors efficiently. It was observed that the optimal value of l depends
not only on n and m but also on the path algebra involved. More precisely, it
depends on the ratio of the respective times needed for one communication and one
computational operation in that algebra.
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l m = 1 m = 2 m = 3
1 9419391 5474994 4707749
2 2198283 1340681 1035446
5 809658 487116 322293

10 583206 338706 252459
15 527140 288687 210563
20 492105 278502 226408
25 475470 283857 203025
30 475555 274698 228114
35 460006 266304 267667
40 460413 280428 248433
45 461315 303171 301598
50 443426 350053 365601

100 456764 463416 471884

Table 1. Performance time, first example

Table 1 shows the performance time for a matrix A of size n = 100, with the
number of processors m = 1, 2 or 3. The involved path algebra P is the Boolean
algebra, which corresponds to the path existence problem, and which consists of
the values 0 and 1 with the operations max and min as ∨ and ◦, respectively. The
time is expressed in transputer clock ticks. We see that, indeed, for a fixed m and
with l increasing, the performance time initially drops and then again rises. Small
discrepancies from this general trend can be explained by two factors. The first is
the influence of divisibility of the integers l, m, n. The second factor is occasional
improvement gained by a kind of “cache” memory that has been installed in the
program.

In the example of Table 1, the average time to transfer an element of P from one
transputer to another is 2.925, and a single computational operation (i.e. ∨ or ◦)
with elements of P takes 0.2 on average. As we see, the ratio of the respective times
required for one communication and one computational operation is approximately
15 : 1. Therefore, the optimal performance is attained with a considerably big
block. E.g. for m = 3, the optimal l is 25. Note that when l = 25, the matrix
A becomes a 4 × 4 block matrix; with this number of blocks it is still possible to
employ three working processors quite efficiently. By further increasing l, we soon
obtain a 3 × 3 block matrix, and then the processors cannot be evenly loaded any
more.

Table 2 presents the performance time for an example which is almost the same
as the one of Table 1. The only difference is that the execution of computational
operations is artificially prolongued, so that the time ratio between a communication
and a computational operation is changed to 1 : 4 approximately. The optimal l
decreases accordingly, e.g. for m = 3 it drops to 10.
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l m = 1 m = 2 m = 3
1 43745004 22385504 14754103
2 31266306 15829092 10521327
5 26479825 13380264 8943119

10 25087449 12822962 8557807
15 24677584 12626759 8709865
20 24403048 12683125 9754548
25 24263528 13637297 9077744
30 24259407 13323217 10611497
35 24119826 13408201 12826785
40 24116561 14051913 11746907
45 24109259 15339037 14380017
50 23962524 17975139 17990048

100 23774181 23780836 23789316

Table 2. Performance time, second example

7. Conclusions

Our newly developed framework extends the algebraic approach from [1], in order to
cover block algorithms for solving path problems. We have presented a procedure to
turn any scalar algorithm into a block algorithm. This procedure has been applied
to the Jordan and escalator method, so that the corresponding block versions have
been obtained. The same procedure could as well be applied to some other Gaussian
methods or to successive matrix-squaring.

The considered block algorithms work correctly for absorptive matrices. On the
other hand, we have found an example, which shows that the algorithms still do not
work for any stable matrix over any path algebra, even if “pivoting” is allowed. Our
example is quite general, so that it can be applied to any other Gaussian algorithm
working in a path algebra. The example in fact shows that the analogy between
path problems and classical linear systems is not so extensive as one would wish.

For both the Jordan and escalator method, it holds that switching to a block
version will decrease the communication complexity, while the computational com-
plexity will stay virtually the same. This is favorable if the algorithms are to be
executed on a multiprocessor, where communication usually costs much more than
computing.

Among the two considered block algorithms, the block Jordan method seems to
be slightly more suitable for parallelization. Our experimental parallel implementa-
tion of the algorithm works on a network of transputers. Contrarily to some other
similar works, c.f. [2], our program reflects the generality of the algebraic approach,
i.e. the program is able to solve different types of path problems, not only shortest
paths. Our experiments indicate that important properties of the algorithm, such
as the optimal block size, depend heavily on the path algebra involved.

As we have seen, the Jordan, escalator and similar methods always evaluate the
whole closure of an adjacency matrix. However, in many applications only few ele-
ments of the closure matrix are really needed. Then, those particular elements can
be computed more efficiently by counterparts of the classical iterative algorithms,
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e.g. Jacobi, Gauss-Seidel, etc. [8]. Iterative methods also allow efficient sequential
and parallel implementations, as shown in [5]. Our theoretical framework for de-
scribing block algorithms can easily be extended to cover the mentioned iterative
algorithms. Still, this extension is not very interesting from the practical point of
view. Namely, it turns out that block versions of iterative algorithms have a similar
communication complexity as the corresponding scalar versions.
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