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Parameter estimation of diffusion models∗

Miljenko Huzak†

Abstract. Parameter estimation problems of diffusion models are
discussed. The problems of maximum likelihood estimation and model
selections from continuous observations are illustrated through diffusion
growth model which generalizes some classical ones.
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Sažetak.Procjena parametara difuzijskih modela rasta. Raz-
matrani su problemi procjene parametara difuzijskih modela. Problemi
procjene metodom maksimalne vjerodostojnosti i odabira modela na os-
novi neprekidnih opservacija ilustrirani su na difuzijskom modelu rasta
koji je poopćenje nekih klasičnih modela rasta.

Ključne riječi: difuzijski model rasta, difuzijski proces, stohastička
diferencijalna jednadžba, procjenjivanje metodom maksimalne vjerodos-
tojnosti, odabir modela

1. Introduction

Diffusion processes have been used in modeling of various phenomena of noisy
growth. For example, modeling of tumor growth (see e.g. [1, 12, 13, 24]) and
interest rates (see e.g. [6, 7, 8, 9]).

A parametric stochastic diffusion model of population growth (briefly diffusion
growth model) is introduced by a stochastic differential equation (SDE) (see [22])
of the form

dXt = µ(Xt, ϑ) dt + ν(Xt, σ) dWt, X0 = x0, (1)

where x0 > 0 is an initial size of the population; µ(·, ϑ) is a function from a de-
terministic growth model (see e.g. [2]) given by an ordinary differential equation
ẋ(t) = µ(x(t), ϑ), t ≥ 0; ν(·, σ) is a real function such that ν(0, σ) = 0 and
ν(x, σ) > 0 for x 6= 0; (Wt, t ≥ 0) is a linear standard Brownian motion (see
[22]); X = (Xt, t ≥ 0) is a process of population growth (briefly growth process);
and ϑ = (ϑ, σ) is a vector of the parameters of the model: ϑ is a vector of drift
parameters and σ is a diffusion parameter . Usually, µ(·, ϑ) is called a drift function
and ν(·, σ) is called a diffusion coefficient function (see [22]).
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Let Θ̄ be parameter space, i.e. a set of all possible values of a parameter vector
θ = (ϑ, σ). Usually, it is supposed that Θ̄ is an open and connected set, a subset of
Euclidean space Rk+1 (k ≥ 1).

The very first condition that any proposed diffusion growth model has to satisfy,
is that SDE (1) has a unique in law solution with almost sure continuous paths
(see [22]) for every θ ∈ Θ̄. For example, this condition is satisfied if both drift
and diffusion coefficient functions are locally Lipschitz ([23], Theorem V.12.1). In
addition, if µ(·, ϑ) and ν(·, σ) are of bounded slope (see again [23], Theorem V.12.1),
then the growth process X is defined for all t > 0 (i.e. the solution of (1) does
not explode in finite time). A diffusion model has to have almost sure nonnegative
paths (see [22]) to be named as a growth model. Usually, this is a consequence of
the forms of drift and diffusion coefficient functions.

Another property that any reasonable model has to have is the stability on per-
turbations of parameters, i.e. for any convergent sequence (θn; n ≥ 1) of parameters
in Θ̄, the sequence of growth processes (X(n); n ≥ 1) converges in probability, uni-
formly in compacts to the growth process X(0) (see [22]), where X(n) is a solution
of the SDE (1) with parameter value θ = θn for any n ≥ 0 and θ0 = limn θn. For
example, this condition is satisfied if both drift and diffusion coefficient functions
are linear in parameters ϑ and σ ([21], Theorem V.15).

The problem we are going to discuss here is how to make parametric statistical
inference from the observations of the growth process. Namely, we suppose that we
observe the trajectories of the growth process satisfying SDE (1) of some specific
diffusion growth model with an unknown vector of parameters θ which should be
estimated.

An ideal way of observing the trajectories of a growth process is continuously
through the time. Usually, this is not always possible, i.e. in many cases the tra-
jectories can be observed only in discrete units of time. These imply two different
estimation problems: parameter estimation problem from continuous observations
and parameter estimation problem from discrete observations.

In this paper we will consider the estimation problem from continuous observa-
tions. The discussion of the estimation problem from discrete observations can be
found, for example, in [3, 4, 10, 11, 16].

2. Maximum likelihood estimation

Let Pθ be the law of the growth process X for the parameter vector θ ∈ Θ̄ (see
[22]). A solution of the estimation problem for some parametric diffusion model is
possible if for any θ1, θ2 ∈ Θ̄, the assumption Pθ1 = Pθ2 implies that θ1 = θ2. Let
us assume that it holds.

Let (Xt; 0 ≤ t ≤ T ) be a continuous observation up to the time T > 0 of the
growth process X. We assume that X is a solution of the SDE (1) with unknown
true value θ0 = (ϑ0, σ0) of the model parameter vector.

The specific feature of the parametric estimation of diffusions based on continu-
ous observations is that the value σ0 of the diffusion parameter could be calculated
through the following formula (see e.g. [5]) for the quadratic variation process of X
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(see [22]):

lim
n

2n∑

j=1

(Xjt2−n −X(j−1)t2−n) =
∫ t

0

ν2(Xs, σ0) ds a.s., 0 ≤ t ≤ T. (2)

Hence, we will assume that the true value of the diffusion parameter σ is known
and fixed. Let us denote ν(x, σ) briefly by ν(x). Let Θ = Θ(σ) be a parameter
space of unknown drift parameters ϑ. We assume that Θ is an open and connected
set in Euclidean space Rk (k ≥ 1).

If drift and diffusion coefficient functions µ(·, ϑ) and ν are locally Lipschitz,
then the log-likelihood function (LLF) of the diffusion growth model (up to some
constant not depending on the parameter θ) based on the continuous observation
(Xt; 0 ≤ t ≤ T ) is (see [14], Lemma 5.6. and definition 5.7.)

`T (ϑ) ≡ `(ϑ|(Xt, 0 ≤ t ≤ T )) =
∫ T

0

µ(Xt, ϑ)
ν2(Xt)

dXt − 1
2

∫ T

0

µ2(Xt, ϑ)
ν2(Xt)

dt. (3)

Maximum likelihood estimator (MLE) of the unknown drift parameter ϑ is any value
ϑ̂T ∈ Θ such that

`T (ϑ̂T ) = max
ϑ∈Θ

`T (ϑ). (4)

The first problem is to find sufficient conditions for existence and measurability of
MLE. If the drift function µ(x, ϑ) is linear in ϑ, then LLF is a concave quadratic
function. Hence, under some additional regularity conditions, for every T > 0,
there exists a unique MLE ϑ̂T which has to be measurable (see [5]). If µ(x, ϑ) is not
linear in ϑ, then the problem of existence and measurability of MLE is a complex
problem that usually has to be discussed for any particular model. For example,
in the case of a one-dimensional nonlinear parameter ϑ, in [17] it has been shown
that if µ(x, ϑ) and ν(x) are sufficiently smooth, if X has stationary distribution
(see e.g. [22]) and if some integrability conditions are satisfied, then there exists a
progressively measurable process (see e.g. [22]) (θ̂T ; T > 0) in Θ ∪ {+∞} such that

(i) there exists an a.s. finite random time τ such that for all T ≥ τ , ϑ̂T is in Θ
and d`T

dϑ (ϑ̂T ) = 0; and

(ii) a.s. lim
T→+∞

ϑ̂T = ϑ0, where ϑ0 is a true value of drift parameter in Θ.

The statement (i) tells us that a stationary point of LLF `T (ϑ) exists for enough
long observations of X. It may or may not be a MLE. The conditions on the model
are too weak for stronger conclusions. But the same conditions are sufficient for
the statement (ii) which tells us that the family of estimators ϑ̂T , T > 0, is strongly
consistent (see e.g. [19]). Moreover, under some additional conditions (see [17])

(iii) the process (
√

T (ϑ̂T − ϑ0); T > 0) has asymptotically normal distribution
N (0, I−1

0 ), when T → +∞ and where

lim
T→+∞

1
T

∫ T

0

(
∂µ

∂ϑ
(Xt, ϑ0))2

dt

ν2(Xt)
= I0 a.s.
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The last statement tells us that the family of estimators ϑ̂T , T > 0, is asymptotically
efficient (see [15]). After all, our goal is to find estimators that are consistent and
asymptotically efficient.

In [5] it has been shown that the MLE of a drift parameter of a diffusion model
with a drift function µ(x, ϑ) linear in ϑ has the same asymptotic properties. In
addition, the asymptotic distribution of the test-statistic for testing the selection of
(linear) model has been deduced.

It should be stressed that there exist some other methods of estimation which
provide the estimators with the same or similar properties (see e.g. [17] or [20]).

3. Example

In [14] the diffusion growth model given by the SDE

dXt = (α− βh(γ, Xt))Xt dt + σXt dWt, X0 = x0 > 0, (5)

has been introduced and discussed. The function h is defined by h(γ, x) = (xγ−1)/γ
if γ 6= 0 and h(γ, x) = log x if γ = 0 (γ ∈ R, x > 0). The unknown drift parameter
is ϑ = (α, β, γ) and the diffusion parameter is σ. The parameter space is

Θ̄ = {(α, β, γ, σ) ∈ R3 × 〈0, +∞〉 : β > 0, γ(α− σ2

2
) + β > 0}. (6)

This model is a generalization of stochastic Gompertz model (γ = 0, see e.g. [13]),
stochastic logistic model (γ = 1, see e.g. [1]) and stochastic Bertalanffy model
(γ = −1/3, see [14]).

It turns out (see [14]) that the SDE (5) has a unique in law and a.s. continuous
and positive solution. Moreover (see again [14]), the stationary distribution exists
and the model is stable on perturbations of parameters.

The LLF for the drift parameter ϑ = (α, β, γ), an element of drift parameter
space Θ obtained from Θ̄ with fixed σ > 0, is (see [14])

`T (ϑ) =
1
σ2

∫ T

0

(α− βh(γ, Xt))
1

Xt
dXt − 1

2σ2

∫ T

0

(α− βh(γ, Xt))2 dt. (7)

`T : Θ → R is of class C3 on Θ and it is jointly measurable (see [14]). Let D`T (ϑ)
and D2`T (ϑ) denote the first and the second derivative of `T with respect to ϑ,
respectively.

Let ϑ0 = (α0, β0, γ0) be the true parameter value. The following two theorems
are proved in [14].

Theorem 1. There exists a progressively measurable process (ϑ̂t; t ≥ 0) in Θ̂ (one-
point compactification of Θ) such that

(i) a.s. there exists τ > 0 such that for all T ≥ τ , ϑ̂T ∈ Θ and D`T (ϑ̂T ) = 0;

(ii) limT→+∞ ϑ̂T = ϑ0 a.s.; and

(iii)
√

T (ϑ̂T − ϑ0) converges in law to the normal distribution N (0, I−1
0 ) when

T → +∞, and where I0 = (a.s.) lim
T→+∞

1
T (−D2`T (ϑ0)) is a positively definite

matrix.
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Let c ∈ R be given number and let

Θc = { (α, β) ∈ R2 : β > 0, c(α− σ2

2
) + β > 0 } ≡ Θ ∩ { γ = c } (8)

be the parameter space with the parameter γ being fixed and equal to c. Let
(ϑ̂c

T ; T ≥ 0) be a sequence of MLEs of the parameter ϑc
0 = (α0, β0) ∈ Θc. These

estimators exist (see [5]). The appropriate LLF is denoted by `c
T (ϑc), ϑc ∈ Θc. Let

(ϑ̂T ; T ≥ 0) be the sequence of the estimators of the parameter ϑ0 = (α0, β0, γ0)
from Theorem1.

Theorem 2. Under the assumption that γ0 = c, 2(`T (ϑ̂T )− `c
T (ϑ̂c

T )) converges in
law to the χ2-distribution with one degree of freedom, when T −→ +∞.

Theorem2 provides the asymptotic distribution of the test-statistic 2(`T (ϑ̂T )−
`c
T (ϑ̂c

T )) that could be used for testing null-hypothesis H0: γ0 = c as a part of the
process of model selection.

References

[1] H. Aagaard-Hansen, G .F. Yeo, A stochastic discrete generation birth, con-
tinuous death population growth model and its approximate solution, J. Math.
Biology 20(1984), 69–90.
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