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Compact operators, the essential spectrum and
the essential numerical range∗

Damir Bakić†

Abstract. Some properties of bounded operators on Hilbert space
concerned with matrix representations in orthonormal bases are pre-
sented. In particular, the classes of operators with columns or diagonals
converging to 0 are described.
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Sažetak.Kompaktni operatori, esencijalni spektar i esenci-
jalni numerički rang. U radu su izložena neka svojstva ograničenih
operatora na Hilbertovom prostoru povezana s njihovim matričnim re-
prezentacijama u ortonormiranim bazama. Posebno, opisane su klase
operatora u čijim matričnim prikazima stupci, odnosno dijagonale, kon-
vergiraju u 0.

Ključne riječi: Hilbertov prostor, ortonormirana baza, ograničen o-
perator, kompaktan operator, esencijalni spektar, esencijalni numerički
rang

1. Introduction

Let H be a complex infinite dimensional separable Hilbert space with the scalar
product (·|·). We denote by B(H) and K(H) the algebra of all bounded operators
and the ideal of all compact operators on H, respectively. The quotient map from
B(H) onto the Calkin algebra C(H) = B(H)/K(H) is denoted by π.

In this note several properties of bounded operators are discussed. Although
most of the presented material is known, various results are collected and reinter-
preted, which, we hope, may help to clarify the connections between some standard
notions from the operator theory. Also, some proofs are new or simplified.

2. Compact operators

A bounded operator on H is compact if it maps a unit ball of H into the rela-
tively compact set. Equivalently, A ∈ B(H) is compact if and only if it satisfies
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limn Axn = 0 for each sequence (xn) in H weakly converging to 0. Let us note
that the later condition does not imply w − s continuity of A. Indeed, the set of
all operators A : H → H with the property that the inverse image under A of each
(norm) open set is open in the weak operator topology, coincides with the ideal of
finite rank operators ([11], Problem 130).

Since orthonormal sequences weakly converge to 0 we conclude: if A ∈ B(H) is
a compact operator and (en) is an orthonormal sequence in H, then limn Aen = 0.
Moreover, the converse is also true:

Theorem 1. A bounded operator A ∈ B(H) is compact if and only if it satisfies
limn Aen = 0 for each orthonormal sequence (en) in H.

Theorem1 is well known. Originally it was proved in [9] and, independently,
in [15] (see also [13]). While the argument in [9] depends on the analysis of oper-
ator ranges, the proof in [15] uses Zorn’s lemma. On the other hand, Theorem1
is reproved in [2] by elementary means. The argument is based on the simple ge-
ometrical property of the underlying Hilbert space ([12], p. 300): every sequence
of unit vectors weakly converging to 0 contains a subsequence that is near to an
orthonormal sequence. Also, it is observed in [2] that even a linear transformation
A : H → H satisfying the condition in the above theorem must be a compact
operator, i. e. the continuity assumption on A is superfluous.

Since we restrict ourselves to separable Hilbert spaces, one can restate Theorem1
in terms of orthonormal bases:

Corollary 1. A bounded operator A ∈ B(H) is compact if and only if satisfies
limn Aen = 0 for each orthonormal basis for H.

3. The essential spectrum

A natural question is arising from Corollary 1: is it enough to require limn Aen = 0
for some orthonormal basis in order to conclude A ∈ K(H)? The question is
strongly suggested by the class of Hilbert-Schmidt operators. Namely, if there exists
an orthonormal basis (en) for H such that

∑∞
n=1 ‖Aen‖2 < ∞ then

∑∞
n=1 ‖Aen‖2 =∑∞

n=1 ‖Afn‖2 < ∞ for each orthonormal basis (fn).

Let us take a bounded operator A ∈ B(H) such that there exists an orthonormal
basis (en) for H with the property limn Aen = 0.

First we note that the operator A∗A satisfies the same condition. Since A is
compact precisely when A∗A is compact, we may suppose without loss of generality
that A is a self-adjoint operator.

Now we look at π(A) ∈ C(H). In order to prove that A is compact it is enough
to conclude π(A) = 0. We note that π(A) is a self-adjoint element of C∗-algebra
C(H), so its norm and spectral radius coincide. Therefore, one should prove that
the essential spectrum σe(A) contains 0 as its only point.

Let λ ∈ σe(A), λ 6= 0. This means that the operator A − λI does not have
the essential inverse (i. e. π(A) is not invertible in C(H)). Now we observe that
λ, belonging to the spectrum of the self-adjoint element, must be a real number;
therefore, the operator A − λI is also self-adjoint. It follows that A − λI does



Compact operators, the essential spectrum, ... 105

not have either the left essential inverse. Precisely: there is no bounded operator
T ∈ B(H) such that T (A − λI) − I is compact. Then by Theorem 1.1 from [8]
there exist an infinite dimensional orthogonal projection P ∈ B(H) and a compact
operator K ∈ K(H) such that P (A − λI) = K. Writing P = 1

λ (PA −K) we find
limn Pen = 0 where (en) is the orthonormal basis from assumption on A.

After all, our initial question is reduced to the following: Let P ∈ B(H) be an
infinite dimensional (hence non-compact) orthogonal projection. Is it possible to
find an orthonormal basis (an) for H such that limn Pan = 0?

According to [2], the answer is: yes, if P has an infinite dimensional kernel. To
see this, we will briefly repeat the arguments from [2]. First, we exibit a useful
example:

Let (bn) be an orthonormal basis for H and let Q be a linear transformation on
H whose matrix with respect to (bn) is

Q =



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...

. . .




.

It is easy to check that the above matrix defines a bounded operator Q ∈
B(H) such that Q2 = Q = Q∗, so Q is an orthogonal projection. Further, Q is
infinite dimensional since it consists of infinitely many one-dimensional projections.
Obviously, limn Qbn = 0.

Let us mention that the above projection was obtained from the construction
similar to that used in [10] for a simple proof of Hummel’s theorem. Hummel’s
theorem states that for each compact operator K ∈ K(H) and ε > 0 there exists an
orthonormal basis (en) for H such that ‖Ken‖ < ε, ∀n. We also refer to [3] where
the whole class of operators A ∈ B(H) satisfying Hummel’s condition is detected:
for each ε > 0 there exists an orthonormal basis (en) for H such that ‖Aen‖ < ε, ∀n
if and only if the left essential spectrum of A contains 0.

Now let P ∈ B(H) be an arbitrary infinite dimensional orthogonal projection
with an infinite dimensional kernel. Let Q and (bn) be as above. Clearly, there
exists a unitary operator V ∈ B(H) such that P = V QV ∗. It remains to define the
orthonormal basis (an), an = V bn. Obviously, limn Pan = 0.

As a result of the above considerations we see that also some non-compact op-
erators are able to convert orthonormal bases into convergent sequences. Actually,
([2], Theorem 4), the description of all bounded operators with this property goes
back to Theorem1.1 from [8]:

Theorem 2. A bounded operator A ∈ B(H) possesses an orthonormal basis (an)
for H such that limn An = 0 if and only if 0 belongs to the left essential spectrum
of A.
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4. The essential numerical range

Corollary 1 can be reformulated in the following way:

Corollary 2. A bounded operator A ∈ L(H) is compact if and only if it satisfies
limn(Aen|en) = 0, for each orthonormal basis (en) for H.

In fact, Corollary 1 follows immediately from Corollary 2. Conversely, Corol-
lary 2 can be deduced from Corollary 1 as in [1], Lemma 3. First, it is enough to
consider positive operators A satisfying the condition from Corollary 2 and then it
remains to apply Corollary 1 to

√
A.

Analogously to discussion in Section 3, one may try to find those operators
A ∈ B(H) which satisfy the condition related to that in Corollary 2:

There exists an orthonormal basis (en) for H such that lim
n

(Aen|en) = 0. (∗)

Apparently, the class of operators satisfying (∗) is much larger than the ideal of all
compact operators; an obvious example is the unilateral shift. Also, there are uni-
tary operators with this property. To provide an example we can consider the oper-

ator whose matrix corresponding to an orthogonal decomposition of H is
[

0 I
I 0

]
.

It turns out that the essential numerical range of an operator serves as the most
convenient tool in order to determine the class of all operators satisfying (∗). The
essential numerical range is introduced in [16]. We denote it by We. According to
[8, Section 5], the essential numerical range of an operator A ∈ B(H) is connected
with the usual numerical range W in the following way:

We(A) =
⋂

K∈K(H)
W (A + K)−

(here “−” denotes the topological closure in the complex plane).
Besides this, Theorem 5.1 from [8] contains more precise characterization of the

essential numerical range. Along this line our condition (∗) can also be described
([2], Theorem 5]:

Theorem 3. Let A ∈ B(H) be a bounded operator on a separable Hilbert space H.
Then there exists an orthonormal basis (en) for H such that limn(Aen|en) = 0 if
and only if 0 belongs to the essential numerical range of A.

It is worth noting that the essential numerical range plays an important role in
solving several problems from the operator theory. Let us mention few of them.

(1) We say that a bounded operator A ∈ B(H) has ”the small entry property” if
for each ε > 0 there exists an orthonormal basis (en) for H such that |(Aen|em)| <
ε, ∀n,m. The small entry property is discussed in [17] using the Schur product of
bounded operators.

(2) A bounded operator A ∈ B(H) is called zero-diagonal if there exists an or-
thonormal basis (en) for H such that (Aen|en) = 0, ∀n. Zero-diagonal operators are
investigated in [6]. As the starting point for the analysis of zero-diagonal operators
we recommend a result from [7]: an operator on finite dimensional Hilbert space
has the matrix with zero-diagonal if and only if its numerical range contains 0.
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(3) An operator A ∈ B(H) (necessarily self-adjoint) is called a self-commutator
if there is a bounded operator B ∈ B(H) such that A = B∗B −BB∗. The class of
self-commutators is described in [14]. For the related results one may also consult
[4] and [5].

In the next theorem we will summarize the results from the above mentioned
articles. Although the following list of mutually equivalent conditions is far from
complete, it indicates the importance of the essential numerical range. In the same
time, all conditions listed below may be regarded as the reformulations of our prop-
erty (∗).

Theorem 4. For an operator A ∈ B(H) the following conditions are mutually
equivalent:

(a) There exists an orthonormal basis (en) for H such that limn(Aen|en) = 0.

(b) 0 ∈ We(A).

(c) There exists an orthonormal sequence (an) in H such that limn(Aan|an) = 0.

(d) There exists a sequence of unit vectors (xn) in H weakly converging to 0 such
that limn(Axn|xn) = 0.

(e) There exists an orthogonal projection P ∈ B(H) with an infinite dimensional
range such that PAP is a compact operator.

(f) For each ε>0 there exists an orthonormal basis (en) for H such that |(Aen|em)| <
ε, ∀n,m.

(g) For each ε > 0 and p > 1 there exists an orthonormal basis (en) for H such
that

∑∞
n=1 |(Aen|en)|p < ε.

(h) There exists a sequence of zero-diagonal operators (An) in B(H) such that
A = (norm) limn An.

(i) There exist a zero-diagonal operator T ∈ B(H) and a compact operator K ∈
K(H) such that A = T + K.

(j) (A self-adjoint) There exists an operator B ∈ B(H) such that A = B∗B−BB∗.

(k) (A self-adjoint) The spectrum of A has at least one nonnegative limit point and
at least one nonpositive limit point.

Proof. (a) ⇔ (b) is the assertion of Theorem3 above.
(b), (c), (d) and (e) are equivalent by [8], Theorem 5.1.
(e) ⇔ (f) ⇔ (g) is proved in [17].
(h) ⇔ (b) is Theorem 3 from [6].
(i) ⇒ (a) by Corollary 2 and Theorem3 above.
(a) ⇒ (i): Let us take the orthonormal basis from (a) and define K ∈ B(H) by

Ken = (Aen|en)en, ∀n. Since (Aen|en) → 0, K is compact. Obviously, T = A−K
is zero-diagonal.

(j) ⇔ (k) ⇔ (b) is proved in [14], see also [6].
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[3] D. Bakić, B. Guljaš, A note on Hummel’s condition, to appear.

[4] A. Brown, P. R. Halmos, C. Pearcy, Commutators of operators on Hilbert
space, Canadian J. Math. 17(1965), 695–708.

[5] A. Brown, C. Pearcy, Structure of commutators of operators, Ann. of Math.
(2)82(1965), 112–127.

[6] P. Fan, On the diagonal of an operator, Trans. Amer. Math. Soc. 283(1984),
239–251.

[7] P. A. Fillmore, On similarity and the diagonal of a matrix, The Amer. Math.
Monthly, 76(1969), 167–169.

[8] P. A. Fillmore, J. G. Stampfli, J. P. Williams, On the essential numerical
range, the essential spectrum, and a problem of Halmos, Acta Sci. Math.
(Szeged) 33(1972), 179–192.

[9] P. A. Fillmore, J. P. Williams, On operator ranges, Advances in Math.
7(1971) 254–281.

[10] J. I. Fujii, S. Izumino, M. Nakamura, On Hummel’s theorem, Mathematica
Japonica 37(1992), 985–986.

[11] P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N.Y.,
1967.

[12] P. R. Halmos, Limsups of lats, Indiana Univ. Math. J. 29(1980), 293–311.

[13] K. Muroi, K. Tamaki, On Ringrose’s characterization of compact operators,
Mathematica Japonica 19(1974), 259–261.

[14] H. Radjavi, Structure of A∗A−AA∗, J. Math. Mech. 16(1966), 19–26.

[15] J. R. Ringrose, Compact non-selfadjoint operators, Van Nostrand, Princeton,
1971.

[16] J. G. Stampfly, J. P. Williams, Growth conditions and the numerical range
in a Banach algebra, Tohoku Math. J. 20(1968), 417–424.

[17] Q. F. Stout, Schur products of operators and the essential numerical range,
Trans. Amer. Math. Soc., 264(1981), 39–47.


