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Abstract 

The present study aimed to investigate individual differences of causal connectivity between brain regions 
in attention deficit hyperactivity disorder (ADHD) which was a psychiatric disorder. Resting-state functional 
magnetic resonance imaging (R-fMRI) data of typically-developing controls (TDC) children group and 
combined ADHD (ADHD-C) children group were distinguished by the support vector machine (SVM) with 
linear kernel function, based on regional homogeneity (ReHo), amplitude of low frequency fluctuation 
(ALFF) and fractional ALFF (FALFF). The highest classification accuracy yielded by ReHo was 90.91 %. 
Furthermore, the granger causality analysis (GCA) method based on the classified weight map of regions of 
interesting (ROIs) showed that five causal flows existed significant difference between TDC and ADHD-C. 
That is, the averaged GCA values of three causal connections (i.e. left VLPFC  left CC1, right PoCG  left 
CC1, and right PoCG  right CC2) for ADHD-C were separately stronger than those for TDC. And the other 
two connections (i.e. right FEF  right SOG and right CC1  right SOG) were weaker for ADHD-C than 
those for TDC. In addition, only two causality flows (i.e. left VLPFC  left CC1 and right PoCG  right CC2) 
presented that their GCA values were positively correlation with ADHD index scores, respectively. Our 
findings revealed that ADHD children represented widespread abnormalities in the causality connectivity, 
especially involved in the attention and memory related regions. And further provided evidence that the 
potential neural causality flows could play a key role in characterizing individual’s ADHD. 
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Introduction 

Attention deficit hyperactivity disorder (ADHD) was a mental disorder with age-inappropriate 

symptoms, which was mainly characterized by poor sustained attention, impulsiveness (ADHD-I), and 

hyperactivity (ADHD-H). Many functional neuroimaging studies had been carried out to discover the 

pathologies underlying the disorder. Convergent evidences have demonstrated that ADHD induced 

abnormalities both in brain structure (i.e. reduced volume and cortical thickness in frontal, anterior 

cingulate cortex [1], amygdala [2], hippocampus [3], cerebellum [4, 5] and occipital [6, 7]) and brain 

function (i.e. functional connectivity alterations among frontal-occipital, temporo-occipital [8, 9], and 
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frontal-striatal circuits networks [10, 11]). Recently, resting-state functional magnetic resonance imaging 

(R-fMRI) has attracted increasing attention for mapping large-scale neural network function and 

dysfunction. Seed-based methods were used to detect network alterations of ADHD patients, especially 

the abnormalities in default mode network and visual network [12]. Although, these studies provided 

valuable insights into the pathological mechanism of ADHD, some significant limitations were clearly found. 

Firstly, the obtained information was limited to the selected regions of interest (ROIs) through seed-based 

methods and made it difficult to examine functional connectivity patterns on a whole-brain scale [13]. 

Secondly, traditional group-level statistical methods were not able to provide evidence for evaluating the 

discriminative power of the identified connections at the individual level [14]. 

Pattern analysis based on the group level statistical methods can complement seed-based and 

univariate statistical analyses, which helped researchers discover diagnostic markers of disease and provide 

additional help for clinical diagnosis. The causal connection such as Granger causality analysis (GCA) 

reflected the directional flow of information between brain regions [15]. The causal relationship and 

adjustment patterns between different activation regions could be observed using GCA, which provided 

new insights for ADHD.  

 Taken together, we studied the causal connectivity of brain regions in combined ADHD (ADHD-C) 

children group using multivariable variable GCA methods. Firstly, we used machine learning methods to 

distinguish ADHD-C children and typically-developing controls (TDC) children for the purpose of obtaining a 

more convincing difference in brain regions. Secondly, we calculated the classified weight map and the 

ROIs (seeds) were selected according to the peak points of the weight map. Then on the basis of GCA, a 

network analysis was conducted. Finally, we studied the correlation between ADHD index scores and GCA 

values. The results of this study can provide strong support for the cognitive process of ADHD-C. 

Materials and methods 

Subjects  

Forty right-handed subjects with TDC (mean age =9.61; 29 males, 11 females; mean index =45.11) and 

twenty-six right-handed subjects with ADHD-C (mean age = 9.8, 15 males, 11 females; mean ADHD index = 

73.04) were investigated in the current study. Children with comorbidities were not included in the study. 

All data were obtained from the ADHD dataset of New York University 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/).  

Data acquisition and analysis  

Functional images were acquired on a SIEMENS TRIO 3-Tesla scanner. Functional images were obtained 

axially using Echo planer imaging (EPI) sequence (TR= 2000ms, TE= 15ms, 33 slices, Slice thickness= 4.0mm, 

FOV= 24 ×24 cm2, flip angle= 90°, resolution= 256×256). The acquire time of functional imaging was 360 

seconds. To facilitate the localization of functional images, high-resolution T1-weighted was spoiled 

gradient-recalled whole-brain volume (TR= 2530ms, TE= 3.25ms, slices= 256, thickness/gap =1.33.0/0mm, 

FOV=256×256mm2, resolution=256×256, flip angle=7°).  

Data pre-processing was carried out using Data Processing Assistant for Resting-State fMRI (DPARSF) 

[16], which was based on Statistical Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm) and 

Resting-State fMRI Data Analysis Toolkit [17]. Pre-processing was performed as follows: 1) removal of the 

first ten volumes and slice timing correction; 2) the functional images were spatial normalized to Montreal 
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Neurological Institute (MNI) space applying the unified segmentation parameters; 3) The linear trend, head 

motion parameter (measured by Friston-24 model), white matter (WM), and cerebrospinal fluids (CSF) 

signals were further regressed out as nuisance covariates; 4) After removing of linear trend, band-pass 

filtering (0.01-0.08 HZ) was performed on the time course of each voxel for further Regional homogeneity 

(ReHo) analysis. The ReHo was calculated according to the described procedure in Zang et al. [18]. 

Moreover, the spatial smoothing (FWHM = 6 mm) was conducted after ReHo calculation as described by 

previous studies. In addition, the calculation process of ALFF and FALFF could be explained by the work of 

Zuo [19]. 

Feature extraction, classification and GCA brain network analysis  

For each participant, the corresponding whole brain parameters have been calculated as above. We 

used the REST toolbox (version 1.8. http://www.restfmri.net/forum/REST V1.8) to compare the difference 

between different brain images (i.e. ReHo, ALFF and FALFF) of ADHD-C group and TDC group. Two-sample 

t-tests (two-tailed, P<0.05) and multiple comparisons with Gaussian Random Field (GRF) Theory (voxel-

level p = 0.01, cluster-level p =0 .05, two-tailed) were applied for statistical testing. Based on the results of 

correction, the voxel values in differential brain regions were used as feature for classification. The support 

vector machine (SVM) classifier with linear kernel function was used to evaluate discrimination of ADHD-C 

from TDC. The accuracy, sensitivity (SE) and specificity (SP) were estimated by leave-one-out cross-

validation (LOOCV) to assess the performance of the classifier. In order to further study the causal 

relationship between differential brain regions of ADHD-C , ROIs were constructed based on peak points of 

the weight map [20] and the information flow between brain regions of two groups was analysed by GCA 

[21]. Finally, we investigated the correlation between significant GCA values and ADHD scale scores in two 

groups. The whole processing step was shown in Figure 1. 

 
Figure 1. The main steps of data analysis including basic data preprocessing, parameter feature calculation 

(ReHo, ALFF, FALFF), feature selection, classification, ROIs selection, network construction, GCA network 
analysis and ADHD scale analysis. 

Results  

By two-sample t-tests and multiple comparison correction, the differential brain regions were used as 

the features for classification. The classification results were shown in Table 1 which indicated that the 

ReHo yielded a higher classification rate than other features (accuracy: 90.91 %, sensitivity: 92.5 %, 

specificity: 88.46 %). Receiver operating characteristic curve (ROC) was a comprehensive index reflecting 
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the continuous variables of sensitivity and specificity. Hence, The ROC curve of ReHo was presented in 

Figure 2, and it revealed the relationship between sensitivity and specificity by the method of composition. 

In this study, AUC (area under the curve) was equalled to 0.94. 

Table 1. Classification results using different imaging feature 

SVM_Method Metrics Accuracy 
(%) 

Sensitivity 
(%) 

Specificity (%) 

Linear Kernel ReHo 90.91 92.5 88.46 

 ALFF 66.67 72.5 57.69 

 FALFF 74 87.5 53 

 

Figure 2: The ROC curve based on the ReHo value. 

Differentiated regions 

The significant activated regions of ReHo revealed by two-sample t-tests and multiple comparison 

correction were showed in Figure 3. Compared with the TDC group, the activation of left middle occipital 

gyrus (MOG), right superior occipital gyrus (SOG), bilateral frontal eye field (FEF), bilateral crus I of 

cerebellar (CC1) and right crus ll of cerebellar (CC2) was greater in ADHD. However, the decreased 

activation of the left ventrolateral prefrontal cortex (VLPFC), right middle frontal gyrus (MFG), right 

postcentral gyrus (PoCG) and right temporo-parietal junction (TPJ) was found in ADHD.  

 

Figure 3. Regions with significant activation of ReHo map. (A) VLPFC, ventrolateral prefrontal cortex; (B) MOG, 
middle occipital gyrus; (C) MFG, middle frontal gyrus; (D) PoCG, postcentral gyrus; (E)TPJ, temporo-parietal 
junction; (F) SOG, superior occipital gyrus; (G) FEF, frontal eye field; (H) left CC1, crus I of cerebellar; (I) CC2, 

crus ll of cerebellar; (J) right CC1, crus I of cerebellar. Warm and cold colors indicated the increased and 
decreased activation of regions related to ADHD-C respectively. Here, thresholds with voxel-wise were set at p 
< 0.01, and thresholds with cluster-wise of Gaussian Random Field (GRF) were set at p<0.05. And cluster size 

>20 voxels. L: left, R: right. 
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Classified weight map based on ROI 

The classified weight map based on ROI was shown in Table 2. The regions with significant contribution 

to classify the TDC group from ADHD-C group were right PoCG, right TPJ, right MFG and left VLPFC. While 

the regions contributed to distinguish ADHD-C group from TDC group were bilateral FEF, bilateral CC1, right 

CC2, right SOG and left MOG. The peak coordinates of these regions were shown in Table 2. Overall, the 

differences of brain regions between two groups were mainly concentrated on the frontal lobe, occipital 

lobe, and cerebellum, which was consistent with the previous study [22]. 

Table 2. The weight map of ROI regions 

Label Hemisphere Weight (%) Voxel MNI_coordinate 

TDC>ADHD 
PoCG R 11.76 49 (54,-12,33) 
TPJ R 8.17 42 (54,-54,30) 
MFG R 7.18 62 (54,21,27) 
VLPFC L 6.37 37 (-54,36,6) 
ADHD>TDC 
FEF R 16.71 25 ( 9,18,48) 
CC2 R 15.61 40 (30,-78,-42) 
CC1 L 11.10 32 (-27,-72,-30) 
CC1 R 10.67 32 (9,-78,-24) 
MOG L 7.58 29 (-39,-84,18 
SOG R 4.85 45 (27,-87,15) 

Granger causality analysis based on ROI 

In order to further study the relationships between these differential brain regions, the ROIs were 

selected according to the peak points of weight map. Each ROI was centered at the peak point of weight 

map with a radius of 8 mm. Accordingly, 10 ROIs were taken from the weight map and the directed 

adjacency matrix was calculated with GCA method (model order: p = 1). Two-sample t-tests was carried 

out for the adjacency matrix of two groups (p<0.05, FDR corrected). As a result, there were five significant 

causal flows (left VLPFC  left CC1, right PoCG  left CC1, right PoCG  right CC2, right FEF  the right 

SOG, right CC1  right SOG) for ADHD-C and TDC groups. The average values of five significant causal flows 

were reported in Figure 4(A) and Figure 4 (B) revealed the difference via the averaged GCA values of five 

causal flows in ADHD-C minus those in TDC. The mean GCA values of three causal flows (i.e. left VLPFC  

left CC1, right PoCG  left CC1, and right PoCG  right CC2) were positive and greater in ADHD group than 

in TDC group, while the other causal connectivity (i.e. right FEF  right SOG and right CC1  right SOG) 

was negative. The positive causal effect meant an excitatory effect, whereas the negative causal effect 

represented an inhibitory effect [23]. Notably, these results revealed that the symptoms of ADHD may be 

caused by the dysfunction from frontal cortex to the cerebellum. 
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Figure 4: The significant causal flows discovered by GCA in ADHD-C and TDC groups. (A) The mean GCA values 
of five significant causal flows in two groups. (B) The causal flow differences obtained by the mean GCA values 

of ADHD-C minus that of TDC. The red edge represented positive difference of ADHD-C compared to TDC 
group. The blue edge represented the negative difference compared to TDC. 

Correlation between the mean GCA value and ADHD index scores 

Furthermore, the correlation was analysed between GCA value and the ADHD index scores. ADHD index 

scores were positively correlated with GCA values of left VLPFC  left CC1 and right PoCG  right CC2 only 

in ADHD group (see Figure 5).  

 

Figure 5: Granger causal influence between regions as functions of ADHD index scores in two groups. (A) left 
VLPFC  the right CC1; (B) right PoCG  the right CC2. Here, the significant correlations were observed only 

in ADHD-C group. 

Discussion 

In this paper, we tried to implement classification for both TDC and ADHD-C children without any other 

complication illness. We found that the highest classification rate (90.91 %) was captured by ReHo values. 

the sensitivity and specificity of the model were evaluated as well. The GCA analysis demonstrated that the 

information flow of ADHD group from left VLPFC to left CC1, right PoCG to left CC1 and right PoCG to right 

CC2 was enhanced compared to TDC group. However, the information flow from right FEF to the right 

PoCG and right CC1 to the right PoCG was reduced in ADHD-C group. These regions were mainly 

concentrated on the frontal, parietal, and cerebellum, which were included in attention network. This may 

suggest that the etiology of ADHD may be the dysfunction from frontal cortex to the cerebellum. 

It was noted that the attention network model was composed of three sub-networks: alertness, 

orientation and execution control. These sub-networks were both independent and organic in anatomy 
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and function and this view has been supported by empirical researches in different fields [24]. Alertness 

was defined as achieving and maintaining an alert state and orientation was required when stimuli 

occurred outside the current focus of attention. The executive control was defined as resolving conflicts 

between responses [25]. As an important part of attention network, alertness was considered as the basis 

for maintaining cognitive function. The role of alertness was to maintain preparation or wake-up state to 

accept information transmission [26]. Some studies found that the alert system was associated with the 

thalamus, prefrontal lobe, and parietal lobe [27, 28]. Attention orientation was responsible for selecting 

information from a large number of sensory inputs, and the main function was to shift attention to 

stimulus that need to be chosen or concerned. Attention orientation could be divided into external 

orienting and internal orienting: external orienting was usually accompanied by eye movements which 

directed attention towards target stimulation, while internal orientation involved more paid attention of 

individuals to internal signals usually without obvious eye movements [25]. Attention orienting was 

thought to be achieved by a network composed of the right temporo-parietal cortex and the right inferior 

frontal gyrus, which was modulated by the cholinergic system. The executive control was mainly 

responsible for monitoring and resolving conflicts between stimuli or reactions [26], which was related to 

the activities of the anterior cingulate gyrus, the lateral prefrontal cortex, and the right frontal gyrus. 

In our study, the abnormalities of left VLPFC, right PoCG, right TPJ, left MOG, right SOG, bilateral FEF 

and cerebellum were found in ADHD-C group. These regions were mainly included in attention network. It 

was often assumed that neural activity in subcortical regions was modulated in a “top-down” fashion to 

facilitate processing of stimuli at attended locations. In particular, the parietal and frontal regions of the 

right hemisphere were regarded as the source of top-down bias [29, 30]. Our results showed that 

compared to the TDC group, the left VLPFC, right MFG, right PoCG and right TPJ were supressed in ADHD-C, 

while the activations of left MOG, right SOG and cerebellar region were increased. The strength of the 

causal connection from left VLPFC to left CC1, right PoCG to left CC1 and right PoCG to right CC2 was 

enhanced in ADHD-C group. The cerebellum was emerging as a key structure in several neuropsychiatric 

disorders, particularly in ADHD [31, 32]. Previous studies have shown that cerebellum mainly involved in 

motion control and advanced cognitive processes such as learning, attention shifting, visual spatial 

processing, working memory and emotion management [33-36]. The increased amount of information 

flowing into the cerebellum may explain the enhanced activation of our study. The VLPFC and PoCG of the 

alert network were suppressed, which may suggest that ADHD-C patients could not remain a preparation 

and waken state to accept information transmission and the attention was poorly sustained. Taken 

together, the decreased activation of VLPFC and PoCG may reflect that ADHD-C patients suffer from the 

defects in maintaining a preparation and waken state. In this way, the cerebellum was more active for the 

higher demands of receiving and storing information. This idea was also evidenced by the increased 

granger influences from left VLPFC to left CC1, right PoCG to left CC1 and right PoCG to right CC2. 

The neurons of FEF were associated with the inhibition of saccade production. The activation of FEF 

decreased rapidly when the stop-signal was given in a stop-signal paradigm, while it increased for fixation 

[37]. In addition, the FEF has been implicated in responding preferentially to attended stimuli and exerted 

the top-down shifts of attention to bias the processing of task-related information as evidenced by a 

number of studies [38]. The occipital cortex (right superior occipital gyrus) regulated by top-down control 

was mainly recruited during diverse tasks (i.e. auditory, visual and tactile modalities) and played an 

important role in visual-spatial attention, working memory. Compared to the TDC group, the decrease in 

the strength of the causal connection between FEF and SOG suggested that FEF may reduce control over 

occipital cortex in ADHD-C. This reduced top-down control may suggest that ADHD-C had a deficit in biasing 
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the processing of behaviorally relevant objects and filtering the irrelevant information [39]. This 

interpretation was evidenced by neurophysiological studies. For example, attention deficit hyperactivity 

disorder has suffered from behavioral deficits such as a poor sustained attention, impulsiveness and 

hyperactivity, which explaining the reduced top-down control from symptoms [40]. Attention reorienting 

was reflected by the activation of fronto-striatal-insular network and reduced functional connectivity of the 

ADHD children in the fronto-striato-parieto-cerebellar network was reported by Rubia [41, 42]. 

Furthermore, the decreased fronto-parietal connectivity was found when ADHD conducted the working 

memory and interference suppression task [43, 44]. The inputs from the cerebellum were thought to 

reflect the frequency and timing of events. Furthermore, the cerebellum was involved in bottom-up neural 

systems and send bottom-up signal to posterior cortical systems for enabling the objects perceived 

selectively [45]. fMRI studies have indicated that the abnormality of cerebellum was related to attentional 

impairments such as autism, attention deficit hyperactivity disorder [46, 47]. The decreased granger 

causality of between cerebellum and occipital cortex may suggest that ADHD-C had deficient in sensory 

tracking related to attention [48]. This consistent with the idea that ADHD had difficulty in representing 

transiently relevant information for attention and memory. The decreased functional connectivity was 

found in cerebellum and superior parietal lobule compared to the controls when ADHD patients conducted 

a working memory task [49]. The decreased granger influence from FEF to SOG and from cerebellum to 

SOG may be responsible for the dysfunction of attention orienting in ADHD. 

In summary, we speculated that the core symptoms of ADHD might derive from abnormal functions of 

alert network and orientation network from the GCA analysis. 

Conclusion  

We concluded that ADHD-C children had a frontal lobe - occipital - cerebellar abnormality derived from 

the R-fMRI study of ReHo. The classification analyses were done for distinguishing the ADHD-C patients 

from the TDC group. The highest classification rate (90.91%) was captured by the ReHo with the 92.5% 

sensitivity and 88.46% specificity. Compared to the TDC group, the attention networks were significant 

suppressed, whereas the cerebellar region activated which was revealed by two-sample t-tests. On the 

basis of GCA analysis, the strength of the causal connection from left VLPFC to left CC1, right PoCG to left 

CC1 and right PoCG to right CC2 was enhanced, while the connection from right FEF to the right SOG and 

right CC1 to right SOG were weakened. These results suggested that ADHD have abnormal functions in 

alert network and orientation network for maintaining preparation state and attention. However, the 

cerebellum activated more for compensation mechanism. In conclusion, the above findings supported the 

hypothesis that ADHD patients were disordered in the loop of frontal lobe to the cerebellum. 
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