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Abstract. The two-dimensional linear differential system
' =y, y =-z—hty

is considered on [to,c0), where h € C'[ty,00) and h(t) > 0 for t > to. The box-counting
dimension of graphs of solution curves is calculated. Criteria to obtain the box-counting

dimension of spirals are also established.
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1. Introduction

In this paper, we consider the following two-dimensional linear differential system
@' =y,
y'=—z—h(t)y

for t > to, where h € Ct[tg,00) and h(t) > 0 for t > to. This system has the zero
solution (z(t),y(t)) = (0,0). Setting y = 2/, we can rewrite (1) as the damped linear
oscillator

(1)

2"+ h(t)r +x =0, t>to.

By a general theory (for example [1, 4]), there exists a unique solution of (1) on
[to,00) with the initial condition z(t;) = « and y(t1) = B for every o, 8 € R
and t; > to. Hence, we note that every nontrivial solution (z(t),y(t)) satisfies
(x(t),y(t)) # (0,0) for t > tp.

The zero solution (z(t),y(t)) = (0,0) of (1) is said to be attractive if every
solution (z(t),y(t)) of (1) satisfies lim;_, oo x(t) = lim;—,00 y(¢t) = 0. There are a lot
of studies of the attractivity to (1) (see, for example, [2, 11, 12, 20, 21]).

Now, we assume that the zero solution of (1) is attractive. Let (z(t),y(t)) be a
solution of (1). We define the solution curve of (z(t),y(t)) on [t;,00) in R? by

F(mvy;tl) = {(l‘(t),y(t)) it 2 tl}
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for each fixed t; > to. A curveI'(, .1, ) is said to be simple if (2(t), y(t)) # (x(s),y(s))
for t, s € [t1,00) with t # s. A simple solution curve I'(, .+, is said to be rectifiable
if the length of T'; ;) is finite, that is,

/too VI OP Iy ORdt < .

Otherwise, it is said to be non-rectifiable, that is,
| VORI = .
t1

The rectifiability of solutions to two-dimensional linear differential systems was
studied by Mili¢i¢ and Pasi¢ [8] and Naito and Pasi¢ [9]. Naito, Pasi¢ and Tanaka [10]
obtained rectifiable and non-rectifiable results of solutions to half-linear differential
systems. Recently, the following Theorem A has been established in [13]. In what
follows, the following notation will be used:

H(t) = /t t h(s)ds.

Theorem A. Let h € Cltg,00) satisfy h(t) > 0 for t > to. Assume that the
following conditions (2) and (3) are satisfied:

/OO h(t)dt = oc; (2)

to

/OO 120/ (1) + [h(8) 2|dt < oo. 3)

to

Then, the zero solution of (1) is attractive and every nontrivial solution (z(t),y(t))
of (1) is a spiral, rotating in a clockwise direction for all sufficiently large t > to,
and its solution curve Iy .40y is simple. Moreover, the following properties (i) and

(i) hold:

(i) every nontrivial solution of (1) is rectifiable if

/ e HO/2qt < o0;

to

(i) every nontrivial solution of (1) is non-rectifiable if

/ e HM/2qt — 0.

to

In the above theorem, we adopt the definition of a spiral, according to a cele-
brated book by Hartman [4, Chapters VII and VIII] as follows. For every nontrivial
solution (z(t),y(t)) of (1), we introduce polar coordinates

x(t) = r(t)cosO(t), y(t) =r(t)sind(t),
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where the amplitude r(¢) > 0. A nontrivial solution (z(¢),y(t)) of (1) is said to be
a spiral it |0(t)] — oo as t — oo.

In this paper, we obtain the box-counting dimension of the solution curve I, ,.4,)
for a nontrivial solution (z(t), y(t)) of (1). For a bounded subset I' of R?, we define
the boz-counting dimension (Minkowski-Bouligand dimension) of T by

log |F€|

dimgI' =2 — lim ,
e—+0 loge

where I'. denotes the e-neighborhood of I" defined by
I. ={(z,y) € R*: d((z,y),T) < e}, (4)

d((z,y),T") denotes the Euclidean distance from (x,y) to I', and |T'c| denotes the
two-dimensional Lebesgue measure of I'.. More details on the definition of the
box-counting dimension can be found in Falconer [3] and Tricot [22]. If there exist
d €[0,2], 1 > 0 and ¢z > 0 such that

ce? < IT.| < coe?™d

for each sufficiently small € > 0, then dimp I" = d.
The following result has been established in Tricot [22, §9.1, Theorem].

Proposition 1. Let T" be a simple curve of finite length. Then

o
tim, 5o = length(D),

where length(T") denotes the length of T.

Therefore, if length(I') < oo, then dimpI" = 1.

The box-counting dimension of graphs of solutions to the nonautonomous differ-
ential equation was first obtained by Pagié¢ [14]. Thereafter, it was obtained about
the nonautonomous second order linear differential equations in [7, 15, 16, 17]. On
the other hand, the box-counting dimensions of solution curves to autonomous two-
dimensional nonlinear differential systems were established in [18, 19, 23, 24]. Re-
cently, Korkut, Vlah and Zupanovié [6] have considered the equation

22" + (2 — p)a’ + (t* — vz =0, (5)

where p, v € R, and defined generalized Bessel functions ju,u and SN/,,,H by two
linearly independent solutions of (5). When p = 1, equation (5) is known as Bessel’s
differential equation and Bessel functions J,, and Y, are its two linearly independent
solutions. In [6], the relation

_ ~ _ —1\?
Tou(t) = T T5(t), Vo ,(t) = t“TYp(t), U= (“—) +2

is found, and the following result is established.
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Theorem B (see [6]). Let p € (0,2), v € R and typ > 0. Let z(t) = j,,)u(t)
orY, . (t). Then the planar curve I' = {(z(t),2'(t)) : t > to} satisfies dimp ' =
1/ ).

It is worth noting that if 2:(t) = j,,)u(t) or 171,7M(t), then (z(t),y(t)) := (x(t),2'(t))
is a solution of the linear differential system

y’__(1_V_2)x_2__“y. (6)

12 t
The following two results are the main results of this paper.

Theorem 1. Let h € Cllty,00) satisfy h(t) > 0 for t > ty. Assume that (3) and
the following conditions are satisfied:

limsup th(t) < oo; (7)
t—o0
H(t) =2alogt+ O(1) ast— oo for some a € (0,1). (8)

Then, for every nontrivial solution (z(t),y(t)) of (1), there exists t1 > to such that
dimp F(m,y;tl) = 2/(1 + a).

Here and hereafter, f(t) = O(1) as t — co means that there exist M > 0 and #;
such that |f(t)| < M for t > t;.

Theorem 2. Let h € Clty,00) satisfy h(t) > 0 for t > to. Assume that (3) and
the following condition are satisfied:

H(t) =2logt+O(1) ast— oco. 9)

Then, for every nontrivial solution (z(t),y(t)) of (1), there exists t1 > to such that
dimp 'z y:¢,) = 1.

Example 1. We consider the case where h(t) = M™7, A > 0, 1/2 < < 1 and
to = 1. It is easy to check that (2) and (3) are satisfied, and

A 1
S (R D 1
H(t) = 1_7( )5 <7<l

Mlogt, v =1.

Theorem A implies that the zero solution of (1) is attractive and every nontrivial
solution (x(t),y(t)) of (1) is a spiral, rotating in a clockwise direction on [t1,00)
for some t1 > to, and its solution curve I, .1y is simple and that every nontrivial
solution of (1) is rectifiable when either 1/2 < v < 1 ory =1 and A > 2, and
every nontrivial solution of (1) is non-rectifiable when v =1 and 0 < A < 2. Let
(x(¢),y(t)) be a nontrivial solution of (1). Therefore, by Proposition 1, if either
1/2<y<1lory=1and X > 2, then dimp'(, .1,y = 1. Moreover, Theorem 2
implies that dimp I, y.,) = 1 for some ty > t1 when v =1 and A = 2. Applying
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Theorem 1, we conclude that if v =1 and 0 < X\ < 2, then there exists to > t1 such
that dimp F(w,y;tg) = 4/(2 + )\)
Now, we set either

(@(1), y(1) = (Joz-a(£): Joaon (1)) or (1), y(t) = (Yo2-x(), Y5 2-x (1)),
where 0 < A < 2. Recalling that (jl,#(t), jl’,#(t)) and (?yﬁﬂ(t), }N/V”M(t)) are solutions

of system (6), we find that (z(t),y(t)) is a solution of (1) with h(t) = X\t—1.
Here, we give numerical simulations of solution curves.

1 1
Y 05 A Y os
1 05 d\ 0.5 1 1 0.5 0 05 1
X X
05 A 05 1
R A
h(t) = 3t=3/4 R(t) = 3t~1
dimp I'(z 4;¢;) = 1, rectifiable dimp I'(z,4;¢;) = 1, rectifiable
1 1
Y 05 1 Y os

-0.5 7

1A

h(t) =2t~ h(t) = (5/3)t7!

dimgp I'(z,y;t5) = 1, non-rectifiable dimp 'z, y;t5) = 12/11, non-rectifiable
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R

h(t) = (4/3)t~ ! h(t)=t"1

dimp T'(z,y;t5) = 6/5, non-rectifiable dimp I (4, y;15) = 4/3, non-rectifiable

Figure 1: Solution curves for the case where h(t) = Xt~

The box-counting dimension of the graph of the spiral r = ™%, ¢ > 1 > 0
in polar coordinates is 2/(1 + ) when 0 < a < 1 (see, for example, Tricot [22,
§10.4]). Zubrini¢ and Zupanovié¢ [23, Theorem 5] generalized this fact to the function
r = f(p), ¢ > ¢1. Korkut, Vlah, Zubrini¢ and Zupanovié [5, Therem 2] improved
this result. See also Korkut, Vlah and Zupanovié [6, Theorem 2]. In this paper, we
give the following alternative criterion of the dimension of spirals.

Theorem 3. Let @1 > 0 and let f € Clp1,00) satisfy limg 00 f(¢) = 0. Assume
that there exist positive constants m, @, M and a € (0,1) such that for all ¢ > 1

me~* < (),
0 < f(p) = flp+2m) <ap™",
length(T'(p1, ) < Mt~
Let T be the graph of r = f(v) in polar coordinates, that is,

I'={(f(¢)cosp, f(¢)sing) : o > o1}
Then, dimg T’ = 2/(1 + «).
From Theorem 3, we have the following Corollary.

Corollary 1. Let o1 >0 and let f € C'[p1,00) satisfy limy_y00 f(p) = 0. Assume
that there exist positive constants m, K and o € (0,1) such that for all ¢ > p;

mep~* < f(e),
Ko ' < fl(p) <0.

Assume, moreover, that f'(¢) Z 0 on [p, ¢ + 27) for each fized ¢ > p1. Let T =
{(f(p)cosp, f(p)sing) : ¢ > @1}. Then, dimp T =2/(1 + ).
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The proof of Corollary 1 will be given in Section 2. Using Corollary 1, we prove
Theorem 1 in Section 4. Corollary 1 is similar to the criterion by Korkut, Vlah,
Zubrini¢ and Zupanovié [5, Therem 2]. The proof of Theorem 2 in [5] is based on
the proof of Theorem 5 in [23]. Zubrini¢ and Zupanovié¢ employed the radial box
dimension to prove Theorem 5 in [23]. On the other hand, the proof of Theorem 3,
which will be given in Section 2, is more direct.

The box-counting dimension of the graph of the spiral r = =1, » > 1 > 0 in
polar coordinates is 1 (see Tricot [22, §10.4]). We generalize this fact as follows.

Theorem 4. Let p1 > 1 and let f € Clp1,00) satisfy lim,_,o0 f() = 0. Assume
that there exist positive constants m and M such that for all p > 1

0< fly) <mp™,
0 < flp) = flo+2m),
length(T' (01, ¢)) < M log .
Let T = {(f(p)cosp, f(p)sing) : ¢ > ¢1}. Then, dimp T = 1.
The following corollary follows from Theorem 4.

Corollary 2. Let p1 > 1 and let f € Clp1,00) satisfy lim, oo f(¢) = 0. Assume
that there exist positive constants m and K such that for all ¢ > ¢

0< flp) <mO,
—Ko™' < f'(p) 0.
Assume, moreover, that f'(¢) Z 0 on [p, ¢ + 27) for each fized ¢ > p1. Let T =
{(f(p)cosp, f(p)sing) : ¢ > ¢1}. Then, dimp T = 1.
The proofs of Theorem 4 and Corollary 2 will be given in Section 3.

2. Box-counting dimension of spirals

In this section, we prove Theorem 3 and Corollary 1. First, we give a lemma.

Lemma 1. Let ¢1 > 0 and let f € Clp1,00) satisfy f(o) > 0 for ¢ > @1 and
lim, oo f(p) = 0. Assume that there exist positive constants @ and o € (0,1) such
that

0< flo) = fle+2m) <ap™ ™', p>qr
Then, there exists a positive constant M such that f(p) < e~ for ¢ > ¢1.

Proof. Let ¢ > 1. Then, there exist N € N U {0} and ¢g € [p1,p1 + 27) such
that ¢ = g +2N7. Let n € N with n > N. It follows that

f(p) = f(po +2NT)

= flpo+2(n+1)m) + > [f(po+ 2km) — f(po + 2(k + 1)m)]

NIE

k

Il
=z

a(po + 2km) ™71,

M=

< flpo +2(n+ 1)) +
k

Il
=z
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Since
(po + 2km)~>"1 (% +2(k + m)“*l
(o + 2(k + 1)m)—a—-1 ©o + 2km
2 a+1
= 1 _
( * wo + 2k7r>
2 a+1
< (1+—) , keNu{0},
®1
we have

(0o +2km) ™71 < Mi(po +2(k + 1)m) ™71, ke NU{0},

where My = [1 4 (2m/¢1)]*T!. Therefore,

flo) < flpo+2(n+ ) +ZaM1900+2(k+1)) =
k=N

n k+1
= flpo+2n+1)m) +adhy ) / (po + 2(k + 1)m) =" dt
k=N"k

n E+1
< flpo+2(n+1)m) +ady 3 / (0o + 2mt) =~ dt
k=N "k
n+1
= f(go + 2(n+ 1)7) + aM; / (o + 27Tt)70‘71dt
N

= f(po +2(n+1)7) + Mﬁ [(po +2Nm)~* — (o + 2(n+ 1)m) =] .

Letting n — oo, we obtain

oNm)—e = ML —a
(¢o +2N) 5o ¥

aM,
<

flp) < 5o

O

Hereafter, in this section, we assume all assumptions of Theorem 3. Then, by
Lemma 1, there exists a positive constant 7 such that f(yp) <me™* for ¢ > ¢;.
Let € € (0,1) be sufficiently small. We use the following notation:

p2(e) = (2> ;
L(t1,92) = {(f(p) cosp, f(p)sing) : 1 < @ < Pa};
T(Le) =T(p1,p2(e ))
N(T,e) =T(p2(e),0)e,

where T'; denotes the e-neighborhood of T' defined by (4). Then, I'. = T(T',¢) U
N(T,e).
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Lemma 2.

{(rcosp,rsing) : 0 <r < f(p), ¢ € [pa(e), p2(e) + 2m)} € N(T', ).

Proof. Let
(w0, 90) € {(reosp,rsing) : 0 <7 < fp), ¢ € [pa(e), p2(e) + 2m)}.
Set rg = \/m. Then, there exists ¢o > @2(e) such that
(0,Y0) = (rocos g, rosin o)

and

flpo +2m) <719 < flpo)-
We have

0 < f(p0) = 70 < f0) = Flpo +2m) < Tpy " <lpale)) 7' = 5.
Therefore,
d((wo, y0), (f (o) cos o, f(wo)sinpo)) = f(po) — 10 <&,
which means that (zg,yo) € N(T,¢). O

Lemma 3.

mm? | (2a) =T + 277} evfT < |N(T,e)| < [m(2a) " =H +1]" eatr,

Proof. Set

re(e) = min , ri(e)= max
©) w€[<ﬂ2(5)7902(€)+27f]f(¢) © we[saz(&),wz(a)-ir%]f(w

and
A={(rcosp,rsing): 0 <r < fp), ¢ € [pa(e), p2(e) + 2m)}.
Then, we easily find that
{(rcosp,rsing) : 0<r <r.(e), p € R} C A
Therefore, Lemma 2 implies that
IN(T',e)| = |A]
> m(r.(e))?

2
>m ( min m1/)°‘>
YE[p2(e),p2(e)+2m]

= mm®(p2(e) + 2m) 72
—2a 5,

= mm? [(2&)@¢+1 + 27r5%+1} got

o [y 2 —20¢ 3a
Tm [(2(1) ot —|—27r] gatl,

Y%
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since ¢ € (0, 1).
Let (z,y) € N(T,¢e). Then, there exists (xo,y0) € I'(p2(€), c0) and

d((I, y)v ('IO; yO)) <E.
Hence,
d((z,y),(0,0)) < d((z,v), (z0,v0)) + d((z0,%0), (0,0)) < & +1r*(e).
It follows that

IN(T,e)| < 7(e +17(e))

2
< (5 + max m¢‘“>
PE[p2(e),p2(e)+2m]

=7 [e +m(pa(e)) "]

Lemma 4. Let z, y € C[a,b] and let
G ={(z(s),y(s)) :a < s < b}
Assume that (z(s),y(s)) # (x(t),y(t)) for a < s <t <b. Then,

|G<| < 4melength(G) + 4me?.

Proof. The proof is similar to the proof of Lemma 26 in [17]. Let € > 0. Set s1 = a
and

si41 = max{s € [s;, b] : d((z(t), y(t)), (z(s:), y(si))) <€, t € [si, 8]}
for i = 1,2,---. Then, there exists n > 2 such that s, = b. Set N = max{i € N :
s; < b}. We find that N > 1,

CLZSl<82<"'<Si<81‘+1<"'<SN<SN+1:b,
and if N > 2, then

d((x(si)vy(si))v (x(si-‘rl)vy(si-i-l))) =e, =12 ,N-1L

We will prove that
N

G. C U Boc(2(s:), y(s1)), (10)

where
B2€(x07y0) = {(:v,y) € R2 : d((!Eo,yo), (‘Tvy)) < 28}'
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Let (z1,y1) € Ge. Then, there exists o € [a, b] such that

d((z1,11), (z(0),y(0))) <e.

Because of the definition of s;, we find that o € [sg, Sg+1] for some k € {1,2,--- | N},
which implies that

d((2(0), y(0)), (z(sk), y(sk))) < e

Hence, it follows that

d((1,91), (2(s), y(sk)))
< d((z1,31), (2(0),y(0))) + d((x(0), y(2)), (z(sx), y(s1))) < 2¢,

which means that (x1,y1) € Bac(2(sk),y(sk)). Therefore, we obtain (10). By (10),
we conclude that

N
|Gel <Y 1Bae(a(si), y(si)| = 4Nwe®. (11)
i=1

When N =1, from (11) it follows that
|G| < 4me? < 4dmelength(G) + 4me?.

Now, we assume that N > 2. We observe that

N
length(G) > > d((x(s:),y(s:)), (@(si11), y(si41)))
i=1

N—-1
> Z d((@(s:),y(si)), (x(si+1),y(si41)))

= (N =1,
that is,
Ne <length(G) +¢. (12)
Combining (11) with (12), we obtain |G| < 4me length(G) + 4me?. O
Lemma 5.

IT(T,&)| < 4n [M(za)i% + 1] et
Proof. From Lemma 4, it follows that
|T(T,¢)| < 4melength(T (1, 02(c))) + 4me?
< AdmeM (pa ()™ + 4me?
11—« 2a
= 4m M (2@) oF1£a+T + d7e?
— 4r {M(m)%‘? + ET} et

<dr {M(m)ﬁ + 1} e,
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Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Since
[Ce| > [N(T, €)]

and
IT.| < |T(T,e)|+ |N(T,e)l,

Lemmas 3 and 5 imply that there exist positive constants C and C5 such that
0150‘2_4(:1 < |F5| < 0260‘2_31
for all sufficiently small £ € (0,1). Consequently, dimgI" = 2/(1 + «). O

Proof of Corollary 1. Let ¢ > ¢1 be fixed. Since f'(¢) < 0 and f'(¢) £ 0 on
[p, p + 27), we have

w42
0> / f'(W)dy = flo+2m) — fp).

By the mean value theorem, there exists ¢ € (i, p 4+ 27) such that

fle+2m) — f(p)
21w

= f'(e),
which implies that
flo) = flo+2m) = =2nf'(c) < 2rKc ' <2nKp 71,

Then, by Lemma 1, there exists a positive constant T such that f(1) < myp~* for
¥ > ¢1. Therefore,

©

1ength(r(@1,¢>>::l/" V@ T (F0))2di

$1

< [* VP T WP
P11
:/Ww_a /m2+K2w72dw
Y1
<+ K2 [Cyedy
Y1

I—a $1

/% 4+ K272 .
<+ @ o

- l1—«

Theorem 3 implies that dimg ' = 2/(1 + «). O
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3. Spiral with the box-counting dimension one

In this section, we prove Theorem 4 and assume all assumptions of Theorem 4. Let
e € (0,7 ?) be sufficiently small. We use the following notation:

Ti(T,e) = D(p1,e V2
Ni(Tye) = 1"(5_1/2, 00)e,

where I'(¢1,v2) = {(f(¢) cosp, f(@)sing) : 1 < ¢ < 1h2}. In the same way as in
the proof of Lemma 3, we have the following result.

Lemma 6. [Ny (T,¢)| < w(m+ 1)%.
Lemma 7. |T1(T,¢)| < —27nMeloge + 4me?.
Proof. By Lemma 4, we find that
|T1(T, )| < 4me length(T (1,7 /2)) 4 4me?

<4rMe logg_l/2 + 47e?
= —2rMeloge + 4me?.

The following inequality has been obtained in Tricot [22, §9.1].

Lemma 8. Let G be a curve in R? and let diam(G) be the largest distance between
each two points in G, that is,

diam(G) = sup d(z,w).

z,weG
Assume that diam(G) < oo. Then,

|G| > 2e diam(G) + me?.

Now, we give the proof of Theorem 4.
Proof of Theorem 4. Since the distance between two points

(f(p1) cospr, f(i01) sin 1)

and
(f(p1 + ) cos(p1 + ), f(p1 + ) sin(pr + 7))

is equal to f(y1) + f(¢1 + ), we have

diam(T) > f(p1) + f(¢1 + 7).



56 M. ONITSUKA AND S. TANAKA
Hence, from Lemma 8, it follows that

ITe| > 2¢ diam(T) + 7e? > 2(f (1) + fp1 +7))e,
which implies that

og|Tel (g 08U (01) + flpr +7))e

lim inf >
e=+0 loge e—+0 loge
1
= lim inf < oB(f(pr) + fer 7)) 1> —1.
e—+0 loge

By Lemmas 6 and 7, we conclude that

ITe| < [Ta(I' ) + [ N1 (T, )
< —27rMeloge + 4me? + w(m + 1)%e
= [-27rM loge + 4me + 7(m + 1)?]e
< [-2nMloge + 4n + w(m + 1)?e,

since € € (0,1). Therefore,
ITe| < (—c1loge + ca)e

for some ¢; > 0 and cg > 0, which implies that

log |Te| .. log(—cyloge + c2)e
lim sup < lim sup
es+0 loge =40 loge
log(—cy 1
— lim sup ( og(zciloge +ey) 1) —1.
e—+0 loge
Consequently, dimpg I' = 1. O

Proof of Corollary 2. Let ¢ > @1 be fixed. By the same argument as in the proof
of Corollary 1, we find that 0 < f(¢) — f(¢ + 27). We observe that

length(D(gr,0)) = | /@ T (F(8))d

< “’\/(W,l)2+(K¢,l)2d¢
Y1
Vi K [yl

Y1

=vm?+ K2(logyp — log ¢1)
< Vm? 4+ K2log o,

since 1 > 1. Applying Theorem 4, we conclude that dimgI" = 1. [l
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4. Box-counting dimension of solution curves

In this section, we give proofs of Theorems 1 and 2.
For each solution (z(t), y(t)) of (1), we use the following notation:

r(t) = VIz®)? + [y@).

The following Lemmas 9, 10 and 11 have been obtained in [13, Lemmas 2.2, 3.1 and
4.2].

Lemma 9. Let (z(t),y(t)) be a nontrivial solution of (1). Assume that (3) is
satisfied. Then, there exist a constant C > 0 and a function § € Clty, o) such that
lim;_,o0 0(t) = 0 and

() = e "O[C+6(t)], ¢ = to.

Lemma 10. Let (z(t),y(t)) be a nontrivial solution of (1). If xz(t) = r(t) cosé(t)
and y(t) = r(t)sin0(t), then

' (t) = —h(t)r(t) sin” O(t),

0'(t)=-1- %h(t) sin 26(t).

Lemma 11. If (3) is satisfied, then lim;_,o h(t) = 0.

Proof of Theorem 1. Let (x(t),y(t)) be a nontrivial solution of (1). We note that
(2) holds, by (8). From Theorem A, it follows that lim; o 2(t) = lim;—00 y(¢) = 0,
(x(t),y(t)) is a spiral rotating in a clockwise direction on [t1,00) for some t; > to
and I'(; 4.1, is simple. By I'Hopital’s rule and Lemmas 10 and 11, we have

lim o) _ lim 0'(t) = —1. (13)

t—oo t t—o00

tor(t) = 12— H®)/2, [cH () [r(t))2 = e~z (H(t)—2alogt) [ H(t) [r(t)]2,

Lemma 9 and (8) imply that

Since

0 < liminft*r(t) < limsupt®r(t) < oco. (14)
t—o0 t—o00

By (13), (14) and (7), there exist to > max{t;,1}, C; > 0, C2 > 0 and C3 > 0 such

that for ¢t > o

3 1

——t<0(t) < —=t 1
St<0() < —5t, (15)
3 1

—— <)< —= 1
5 <0 <3, (16)
Cl S ta’l”(t) S CQ, (17)

th(t) < Cs. (18)



58 M. ONITSUKA AND S. TANAKA

In view of (15), we note that lim;,. 6(t) = —oco. Set n(t) = —6(¢). Then 7

is positive and strictly increasing on [t2,00). Hence, n has the inverse function

n~t. Set pa = n(tz) > 0 and f(p) = 7(n~1(¢)) on [p2,00). Since lim; o z(t) =

limy 00 y(t) = 0, we have lim;_,o r(¢) = 0, and hence, lim,_,o f(¢) = 0. From (15)
and (17), it follows that

¢ 1) = o ) = ) = (T50) e 2 5 ez e

where t = n71(p). By (16) and Lemma 10, we find that

con 1 _r'(t)  h(t)r(t)sin® 0(t)

where t = 771(). We conclude that f’(¢) # 0 on [, ¢ + 27) for each fixed ¢ > ps.
Indeed, if f'(¢) = 0 on [, ¢ + 27) for some ¢ > o, then, by (19), sin? () = 0 on
I:=[n"Y(p),n 1 (p+27)), that is, &'(t) = 0 on I. This contradicts (16). Combining
(15), (17), (18) with (19), we find that

atl gty N it R()T(t) sin? O(t)
"t () = (n(t)) HTU)

—0(t)\*T T R (t)r(t) sin? 6(t)
(=) =55

3 a+1
< <§) 205C3, @ > @2,

where t = n71(¢). Set

I'={(f(v)cosp, f(p)sing) : ¢ > pa}.

Corollary 1 implies that dimg ' = 2/(1 + «). Since

A~ A~~~
)
—~
:\

—
—~
S
~
~
Q
@}
95}
>
—~
:\
[
—~
S
~
~—
|
<
—~
d\
—
—~
S
~—~
~—
wn
=
=}
>
—~
d\
—
—~
S
~
~
~
©
Y
)
V)
—

we have dimp F(w,—y;tg) = 2/(1 + a). Since F(w,y;tz) and F(;v,—
conclude that

yity) Are symmetric, we

2
1+a

dimp L (g yz0,) = dimp L' (g, —y;1,) = dimp I =
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Proof of Theorem 2. Let (x(t),y(t)) be a nontrivial solution of (1). Using (9), we
have (2). Hence, from Theorem A, it follows that lim;_,cc (¢) = lim; 0 y(t) = 0,
(x(t),y(t)) is a spiral rotating in a clockwise direction on [t1,00) for some t; > ¢
and T'(; y.1,) is simple. By the same argument as in the proof of Theorem 1 and
noting Lemma 11, there exist t3 > max{t;,1}, C; > 0, C2 > 0 and C3 > 0 such that
(15), (16) and the following (20) and (21) hold for ¢ > ¢5

Cl S t’l”(t) S CQ, (20)
h(t) < Cs. (21)

Set n(t) = —6(t). Then, n has the inverse function n=1. Set w2 = n(tz) > 0 and
f(@) =r(n~1(p)) on [p2,00). Then, lim,_, f() = 0. We observe that

eto) = et = (T2) o) < 32 oz

where t = n71(). In the same way as in the poof of Theorem 1, using (15), (16),
(19), (20) and (21), we conclude that f'(p) < 0 for ¢ > @2, f'(¢) Z 0 on [p, ¢+ 2)
for each fixed ¢ > @9, and that

—0(t)\ h(t)tr(t)sin®0(t)
t > —0'(t)

—pf'(p) = ( <3003, @ > o,

where t = n71(p). Corollary 2 implies that dimgI' = 1. Hence, dimp Ciayits) =
1.
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