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Abstract. The two-dimensional linear differential system

x
′ = y, y

′ = −x− h(t)y

is considered on [t0,∞), where h ∈ C1[t0,∞) and h(t) > 0 for t ≥ t0. The box-counting
dimension of graphs of solution curves is calculated. Criteria to obtain the box-counting
dimension of spirals are also established.
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1. Introduction

In this paper, we consider the following two-dimensional linear differential system

x′ = y,

y′ = −x− h(t)y
(1)

for t ≥ t0, where h ∈ C1[t0,∞) and h(t) > 0 for t ≥ t0. This system has the zero
solution (x(t), y(t)) ≡ (0, 0). Setting y = x′, we can rewrite (1) as the damped linear
oscillator

x′′ + h(t)x′ + x = 0, t ≥ t0.

By a general theory (for example [1, 4]), there exists a unique solution of (1) on
[t0,∞) with the initial condition x(t1) = α and y(t1) = β for every α, β ∈ R

and t1 ≥ t0. Hence, we note that every nontrivial solution (x(t), y(t)) satisfies
(x(t), y(t)) 6= (0, 0) for t ≥ t0.

The zero solution (x(t), y(t)) ≡ (0, 0) of (1) is said to be attractive if every
solution (x(t), y(t)) of (1) satisfies limt→∞ x(t) = limt→∞ y(t) = 0. There are a lot
of studies of the attractivity to (1) (see, for example, [2, 11, 12, 20, 21]).

Now, we assume that the zero solution of (1) is attractive. Let (x(t), y(t)) be a
solution of (1). We define the solution curve of (x(t), y(t)) on [t1,∞) in R2 by

Γ(x,y;t1) = {(x(t), y(t)) : t ≥ t1}
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for each fixed t1 ≥ t0. A curve Γ(x,y;t1) is said to be simple if (x(t), y(t)) 6= (x(s), y(s))
for t, s ∈ [t1,∞) with t 6= s. A simple solution curve Γ(x,y;t1) is said to be rectifiable
if the length of Γ(x,y;t1) is finite, that is,

∫ ∞

t1

√
|x′(t)|2 + |y′(t)|2dt <∞.

Otherwise, it is said to be non-rectifiable, that is,
∫ ∞

t1

√
|x′(t)|2 + |y′(t)|2dt = ∞.

The rectifiability of solutions to two-dimensional linear differential systems was
studied by Miličić and Pašić [8] and Naito and Pašić [9]. Naito, Pašić and Tanaka [10]
obtained rectifiable and non-rectifiable results of solutions to half-linear differential
systems. Recently, the following Theorem A has been established in [13]. In what
follows, the following notation will be used:

H(t) =

∫ t

t0

h(s)ds.

Theorem A. Let h ∈ C1[t0,∞) satisfy h(t) > 0 for t ≥ t0. Assume that the
following conditions (2) and (3) are satisfied :

∫ ∞

t0

h(t)dt = ∞; (2)

∫ ∞

t0

|2h′(t) + |h(t)|2|dt <∞. (3)

Then, the zero solution of (1) is attractive and every nontrivial solution (x(t), y(t))
of (1) is a spiral, rotating in a clockwise direction for all sufficiently large t ≥ t0,
and its solution curve Γ(x,y;t0) is simple. Moreover, the following properties (i) and
(ii) hold:

(i) every nontrivial solution of (1) is rectifiable if
∫ ∞

t0

e−H(t)/2dt <∞;

(ii) every nontrivial solution of (1) is non-rectifiable if
∫ ∞

t0

e−H(t)/2dt = ∞.

In the above theorem, we adopt the definition of a spiral, according to a cele-
brated book by Hartman [4, Chapters VII and VIII] as follows. For every nontrivial
solution (x(t), y(t)) of (1), we introduce polar coordinates

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t),
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where the amplitude r(t) > 0. A nontrivial solution (x(t), y(t)) of (1) is said to be
a spiral if |θ(t)| → ∞ as t→ ∞.

In this paper, we obtain the box-counting dimension of the solution curve Γ(x,y;t1)

for a nontrivial solution (x(t), y(t)) of (1). For a bounded subset Γ of R2, we define
the box-counting dimension (Minkowski-Bouligand dimension) of Γ by

dimB Γ = 2− lim
ε→+0

log |Γε|

log ε
,

where Γε denotes the ε-neighborhood of Γ defined by

Γε = {(x, y) ∈ R2 : d((x, y),Γ) ≤ ε}, (4)

d((x, y),Γ) denotes the Euclidean distance from (x, y) to Γ, and |Γε| denotes the
two-dimensional Lebesgue measure of Γε. More details on the definition of the
box-counting dimension can be found in Falconer [3] and Tricot [22]. If there exist
d ∈ [0, 2], c1 > 0 and c2 > 0 such that

c1ε
2−d ≤ |Γε| ≤ c2ε

2−d

for each sufficiently small ε > 0, then dimB Γ = d.
The following result has been established in Tricot [22, §9.1, Theorem].

Proposition 1. Let Γ be a simple curve of finite length. Then

lim
ε→+0

|Γε|

2ε
= length(Γ),

where length(Γ) denotes the length of Γ.

Therefore, if length(Γ) <∞, then dimB Γ = 1.
The box-counting dimension of graphs of solutions to the nonautonomous differ-

ential equation was first obtained by Pašić [14]. Thereafter, it was obtained about
the nonautonomous second order linear differential equations in [7, 15, 16, 17]. On
the other hand, the box-counting dimensions of solution curves to autonomous two-
dimensional nonlinear differential systems were established in [18, 19, 23, 24]. Re-
cently, Korkut, Vlah and Županović [6] have considered the equation

t2x′′ + t(2 − µ)x′ + (t2 − ν2)x = 0, (5)

where µ, ν ∈ R, and defined generalized Bessel functions J̃ν,µ and Ỹν,µ by two
linearly independent solutions of (5). When µ = 1, equation (5) is known as Bessel’s
differential equation and Bessel functions Jν and Yν are its two linearly independent
solutions. In [6], the relation

J̃ν,µ(t) = t
µ−1
2 Jν̃(t), Ỹν,µ(t) = t

µ−1
2 Yν̃(t), ν̃ =

√(
µ− 1

2

)2

+ ν2

is found, and the following result is established.
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Theorem B (see [6]). Let µ ∈ (0, 2), ν ∈ R and t0 > 0. Let x(t) = J̃ν,µ(t)

or Ỹν,µ(t). Then the planar curve Γ = {(x(t), x′(t)) : t ≥ t0} satisfies dimB Γ =
4/(4− µ).

It is worth noting that if x(t) = J̃ν,µ(t) or Ỹν,µ(t), then (x(t), y(t)) := (x(t), x′(t))
is a solution of the linear differential system

x′ = y,

y′ = −

(
1−

ν2

t2

)
x−

2− µ

t
y.

(6)

The following two results are the main results of this paper.

Theorem 1. Let h ∈ C1[t0,∞) satisfy h(t) > 0 for t ≥ t0. Assume that (3) and
the following conditions are satisfied :

lim sup
t→∞

th(t) <∞; (7)

H(t) = 2α log t+O(1) as t→ ∞ for some α ∈ (0, 1). (8)

Then, for every nontrivial solution (x(t), y(t)) of (1), there exists t1 ≥ t0 such that
dimB Γ(x,y;t1) = 2/(1 + α).

Here and hereafter, f(t) = O(1) as t→ ∞ means that there exist M > 0 and t1
such that |f(t)| ≤M for t ≥ t1.

Theorem 2. Let h ∈ C1[t0,∞) satisfy h(t) > 0 for t ≥ t0. Assume that (3) and
the following condition are satisfied :

H(t) = 2 log t+O(1) as t→ ∞. (9)

Then, for every nontrivial solution (x(t), y(t)) of (1), there exists t1 ≥ t0 such that
dimB Γ(x,y;t1) = 1.

Example 1. We consider the case where h(t) = λt−γ , λ > 0, 1/2 < γ ≤ 1 and
t0 = 1. It is easy to check that (2) and (3) are satisfied, and

H(t) =





λ

1− γ
(t1−γ − 1),

1

2
< γ < 1,

λ log t, γ = 1.

Theorem A implies that the zero solution of (1) is attractive and every nontrivial
solution (x(t), y(t)) of (1) is a spiral, rotating in a clockwise direction on [t1,∞)
for some t1 ≥ t0, and its solution curve Γ(x,y;t0) is simple and that every nontrivial
solution of (1) is rectifiable when either 1/2 < γ < 1 or γ = 1 and λ > 2, and
every nontrivial solution of (1) is non-rectifiable when γ = 1 and 0 < λ ≤ 2. Let
(x(t), y(t)) be a nontrivial solution of (1). Therefore, by Proposition 1, if either
1/2 < γ < 1 or γ = 1 and λ > 2, then dimB Γ(x,y;t1) = 1. Moreover, Theorem 2
implies that dimB Γ(x,y;t2) = 1 for some t2 ≥ t1 when γ = 1 and λ = 2. Applying
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Theorem 1, we conclude that if γ = 1 and 0 < λ < 2, then there exists t2 ≥ t1 such
that dimB Γ(x,y;t2) = 4/(2 + λ).

Now, we set either

(x(t), y(t)) = (J̃0,2−λ(t), J̃
′
0,2−λ(t)) or (x(t), y(t)) = (Ỹ0,2−λ(t), Ỹ

′
0,2−λ(t)),

where 0 < λ < 2. Recalling that (J̃ν,µ(t), J̃
′
ν,µ(t)) and (Ỹν,µ(t), Ỹ

′
ν,µ(t)) are solutions

of system (6), we find that (x(t), y(t)) is a solution of (1) with h(t) = λt−1.

Here, we give numerical simulations of solution curves.
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Figure 1: Solution curves for the case where h(t) = λt−γ

The box-counting dimension of the graph of the spiral r = ϕ−α, ϕ ≥ ϕ1 > 0
in polar coordinates is 2/(1 + α) when 0 < α < 1 (see, for example, Tricot [22,
§10.4]). Žubrinić and Županović [23, Theorem 5] generalized this fact to the function
r = f(ϕ), ϕ ≥ ϕ1. Korkut, Vlah, Žubrinić and Županović [5, Therem 2] improved
this result. See also Korkut, Vlah and Županović [6, Theorem 2]. In this paper, we
give the following alternative criterion of the dimension of spirals.

Theorem 3. Let ϕ1 > 0 and let f ∈ C[ϕ1,∞) satisfy limϕ→∞ f(ϕ) = 0. Assume
that there exist positive constants m, a, M and α ∈ (0, 1) such that for all ϕ ≥ ϕ1

mϕ−α ≤ f(ϕ),

0 < f(ϕ)− f(ϕ+ 2π) ≤ aϕ−α−1,

length(Γ(ϕ1, ϕ)) ≤Mϕ1−α.

Let Γ be the graph of r = f(ϕ) in polar coordinates, that is,

Γ = {(f(ϕ) cosϕ, f(ϕ) sinϕ) : ϕ ≥ ϕ1}.

Then, dimB Γ = 2/(1 + α).

From Theorem 3, we have the following Corollary.

Corollary 1. Let ϕ1 > 0 and let f ∈ C1[ϕ1,∞) satisfy limϕ→∞ f(ϕ) = 0. Assume
that there exist positive constants m, K and α ∈ (0, 1) such that for all ϕ ≥ ϕ1

mϕ−α ≤ f(ϕ),

−Kϕ−α−1 ≤ f ′(ϕ) ≤ 0.

Assume, moreover, that f ′(ϕ) 6≡ 0 on [ϕ, ϕ + 2π) for each fixed ϕ ≥ ϕ1. Let Γ =
{(f(ϕ) cosϕ, f(ϕ) sinϕ) : ϕ ≥ ϕ1}. Then, dimB Γ = 2/(1 + α).
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The proof of Corollary 1 will be given in Section 2. Using Corollary 1, we prove
Theorem 1 in Section 4. Corollary 1 is similar to the criterion by Korkut, Vlah,
Žubrinić and Županović [5, Therem 2]. The proof of Theorem 2 in [5] is based on
the proof of Theorem 5 in [23]. Žubrinić and Županović employed the radial box
dimension to prove Theorem 5 in [23]. On the other hand, the proof of Theorem 3,
which will be given in Section 2, is more direct.

The box-counting dimension of the graph of the spiral r = ϕ−1, ϕ ≥ ϕ1 > 0 in
polar coordinates is 1 (see Tricot [22, §10.4]). We generalize this fact as follows.

Theorem 4. Let ϕ1 > 1 and let f ∈ C[ϕ1,∞) satisfy limϕ→∞ f(ϕ) = 0. Assume
that there exist positive constants m and M such that for all ϕ ≥ ϕ1

0 < f(ϕ) ≤ mϕ−1,

0 < f(ϕ)− f(ϕ+ 2π),

length(Γ(ϕ1, ϕ)) ≤M logϕ.

Let Γ = {(f(ϕ) cosϕ, f(ϕ) sinϕ) : ϕ ≥ ϕ1}. Then, dimB Γ = 1.

The following corollary follows from Theorem 4.

Corollary 2. Let ϕ1 > 1 and let f ∈ C[ϕ1,∞) satisfy limϕ→∞ f(ϕ) = 0. Assume
that there exist positive constants m and K such that for all ϕ ≥ ϕ1

0 < f(ϕ) ≤ mϕ−1,

−Kϕ−1 ≤ f ′(ϕ) ≤ 0.

Assume, moreover, that f ′(ϕ) 6≡ 0 on [ϕ, ϕ + 2π) for each fixed ϕ ≥ ϕ1. Let Γ =
{(f(ϕ) cosϕ, f(ϕ) sinϕ) : ϕ ≥ ϕ1}. Then, dimB Γ = 1.

The proofs of Theorem 4 and Corollary 2 will be given in Section 3.

2. Box-counting dimension of spirals

In this section, we prove Theorem 3 and Corollary 1. First, we give a lemma.

Lemma 1. Let ϕ1 > 0 and let f ∈ C[ϕ1,∞) satisfy f(ϕ) > 0 for ϕ ≥ ϕ1 and
limϕ→∞ f(ϕ) = 0. Assume that there exist positive constants a and α ∈ (0, 1) such
that

0 < f(ϕ)− f(ϕ+ 2π) ≤ aϕ−α−1, ϕ ≥ ϕ1.

Then, there exists a positive constant m such that f(ϕ) ≤ mϕ−α for ϕ ≥ ϕ1.

Proof. Let ϕ ≥ ϕ1. Then, there exist N ∈ N ∪ {0} and ϕ0 ∈ [ϕ1, ϕ1 + 2π) such
that ϕ = ϕ0 + 2Nπ. Let n ∈ N with n > N . It follows that

f(ϕ) = f(ϕ0 + 2Nπ)

= f(ϕ0 + 2(n+ 1)π) +

n∑

k=N

[f(ϕ0 + 2kπ)− f(ϕ0 + 2(k + 1)π)]

≤ f(ϕ0 + 2(n+ 1)π) +
n∑

k=N

a(ϕ0 + 2kπ)−α−1.
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Since

(ϕ0 + 2kπ)−α−1

(ϕ0 + 2(k + 1)π)−α−1
=

(
ϕ0 + 2(k + 1)π

ϕ0 + 2kπ

)α+1

=

(
1 +

2π

ϕ0 + 2kπ

)α+1

≤

(
1 +

2π

ϕ1

)α+1

, k ∈ N ∪ {0},

we have

(ϕ0 + 2kπ)−α−1 ≤M1(ϕ0 + 2(k + 1)π)−α−1, k ∈ N ∪ {0},

where M1 = [1 + (2π/ϕ1)]
α+1. Therefore,

f(ϕ) ≤ f(ϕ0 + 2(n+ 1)π) +

n∑

k=N

aM1(ϕ0 + 2(k + 1)π)−α−1

= f(ϕ0 + 2(n+ 1)π) + aM1

n∑

k=N

∫ k+1

k

(ϕ0 + 2(k + 1)π)−α−1dt

≤ f(ϕ0 + 2(n+ 1)π) + aM1

n∑

k=N

∫ k+1

k

(ϕ0 + 2πt)−α−1dt

= f(ϕ0 + 2(n+ 1)π) + aM1

∫ n+1

N

(ϕ0 + 2πt)−α−1dt

= f(ϕ0 + 2(n+ 1)π) +
aM1

2πα

[
(ϕ0 + 2Nπ)−α − (ϕ0 + 2(n+ 1)π)−α

]
.

Letting n→ ∞, we obtain

f(ϕ) ≤
aM1

2πα
(ϕ0 + 2Nπ)−α =

aM1

2πα
ϕ−α.

Hereafter, in this section, we assume all assumptions of Theorem 3. Then, by
Lemma 1, there exists a positive constant m such that f(ϕ) ≤ mϕ−α for ϕ ≥ ϕ1.

Let ε ∈ (0, 1) be sufficiently small. We use the following notation:

ϕ2(ε) =

(
2a

ε

) 1
α+1

;

Γ(ψ1, ψ2) = {(f(ϕ) cosϕ, f(ϕ) sinϕ) : ψ1 ≤ ϕ < ψ2};

T (Γ, ε) = Γ(ϕ1, ϕ2(ε))ε;

N(Γ, ε) = Γ(ϕ2(ε),∞)ε,

where Γε denotes the ε-neighborhood of Γ defined by (4). Then, Γε = T (Γ, ε) ∪
N(Γ, ε).
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Lemma 2.

{(r cosϕ, r sinϕ) : 0 ≤ r ≤ f(ϕ), ϕ ∈ [ϕ2(ε), ϕ2(ε) + 2π)} ⊂ N(Γ, ε).

Proof. Let

(x0, y0) ∈ {(r cosϕ, r sinϕ) : 0 ≤ r ≤ f(ϕ), ϕ ∈ [ϕ2(ε), ϕ2(ε) + 2π)}.

Set r0 =
√
x20 + y20. Then, there exists ϕ0 ≥ ϕ2(ε) such that

(x0, y0) = (r0 cosϕ0, r0 sinϕ0)

and
f(ϕ0 + 2π) ≤ r0 ≤ f(ϕ0).

We have

0 ≤ f(ϕ0)− r0 ≤ f(ϕ0)− f(ϕ0 + 2π) ≤ aϕ−α−1
0 ≤ a(ϕ2(ε))

−α−1 =
ε

2
.

Therefore,

d((x0, y0), (f(ϕ0) cosϕ0, f(ϕ0) sinϕ0)) = f(ϕ0)− r0 < ε,

which means that (x0, y0) ∈ N(Γ, ε).

Lemma 3.

πm2
[
(2a)

1
α+1 + 2π

]−2α

ε
2α

α+1 ≤ |N(Γ, ε)| ≤ π
[
m(2a)−

α
α+1 + 1

]2
ε

2α
α+1 .

Proof. Set

r∗(ε) = min
ψ∈[ϕ2(ε),ϕ2(ε)+2π]

f(ψ), r∗(ε) = max
ψ∈[ϕ2(ε),ϕ2(ε)+2π]

f(ψ),

and
A = {(r cosϕ, r sinϕ) : 0 ≤ r ≤ f(ϕ), ϕ ∈ [ϕ2(ε), ϕ2(ε) + 2π)}.

Then, we easily find that

{(r cosϕ, r sinϕ) : 0 ≤ r ≤ r∗(ε), ϕ ∈ R} ⊂ A.

Therefore, Lemma 2 implies that

|N(Γ, ε)| ≥ |A|

≥ π(r∗(ε))
2

≥ π

(
min

ψ∈[ϕ2(ε),ϕ2(ε)+2π]
mψ−α

)2

= πm2(ϕ2(ε) + 2π)−2α

= πm2
[
(2a)

1
α+1 + 2πε

1
α+1

]−2α

ε
2α

α+1

≥ πm2
[
(2a)

1
α+1 + 2π

]−2α

ε
2α

α+1 ,
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since ε ∈ (0, 1).
Let (x, y) ∈ N(Γ, ε). Then, there exists (x0, y0) ∈ Γ(ϕ2(ε),∞) and

d((x, y), (x0, y0)) < ε.

Hence,

d((x, y), (0, 0)) ≤ d((x, y), (x0, y0)) + d((x0, y0), (0, 0)) < ε+ r∗(ε).

It follows that

|N(Γ, ε)| ≤ π(ε+ r∗(ε))2

≤ π

(
ε+ max

ψ∈[ϕ2(ε),ϕ2(ε)+2π]
mψ−α

)2

= π
[
ε+m(ϕ2(ε))

−α
]2

= π
[
ε

1
α+1 +m(2a)−

α
α+1

]2
ε

2α
α+1

≤ π
[
1 +m(2a)−

α
α+1

]2
ε

2α
α+1 .

Lemma 4. Let x, y ∈ C[a, b] and let

G = {(x(s), y(s)) : a ≤ s ≤ b}.

Assume that (x(s), y(s)) 6= (x(t), y(t)) for a ≤ s < t ≤ b. Then,

|Gε| ≤ 4πε length(G) + 4πε2.

Proof. The proof is similar to the proof of Lemma 26 in [17]. Let ε > 0. Set s1 = a
and

si+1 = max{s ∈ [si, b] : d((x(t), y(t)), (x(si), y(si))) ≤ ε, t ∈ [si, s]}

for i = 1, 2, · · · . Then, there exists n ≥ 2 such that sn = b. Set N = max{i ∈ N :
si < b}. We find that N ≥ 1,

a = s1 < s2 < · · · < si < si+1 < · · · < sN < sN+1 = b,

and if N ≥ 2, then

d((x(si), y(si)), (x(si+1), y(si+1))) = ε, i = 1, 2, · · · , N − 1.

We will prove that

Gε ⊂

N⋃

i=1

B2ε(x(si), y(si)), (10)

where
B2ε(x0, y0) = {(x, y) ∈ R2 : d((x0, y0), (x, y)) ≤ 2ε}.
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Let (x1, y1) ∈ Gε. Then, there exists σ ∈ [a, b] such that

d((x1, y1), (x(σ), y(σ))) ≤ ε.

Because of the definition of si, we find that σ ∈ [sk, sk+1] for some k ∈ {1, 2, · · · , N},
which implies that

d((x(σ), y(σ)), (x(sk ), y(sk))) ≤ ε.

Hence, it follows that

d((x1, y1), (x(sk), y(sk)))

≤ d((x1, y1), (x(σ), y(σ))) + d((x(σ), y(σ)), (x(sk ), y(sk))) ≤ 2ε,

which means that (x1, y1) ∈ B2ε(x(sk), y(sk)). Therefore, we obtain (10). By (10),
we conclude that

|Gε| ≤
N∑

i=1

|B2ε(x(si), y(si))| = 4Nπε2. (11)

When N = 1, from (11) it follows that

|Gε| ≤ 4πε2 ≤ 4πε length(G) + 4πε2.

Now, we assume that N ≥ 2. We observe that

length(G) ≥

N∑

i=1

d((x(si), y(si)), (x(si+1), y(si+1)))

≥
N−1∑

i=1

d((x(si), y(si)), (x(si+1), y(si+1)))

= (N − 1)ε,

that is,
Nε ≤ length(G) + ε. (12)

Combining (11) with (12), we obtain |Gε| ≤ 4πε length(G) + 4πε2.

Lemma 5.

|T (Γ, ε)| ≤ 4π
[
M(2a)

1−α
α+1 + 1

]
ε

2α
α+1 .

Proof. From Lemma 4, it follows that

|T (Γ, ε)| ≤ 4πε length(Γ(ϕ1, ϕ2(ε))) + 4πε2

≤ 4πεM(ϕ2(ε))
1−α + 4πε2

= 4πM(2a)
1−α
α+1 ε

2α
α+1 + 4πε2

= 4π
[
M(2a)

1−α
α+1 + ε

2
α+1

]
ε

2α
α+1

≤ 4π
[
M(2a)

1−α
α+1 + 1

]
ε

2α
α+1 .



54 M.Onitsuka and S.Tanaka

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Since

|Γε| ≥ |N(Γ, ε)|

and

|Γε| ≤ |T (Γ, ε)|+ |N(Γ, ε)|,

Lemmas 3 and 5 imply that there exist positive constants C1 and C2 such that

C1ε
2α

α+1 ≤ |Γε| ≤ C2ε
2α

α+1

for all sufficiently small ε ∈ (0, 1). Consequently, dimB Γ = 2/(1 + α).

Proof of Corollary 1. Let ϕ ≥ ϕ1 be fixed. Since f ′(ϕ) ≤ 0 and f ′(ϕ) 6≡ 0 on
[ϕ, ϕ+ 2π), we have

0 >

∫ ϕ+2π

ϕ

f ′(ψ)dψ = f(ϕ+ 2π)− f(ϕ).

By the mean value theorem, there exists c ∈ (ϕ, ϕ + 2π) such that

f(ϕ+ 2π)− f(ϕ)

2π
= f ′(c),

which implies that

f(ϕ)− f(ϕ+ 2π) = −2πf ′(c) ≤ 2πKc−α−1 ≤ 2πKϕ−α−1.

Then, by Lemma 1, there exists a positive constant m such that f(ψ) ≤ mψ−α for
ψ ≥ ϕ1. Therefore,

length(Γ(ϕ1, ϕ)) =

∫ ϕ

ϕ1

√
(f(ψ))2 + (f ′(ψ))2dψ

≤

∫ ϕ

ϕ1

√
(mψ−α)2 + (Kψ−α−1)2dψ

=

∫ ϕ

ϕ1

ψ−α
√
m2 +K2ψ−2dψ

≤

√
m2 +K2ϕ−2

1

∫ ϕ

ϕ1

ψ−αdψ

=

√
m2 +K2ϕ−2

1

1− α
(ϕ1−α − ϕ1−α

1 )

≤

√
m2 +K2ϕ−2

1

1− α
ϕ1−α.

Theorem 3 implies that dimB Γ = 2/(1 + α).
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3. Spiral with the box-counting dimension one

In this section, we prove Theorem 4 and assume all assumptions of Theorem 4. Let
ε ∈ (0, ϕ−2

1 ) be sufficiently small. We use the following notation:

T1(Γ, ε) = Γ(ϕ1, ε
−1/2)ε;

N1(Γ, ε) = Γ(ε−1/2,∞)ε,

where Γ(ψ1, ψ2) = {(f(ϕ) cosϕ, f(ϕ) sinϕ) : ψ1 ≤ ϕ < ψ2}. In the same way as in
the proof of Lemma 3, we have the following result.

Lemma 6. |N1(Γ, ε)| ≤ π(m+ 1)2ε.

Lemma 7. |T1(Γ, ε)| ≤ −2πMε log ε+ 4πε2.

Proof. By Lemma 4, we find that

|T1(Γ, ε)| ≤ 4πε length(Γ(ϕ1, ε
−1/2)) + 4πε2

≤ 4πMε log ε−1/2 + 4πε2

= −2πMε log ε+ 4πε2.

The following inequality has been obtained in Tricot [22, §9.1].

Lemma 8. Let G be a curve in R2 and let diam(G) be the largest distance between
each two points in G, that is,

diam(G) = sup
z,w∈G

d(z, w).

Assume that diam(G) <∞. Then,

|Gε| ≥ 2ε diam(G) + πε2.

Now, we give the proof of Theorem 4.

Proof of Theorem 4. Since the distance between two points

(f(ϕ1) cosϕ1, f(ϕ1) sinϕ1)

and

(f(ϕ1 + π) cos(ϕ1 + π), f(ϕ1 + π) sin(ϕ1 + π))

is equal to f(ϕ1) + f(ϕ1 + π), we have

diam(Γ) ≥ f(ϕ1) + f(ϕ1 + π).
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Hence, from Lemma 8, it follows that

|Γε| ≥ 2ε diam(Γ) + πε2 ≥ 2(f(ϕ1) + f(ϕ1 + π))ε,

which implies that

lim inf
ε→+0

log |Γε|

log ε
≥ lim inf

ε→+0

log(f(ϕ1) + f(ϕ1 + π))ε

log ε

= lim inf
ε→+0

(
log(f(ϕ1) + f(ϕ1 + π))

log ε
+ 1

)
= 1.

By Lemmas 6 and 7, we conclude that

|Γε| ≤ |T1(Γ, ε)|+ |N1(Γ, ε)|

≤ −2πMε log ε+ 4πε2 + π(m+ 1)2ε

= [−2πM log ε+ 4πε+ π(m+ 1)2]ε

≤ [−2πM log ε+ 4π + π(m+ 1)2]ε,

since ε ∈ (0, 1). Therefore,

|Γε| ≤ (−c1 log ε+ c2)ε

for some c1 > 0 and c2 > 0, which implies that

lim sup
ε→+0

log |Γε|

log ε
≤ lim sup

ε→+0

log(−c1 log ε+ c2)ε

log ε

= lim sup
ε→+0

(
log(−c1 log ε+ c2)

log ε
+ 1

)
= 1.

Consequently, dimB Γ = 1.

Proof of Corollary 2. Let ϕ ≥ ϕ1 be fixed. By the same argument as in the proof
of Corollary 1, we find that 0 < f(ϕ)− f(ϕ+ 2π). We observe that

length(Γ(ϕ1, ϕ)) =

∫ ϕ

ϕ1

√
(f(ψ))2 + (f ′(ψ))2dψ

≤

∫ ϕ

ϕ1

√
(mψ−1)2 + (Kψ−1)2dψ

=
√
m2 +K2

∫ ϕ

ϕ1

ψ−1dψ

=
√
m2 +K2(logϕ− logϕ1)

≤
√
m2 +K2 logϕ,

since ϕ1 > 1. Applying Theorem 4, we conclude that dimB Γ = 1.
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4. Box-counting dimension of solution curves

In this section, we give proofs of Theorems 1 and 2.
For each solution (x(t), y(t)) of (1), we use the following notation:

r(t) =
√
|x(t)|2 + |y(t)|2.

The following Lemmas 9, 10 and 11 have been obtained in [13, Lemmas 2.2, 3.1 and
4.2].

Lemma 9. Let (x(t), y(t)) be a nontrivial solution of (1). Assume that (3) is
satisfied. Then, there exist a constant C > 0 and a function δ ∈ C[t0,∞) such that
limt→∞ δ(t) = 0 and

[r(t)]2 = e−H(t)[C + δ(t)], t ≥ t0.

Lemma 10. Let (x(t), y(t)) be a nontrivial solution of (1). If x(t) = r(t) cos θ(t)
and y(t) = r(t) sin θ(t), then





r′(t) = −h(t)r(t) sin2 θ(t),

θ′(t) = −1−
1

2
h(t) sin 2θ(t).

Lemma 11. If (3) is satisfied, then limt→∞ h(t) = 0.

Proof of Theorem 1. Let (x(t), y(t)) be a nontrivial solution of (1). We note that
(2) holds, by (8). From Theorem A, it follows that limt→∞ x(t) = limt→∞ y(t) = 0,
(x(t), y(t)) is a spiral rotating in a clockwise direction on [t1,∞) for some t1 ≥ t0
and Γ(x,y;t0) is simple. By l’Hopital’s rule and Lemmas 10 and 11, we have

lim
t→∞

θ(t)

t
= lim

t→∞
θ′(t) = −1. (13)

Since

tαr(t) = tαe−H(t)/2
√
eH(t)[r(t)]2 = e−

1
2 (H(t)−2α log t)

√
eH(t)[r(t)]2,

Lemma 9 and (8) imply that

0 < lim inf
t→∞

tαr(t) ≤ lim sup
t→∞

tαr(t) <∞. (14)

By (13), (14) and (7), there exist t2 ≥ max{t1, 1}, C1 > 0, C2 > 0 and C3 > 0 such
that for t ≥ t2

−
3

2
t ≤ θ(t) ≤ −

1

2
t, (15)

−
3

2
≤ θ′(t) ≤ −

1

2
, (16)

C1 ≤ tαr(t) ≤ C2, (17)

th(t) ≤ C3. (18)
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In view of (15), we note that limt→∞ θ(t) = −∞. Set η(t) = −θ(t). Then η
is positive and strictly increasing on [t2,∞). Hence, η has the inverse function
η−1. Set ϕ2 = η(t2) > 0 and f(ϕ) = r(η−1(ϕ)) on [ϕ2,∞). Since limt→∞ x(t) =
limt→∞ y(t) = 0, we have limt→∞ r(t) = 0, and hence, limϕ→∞ f(ϕ) = 0. From (15)
and (17), it follows that

ϕαf(ϕ) = ϕαr(η−1(ϕ)) = (η(t))αr(t) =

(
−θ(t)

t

)α
tαr(t) ≥

C1

2α
, ϕ ≥ ϕ2,

where t = η−1(ϕ). By (16) and Lemma 10, we find that

f ′(ϕ) = r′(η−1(ϕ))
1

η′(η−1(ϕ))
= −

r′(t)

θ′(t)
=
h(t)r(t) sin2 θ(t)

θ′(t)
≤ 0, ϕ ≥ ϕ2, (19)

where t = η−1(ϕ). We conclude that f ′(ϕ) 6≡ 0 on [ϕ, ϕ+2π) for each fixed ϕ ≥ ϕ2.
Indeed, if f ′(ϕ) ≡ 0 on [ϕ, ϕ + 2π) for some ϕ ≥ ϕ2, then, by (19), sin2 θ(t) ≡ 0 on
I := [η−1(ϕ), η−1(ϕ+2π)), that is, θ′(t) ≡ 0 on I. This contradicts (16). Combining
(15), (17), (18) with (19), we find that

−ϕα+1f ′(ϕ) = (η(t))α+1 h(t)r(t) sin
2 θ(t)

−θ′(t)

=

(
−θ(t)

t

)α+1
tα+1h(t)r(t) sin2 θ(t)

−θ′(t)

≤

(
3

2

)α+1

2C2C3, ϕ ≥ ϕ2,

where t = η−1(ϕ). Set

Γ = {(f(ϕ) cosϕ, f(ϕ) sinϕ) : ϕ ≥ ϕ2}.

Corollary 1 implies that dimB Γ = 2/(1 + α). Since

Γ(x,−y;t2) = {(x(t),−y(t)) : t ≥ t2}

= {(r(t) cos θ(t),−r(t) sin θ(t)) : t ≥ t2}

= {(r(η−1(ϕ)) cos θ(η−1(ϕ)),−r(η−1(ϕ)) sin θ(η−1(ϕ))) : ϕ ≥ ϕ2}

= {(f(ϕ) cos(−ϕ),−f(ϕ) sin(−ϕ)) : ϕ ≥ ϕ2}

= {(f(ϕ) cosϕ, f(ϕ) sinϕ) : ϕ ≥ ϕ2}

= Γ,

we have dimB Γ(x,−y;t2) = 2/(1+α). Since Γ(x,y;t2) and Γ(x,−y;t2) are symmetric, we
conclude that

dimB Γ(x,y;t2) = dimB Γ(x,−y;t2) = dimB Γ =
2

1 + α
.
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Proof of Theorem 2. Let (x(t), y(t)) be a nontrivial solution of (1). Using (9), we
have (2). Hence, from Theorem A, it follows that limt→∞ x(t) = limt→∞ y(t) = 0,
(x(t), y(t)) is a spiral rotating in a clockwise direction on [t1,∞) for some t1 ≥ t0
and Γ(x,y;t0) is simple. By the same argument as in the proof of Theorem 1 and
noting Lemma 11, there exist t2 ≥ max{t1, 1}, C1 > 0, C2 > 0 and C3 > 0 such that
(15), (16) and the following (20) and (21) hold for t ≥ t2

C1 ≤ tr(t) ≤ C2, (20)

h(t) ≤ C3. (21)

Set η(t) = −θ(t). Then, η has the inverse function η−1. Set ϕ2 = η(t2) > 0 and
f(ϕ) = r(η−1(ϕ)) on [ϕ2,∞). Then, limϕ→∞ f(ϕ) = 0. We observe that

ϕf(ϕ) = ϕr(η−1(ϕ)) =

(
−θ(t)

t

)
tr(t) ≤

3C2

2
, ϕ ≥ ϕ2,

where t = η−1(ϕ). In the same way as in the poof of Theorem 1, using (15), (16),
(19), (20) and (21), we conclude that f ′(ϕ) ≤ 0 for ϕ ≥ ϕ2, f

′(ϕ) 6≡ 0 on [ϕ, ϕ+2π)
for each fixed ϕ ≥ ϕ2, and that

−ϕf ′(ϕ) =

(
−θ(t)

t

)
h(t)tr(t) sin2 θ(t)

−θ′(t)
≤ 3C2C3, ϕ ≥ ϕ2,

where t = η−1(ϕ). Corollary 2 implies that dimB Γ = 1. Hence, dimB Γ(x,y;t2) =
1.
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