MATHEMATICAL COMMUNICATIONS 3(1998), 83-94 83

Square—Gaussian random processes and estimators
of covariance functions

YURL) V. KOZACHENKO* OLEXANDER V. STUS*

Abstract. In this paper inequalities for distributions of quadratic
forms from square—Gaussian random variables and distributions of su-
prema of quadratic forms from square—Gaussian random processes are
proved. These inequalities enable us to investigate the jointly distribu-
tions of estimators of covariance functions of Gaussian processes.

Key words: square—Gaussian random variables, random process,
metric space, confidence ellipsoid

Sazetak. Kvadratno—Gaussovi sluéajni procesi i procjenitelji
kovarijacionih funkcija. U ovom é¢lanku dokazane su nejednakosti za
distribucije kvadratnih formi kvadratno—Gaussovih slucajnih varijabli
za distribucije supremuma kvadratnih formi kvadratno-Gaussovih slucaj-
nih procesa. Te nejednakosti omoguéuju proucavange distribucija proc-
jenitelja kovarijacionih funkcija Gaussovih procesa.

Kljucne rijeéi: kvadratno—Gaussove slucajne varijable, slu¢ajni pro-
cest, metricki prostori, elipsoid povjerenja
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1. Introduction

In this paper we investigate spaces of square-Gaussian random variables SGz((2),
i.e. a closure in Lo(Q) of quadratic forms from a family of jointly Gaussian random
variables.

An inequality for the distributions of quadratic forms from random variables &, €
SG=(Q) is proved. This inequality enables us to construct confidence ellipsoids for
estimators of covariance functions of jointly Gaussian stationary random processes.
Estimates of the distributions of the supremum of quadratic forms from random
processes £ = {£(t),t € T}, £ € SGz(2) are found, too. These estimates enable us
to construct confidence ellipsoids for uniform (in some set) estimators of covariance
functions of jointly Gaussian stationary random processes.
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2. Space of pre-Gaussian random variables

Let {2, S, P}} be a standart probability space and let U(x) = exp{|z|} — 1.

Definition 1. A space of random variables Ly () will be called the Orlicz space
generated by the function U(x), if for any random variable §& € Ly (Q) there exists
a positive constant « such that E exp{a|¢|} < oo.

The space Ly () is a Banach space with respect to the norm [10, 3]

el = inf(r > O:Eexp{ 5'} < 2) (1)

r
The norm ||£]| is called the Luzemburg norm.

Definition 2. The space of centered random variables € from Ly (Q) will be called
the space of pre—Gaussian random variables.

This space will be denoted by Prg(Q2). Pre-Gaussian random variables are in-
troduced in [2].

3. Space of square—Gaussian random variables

In this section the notion of the space of square—Gaussian random variables is
given. The notion of square—Gaussian random vectors and the notion of a family
of square-Gaussian random variables were introduced and investigated in papers
[5, 6, 7,8, 9].

Definition 3. ([5]) A random vector ij € R? is called square-Gaussian, if all its
components n; can be represented in the form

m = EF A& — EEF A€, (2)

where {i, E&: = 0, are jointly Gaussian random wvectors and A; are symmetric
matrices or mean-square limits of sequences of random variables of the form (2).

Remark 1. ([5]) Let &;, i, E&j = Eif; = 0, i = 1,...,d, j = 1,...,n, be
jointly Gaussian random vectors, and let A; be symmetric matrices

0; = (&5 Aifi; — BE]; Ayiiy)

j=1

then the vector 67 = (0y,...,0q) is a square-Gaussian random vector (0; can be
represented in the form (2)).

Definition 4. Let = = {&,t € T'} be a family of jointly Gaussian random variables,
E¢; = 0 (for ezample, & is a Gaussian random process). The space SGz(Q) is called
the space of square—Gaussian random variables with respect to =, if random variables
from SG=(Q) can be presented in the form (2), where EF = (&1, &2, - .., &ia), Eik €
SG=(Q), k=1,...,d, orif they are mean-square limits of sequences of such random
variables.
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Lemma 1. Letn;, i = 1,2,...,n be random variables from SGz(2). Then, for all
|s| <1 and all \; € RY, i =1,2,...,n the inequality

s 1
Exp{ﬂwm} < R(js)) (3)

holds, where 1 =>"7"_ | Ain;, R(s) = exp{}exp{—5}(1 - §)7z.

Proof. Let gbe a Gaussian random vector such that Eg: 0, and let A be an
arbitrary symmetric matrix. It follows from [7], that there exist constants d; > 0,
82 > 0, 67 + 63 = 1, such that for all |s| < 1 the inequality

s §MAE - BETAE

Fex -
‘ p{\/i (\/a]rgTAf)E

} S L($,51,52)R(8,51,52) (4)

holds, where

L(s,01,02) = EXP{_§(51 — 09) }(1 — 881) 72 (1 + 585) "

(5(52)3
Ris.o,0) = “Pg h 0> 0
exp{—T}, 5 < 0.
It is easy to see that
L(s,01,02)R(s,01,02) < R(s) < R(]s|). (5)

The assertion of Lemma 1. follows from (4), (5), Remarkl. and the Fatou lemma.
O

Lemma 2. The space SGz(2) is the subspace of the Orlicz space Ly () and of
(Prg(Q)), and for all n; € SG=(Q), \; € RY, i =1,...,n, the inequality

< (v (gm)y ©

n

Z M

i=1

holds, where ¢; = cif, co i the root of the equation R(s) = 2.
Lemma 2. follows from Lemma 1.

Lemma 3. Let E_T = (&,&2,...,&4) be a random vector, such that & € SG=(Q),
and let A be a symmetric positive definite matriz. Then for all 0 < s < - the

S

2

€T AL ,
G(E@TA@) < R(V2s), (7)

holds, where R(s) is defined in (3), G(x) = sinh(VD) > 0.

following inequality
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Proof. Let us at first prove this lemma for A = I, where I is the identity matrix
and for gsuch, that &; are orthogonal (Varn = Var (Zle )\1-51-) = Zle )\fEff)
Set 02 = E€2,i=1,...,d. In this case, from (3) (for |s| < 1) it follows that for all
AN €Ri=1,2,...,d, the inequality

52?:1 )\zfi
Fex < R(l|s 8
p{\@(Z?—1 >‘z2‘7i2) }_ (- o

Nl

_1
2

s d
holds. Set u = NN It follows from (8), that for |u| < (23°7_; A20?)

the inequality

Eexp{uzd:)\i&} < R<\/§|u é)\?cr?) (9)

=1

holds. Denote s; = uA;0;. Then

2

d d s
§ 2 _ 2 E 2 2

S, = U )\ioi = 5,
i=1 i=1

therefore Z?Zl s?< 3

It follows from (9) that for all s; such that ¢ < 1 the next inequality

=1 1
holds:
d ¢ d
Eexp{z Ul}<R< 2ng>. (10)
i—1 i=1

From (10), we have that for all o; > 0, Z ,al< i

dsq

d

L.dsg < 24 H o; R
i=1

=1 @
smh(alfil)
ail&il (12)
It follows from (11) and (12), that
4 . es
smh(—,
EH o€l ‘ i) (13)
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Denote g(z) =

f(z) = Ing(x) i

siih V@ “The function g(x) is such that g(0) = 1, and the function
holds

is concave (f(0) = 0). That is why for any z; > 0, i =1

m, it
EE f(z )

That means that

[Tt = o( > ).
=1 i
That is why

4 sinh al‘&‘) d
H Talal _Eng‘g’

— oy

(14)
It follows from (13) and (14), that
po(( 3 254) (15)
i=1 i
If we set a? = (;2?2 2 then from (15) we have

2
Eg< 2 i & ) < R(V2s),
Zi:l Uz
which is (7) for this case.

(16)

Consider now a general case. Let B be a matrix such that BB = A, R = covg
Let O be the orthogonal matrix, that brings the matrix BRB in the diagonal form

OBRBOT =

D= dlag(dQ)k .
Set 17 = OBg. Hence . .
i7=£E"BOTOBE = €T AL,
covi] = OBcovEBOT = D. Tt is easy to see that n; € SGE( ), T = (M1, M4)-
Therefore, the inequality (16) holds for 77. So 77717 = 2?21 n? = EAE, therefore
(389) o5
Nei) ~\perag)
The lemma is proved ]

Lemma 4. If the assumptions of Lemma 3. are satisfied, then for x > 2 it holds

pr{ > x} < (e)g‘“((g)i_l) = Wi (x),
B 1) sun((5)F 1)
where n = f_TAE

(17)
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Proof. It follows from the Chebyshev inequality and (7), that for x > 0, 0 <
t< %
27

pel o) < 0E) RO

g(t?x) — g(t?z)’
sinh(

S

set t = L — ﬁ, x > 2. Lemma 4. follows from the relations
1
)* - 1)

(
((8)* -1
RIVE) = ep g} el + ) (g) < exp{;}(§>4.

g(t*z) =

)

S l8

4. Examples of the application of inequality (17)

In this section we consider some examples of application of the inequality (17).

Example 1. Let & = {&(t),t € [0,2T], k = 1,...,n} be jointly Gaussian and
jointly stationary stochastic processes with E&y(t) =0 and E€,(t+71)&(t) = rii(7).
Let

T
fkl(T)Z%A gk(t—FT)fl(t)dt, 0<t<T

be the estimators of covariance functions (7). Set Xy (1) = Fr(7) — rri (7). It is
easy to see, that Xy (1), 0 < 7 < T, k,l = 1,2,...,n, belong to SG=(Q2), where
== {&),k=1,...,n,0 <t <2T}.

Let A be a symmetric positive semi-definite matriz, n(r) = XT(7)AX (1), where
X(7) is the vector with components Xy (). It follows from Lemmad., that for
x > 2 the following inequality holds:

Pr{E777§7(—7)_) > x} < W(a), (18)

where W (x) is defined in (17).

This inequality enables us to construct confidence ellipsoids for ry (7).

For example, let n = 2 and XT(7) = (X11(7), Xa2(7)), B(r) > 0 be the co-
variance matriz of X(T) It is easy to prove that the confidence ellipsoid with the
minimal area is the ellipsoid

where A = B71(7). In this case
XT(n)AX(r) = X"(1)B~ (1) X(7),
EXT(r)AX (1) = Sp(BA) = Sp(BB™') = 2,

T
bij(T) = ﬁ/o (T - u)(rfj(u) +rij(u—T1)rij(u+7))du, i,5=1,2.
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Example 2. Let & = {£(t),t € [0,2T]} be a Gaussian stationary stochastic process
with BE(t) =m and E(E(t+7) —m)(&(t) —m) = r(1). Let

T T
moz%/o €(t) dt, m:%/o E(t+ ) dt,

T
:%/ (§(t+7) = ) (€(t) = mo)dt, 0<T<T,

be the estimators of covariance function r(7) and the expectation m.

Set

2

m =7+ = /0 (T —uw)r(u+7)du,

n2 = (1thg —m)® — %/0 (T — u)r(u) du.

It is sufficiently easy to prove, that n; € SG=(Q), i = 1,2, where E = {£(t),t €
[0,2T]}.

Let n = ann% + aggn% + 2a12m1m2, where A = |aij|127j:1 1S a symmetric positive
semi-definite matriz. It follows from Lemmad., that for x > 2 the inequality holds

Pr{E"n > :1:} < W), (19)

where W (x) is defined in (17). This inequality enables us to construct confidence
ellipsoids for (r(r), m).

5. Random processes from L;(2) and SGz=({2) spaces

Let (T, p) be a metric space, u(-) be a Borel measure in (T, p), u(T) < co.
Definition 5. A random process X = (X (t),t € T) belongs to the space Ly (), if
the random variable X (t) € Ly () for allt € T and sup,cp || X(t)|| < oo (|- || is

the Luzemburg norm).

Definition 6. A random process X = (X (t),t € T) is called square-Gaussian, if
1
for allt € T X (t) it belongs to a space SG=(Q) and sup,er (E(X(t))?)? < oc.

Lemma 5. A square-Gaussian random process X = (X(t),t € T) belongs to the
space Ly (), and for allt; € T, i =1,2,...,n the following inequality

i XX (t)
i=1

holds, where ¢y is defined in (6).

<c (Var En: )\Z-X(ti))é (20)

i=1

Lemma 5. follows from Lemma 2.
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Theorem 1. ([1, 4]) Let X = (X (t),t € T) be a separable random process, X €
Ly(Q), ek, k = 1,2,... be a monotonically decreasing sequence such that 1 =
sup; ser P(t,8), €x — 0, as k — oo, B(t,ex) be an open ball with the centre t and
the radius ey, ux(t) = p(B(t,ex)),

ox(t) = sup || X(uw) —X(t), supZal(t)ln<m+11(t)+1)<oo

u€B(t,e) teT 7—

Then the following inequality

sup | X (¢) / X(u du(u nR (21)
teT

holds, where

1
R =4sup o ( —|—1),
Z « par1(t)

teT |
and 1 > 0 is a random variable such that for x > 1
(W(T))*
. 22
{1+ 2D -

From the Theorem 1. there follows the following theorem.

2
Pr{n >z} < c
e —

Theorem 2. Let T = [0,T], p(t,s) = |t — s|, pu(-) be the Lebesque measure, X =
(X (t),t € T) be a separable random process from SGz(Q2),

o) =i sw (EX(0) - X))

where ¢y is defined in (6).
Then for all0 <p <1

sup |X(t) — —/ X(u)du| < mRy, (23)
te[0,T

4 pa(T) 1
R,=—— Inf| ————+1)d
P p(lfp)/o n(20(1)(U) " > v

and 1 > 0 is a random variable such that for x > 1

Pr{m >z} < (62761) (147ro2> . (24)

Proof. In this case 1 = T, () = min(2e, T,

dpu) 1"
J Xy =g ) X

IX(t) = X()]| < e1 (EIX (1) — X()?)*,  (Lemma2.),

where

=
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|

or(t) <er sup (EIX(t) ~ X(5)?)* < olen).

[t—s|<ek

Therefore

SR B N A

Now we choose the sequence ¢, such that
oeEk) =p" o, 0<p <1, (ex = oV PFTI)), 61 = oEr) = o(T).

Therefore,

Z?il Ul(t)l <M 1(t) + 1)

IN

Z?il 51pl_1 111(%_1)1@,51) + 1)

s
Zl 1 p 1 p) f€+1151 (20(11>(u) + 1) du
- p(l D) f (20(11)(u) + 1) du.

From this inequality and (21) there follows the inequality (23). O

IN

6. Distribution of suprema of quadratic forms from random
processes from SGz(12)

Let X; = {X;(t),t € [0,T]}, ¢ = 1,...,m be a separable random process from
SG=(Q), and let V' be a symmetric positive semi-definite matrix,

Y(t) = XT()VX () = (VX(), X(1)),

where X7 () = (X1(t), Xa(t), ..., Xpu(t)).
Let S be the ortogonal matrix which reduces the matrix V' to the diagonal form.

PVPT =D = ||d;6;; %=1
(8, is the Kronecker delta), Z(t) = PX (t), ZT(t) = (Z1(t), Zo(t), . .., Zum(t)).

i) = er swp (BIZ(0) = Zi5)F), (25)

where ¢; is defined in (6).

Theorem 3. If forany0<p<1,i=1,2,...,m,

CY A - (26)
R :7/ ln<—|—1)du<oo, 26
T p(l-p) Jo 205_1)(1;)

then for any o < a < 1,
- ma 09 201
T >max| ————, —
(1—a)? a2
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the following inequality

2 1
1_
Pr{ sup Y(t >x}<W1< >+mW2< x2( oz)
0<t<T

holds, where

Wi(z) = (i)é::h((\/é__ll))a
Wa(z) = 24 (11;) )
o = &[] [T E(VX(®), X(u))dt du,
6 = YL AR,
Proof. It is easy to see that
Y(t) = (VX() Xt ))—(STDSX() X () = (DSX(1), SX(t)) = (DZ(1)

- Zd222 Zd20+m 2,

From (28) the following inequality follows

m 1
1 2
yi( (Z d202) (Z d?n?(t)) |
i=1
It follows from Theorem 2. (n;(t) € SG=(f2)), that
sup [n;(t)] < n; Rip,
0<t<T
where n; > 0,7 =1,2,...,m are random variables such, that for z > 1
Pr{n; > x} < Wa(x).
The following equalities are evident
ZdQOQ = %fo i () dt = fo i(u) du
= fo fo DZ (1), ( ) dt du

= 7= fo fo (VX(t), X (u)) dt du.
It follows from (32), (30) and (29), that

sup Y(t (VX(t )) dt du d?*R
(O<t£)T (TZ// ) (Z zpm)

M\»—\

(27)

(32)
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Therefore, for any 0 < a < 1, = > 0, the following inequalities hold:
Pr{supoc,<r Y (t) > 2} = Pr{(SUpo<t<T Y(t)? > x%}

<Pr{ (Tl S v X @), X (u))dtdu) >ax5} (33)

1

+Pr{ (ZZ 1 d?Rzpnz) > (1— a)xé} = A, + As.

For any a; > 0,i=1,2,...,m, > i~ a; = 1 it holds

Ay = PI‘{ZZ VAFRE N > (11— )? } <>, Pr{d2anl > (1 — @)’z
= Zi:l PI‘{T]Z' > W}
(34)
Set
d; R,
O = =
Yo d3R3,
Tt follows from (34), that for z > (1372)2
m 1 o)bpt 11—
Ay < ZPr{m > MM} < mWQ(M>. (35)
i=1 03 03
It follows from (32) and the Lemma 4. (6; € SGz(Q)) that, for « > 251
A <W, (%) (36)

The inequality (27) follows from (35) and (36 O

Corollary 1. Let a process Y = {Y( ), t [O T|} satisfy the assumptions of The-
orem 3. Then for x > A% max(l In? (1 + T2)) it holds

Pr{ sup Y(t >x}<(A1x4A2x4+A3)eXp{ o } (37)
0<t<T AT
where
IoN" 2 9, -3 2e
=iVas it Mmehaag Mpmedagh agem 2,

and 01, 09 are defined in (27).

2241, therefore, it follows

)

(38)

Proof. It is easy to prove that for z > 0, —1— < ==;
from (27) that for x > max(722, 2%)

(1—a)?? a2
1
() (3 )0

: 1
—|—m521exp{—ln( Tzz (% 2 l—a}

ool
N
Nl

PT{SUp0<t<TY >z} < ef)

= ol
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Now (37) follows from (38) if we set o = (%AliT
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1/2
) . O

Example 3. Let n(t) be a random process from Examplel. The inequality (37)
holds for n(t). These inequalities enable us to construct uniform confidence ellip-
soids for ri(7), 0 <7 <T.
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