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An approach to mathematical induction — starting
from the early stages of teaching mathematics∗

Margita Pavleković†

Abstract. It is well-known that the method of proof by mathematical
induction often creates serious problems to students who encounter these
proofs in secondary schools. It is Therefore important to prepare the stu-
dents for understanding and the application of the method of mathematical
induction. For this purpose, our students should develop the abilities to
notice, compare, generalize, conjecture by analogy and conjecture by induc-
tive reasoning. On the other hand, the examples showing that conjectures
suggested by inductive reasoning could be incorrect, should be pointed out
at early stages. In that way, we show the students the need of proving the
conjectures as well as finding the methods for proving. In this paper we
mention a number of such examples through which the students at early
stages of teaching mathematics are induced to inductive reasoning, but we
also mention examples which illustrate how cautious one has to be when
accepting hypotheses obtained by inductive reasoning.
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Sažetak. Pristup metodi matematičke indukcije od početne
nastave matematike. Poznato je da metoda dokazivanja primjenom ma-
tematičke indukcije često dovodi do ozbiljnih poteškoća kod učenika koji se s
tim pojmom prvi puta susreću u osnovnoj ili srednjoj školi. Zato je potrebno
pripremiti učenike za razumijevanje i primjenu metode matematičke induk-
cije. Zato valja kod učenika razviti sposobnost uočavanja, uspored̄ivanja,
uopćavanja i postavljanja hipoteze induktivnim zaključivanjem. S druge
strane, valja dovoljno rano ukazati na primjere iz kojih je vidljivo da hipoteze
postavljene induktivnim zaključivanjem mogu biti netočne. Tako uvjer-
avamo učenika u potrbu dokaza hipoteze, te nalaženja metoda za dokazi-
vanje. U ovom članku navodimo niz upravo takvih primjera kroz koje
učenike početne nastave matematike navodimo na induktivno zaključivanje,
ali i primjere koji ukazuju na potrebu opreza prilikom prihvaćanja hipoteza
dobivenih induktivnim zaključivanjem.

Ključne riječi: induktivno zaključivanje, matematička indukcija
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1. Determining regularities — exercises in inductive reasoning

In several simple, but illustrative examples, through exercises in inductive reasoning
students should become able to independently find out regularities.

Example 1 Let us consider the sums of three consecutive integers

1 + 2 + 3 = 6
2 + 3 + 4 = 9
3 + 4 + 5 = 12

...

We notice that these sums are multiples of 3, and conjecture that this is valid for
any three consecutive natural numbers.

Example 2 Let us consider the first several sums of consecutive natural numbers,
starting with 1. To every number associate a column with the corresponding number of
squares. We arrange these columns next to each other and in this way to each sum we
associate a ‘zigzagged triangle’.

1 = 1 =

1 + 2 = 3 + =

1 + 2 + 3 = 6 + + =

1 + 2 + 3 + 4 = 10 + + + =

Figure 1.

The question is whether we can, without calculations, make an educated guess about
the result (sum) of the next or any other sum of consecutive natural numbers.
One way is to draw corresponding ‘zigzagged triangle’ and to count squares within it.
We would like to find a more economical procedure. The teacher will propose to put two
congruent ‘zigzagged triangles’ together to obtain a rectangle. For the case 1+2+3+4
the corresponding rectangle is of the area 4 · 5 = 20 (see Fig. 2.)

Figure 2.
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What do the lengths of rectangle edges ‘say’ about the left-hand side of the
equality?

Number 4 is the number of summands, and number 5 is its successor. The sum 1 +
2 + 3 + 4 makes one half of the area of the corresponding rectangle.

The teacher should advise the students to check this conjecture on previous exam-
ples. Once the students have checked the correctness of such sum calculation by direct
addition of, say 1+2+3+4+5, they should confirm the inductively foreseen conjecture
on an example like this:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (9 · 10) : 2 = 45.

In this way the students are convinced that the equality

1 + 2 + 3 + · · ·+ n =
1
2
n(n + 1).

always holds. Of course, they are not aware that for now this is only a hypothesis.

Example 3 Let each half of a domino tile be called a ‘field’. How many domino tiles
are there in the game of domino in which each field bears at most 6 dots?

For the beginning, let us consider the following task: How many domino tiles are
there in the game of domino in which each field bears at most 3 dots?
Students can come to a conclusion by counting dominoes in the game of domino in
which tiles have fields with at most 3 dots. But, students should be incited to find the
solution by inductive reasoning so that the task and then its solution could be general-
ized. For that purpose we shall arrange the dominoes in the following way:

p

p p p

p p p pp p p p p

p p p p p p p p p p p p p p p p p p

Figure 3.

By simple counting we find that the described domino has altogether 10 domino
tiles. The analysis of the total number of fields, i.e. domino tiles, is important. The
fields differ in the number of dots. There are fields without dots, fields with one, two
and three dots. So, there are 4 different types of fields in the game. We find out that
every field appears 5 times. Therefore, the considered game has the total of 4 · 5 = 20
fields (halves of domino tiles), which means 20 : 2 = 10 domino tiles. By adding the
tiles in rows (see Fig. 3.), we obtain:

1 + 2 + 3 + 4 = 10.

Now we repeat our reasoning with the game of domino in which each field bears at most
4 dots. For the number of domino tiles we write

1 + 2 + 3 + 4 + 5 = (5 · 6) : 2 = 15.



138 M. Pavleković

We notice that the number of field types is by 1 greater than the maximal number
of dots allowed in each field, and the total number of fields of the same type is by 2
greater than the maximal number of dots allowed in each field. By multiplying these
two numbers we obtain the number of fields in the game. If this number is divided by 2,
we obtain the number of domino tiles in that game. This hypothesis can be checked by
determining the number of domino tiles in the game in which a field bears at most 5,
6 or 7 dots. This example gives another justification for our previous conjecture that

1 + 2 + 3 + · · ·+ n =
(
n · (n + 1)

)
: 2.

Example 4 Let us add the first several consecutive odd natural numbers.
We successively increase the number of summands by one. The question is whether
we can, without calculations, conjecture what is the sum of an arbitrary number of
consecutive odd natural numbers (starting with 1)?

1 = 1 p
1 + 3 = 4 p p

p

1 + 3 + 5 = 9 p p p
p
p

Figure 4.

If the students do not see the connection between the given sum on the left-hand
side and the calculated sum on the right-hand side, the teacher might suggest that the
sum on the right-hand side be expressed as the product of two equal factors:

1 = 1 · 1
1 + 3 = 2 · 2
1 + 3 + 5 = 3 · 3

By analyzing the problem written in such a form we find that the factor on the right-
hand side says something about the left-hand side! It will be a discovery for the students
to see that the factor on the right-hand side equals the number of summands on the left-
hand side of the equality. The question naturally arises whether this holds in general.
The conjecture is tested in the following example:

1 + 3 + 5 + 7 + 9 + 11 = 6 · 6.

The question remains how to determine the number of summands without actually
counting them. Analyzing the solved examples, it is important that the students come
up with the fact that the number of summands equals one half of the last summand
increased by one. The teacher should advise students to check their conjecture against
the solved examples. To check whether the students understood the principle or not,
try the following example:

1 + 2 + 3 + · · ·+ 15 + 17 =?

If the students arrive to the solution by halving the number 17 + 1, i.e. if they write
something like

1 + 3 + · · ·+ 17 = 9 · 9 = 81,

they did acquire the principle.
Now it takes just a step to write down the conjecture:

1 + 3 + 5 + · · ·+ 2n− 1 = n2.
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Example 5 Let us add the first several consecutive even natural numbers. We suc-
cessively increase the number of summands by one. Can we surmise the sum of an
arbitrary number of consecutive even natural numbers (starting with 2)?

2 = 2, 2 + 4 = 6, 2 + 4 + 6 = 12.

Analyzing this problem we find that the result can be written as a product of two
consecutive numbers.

2 = 1 · 2, 2 + 4 = 2 · 3, 2 + 4 + 6 = 3 · 4.

It is important for the students to see that the smaller of the two factors is the number
of summands. This can be checked with the help of the following example: 2 + 4 + 6 +
8+10+12+14. By counting the number of summands, students see that there are 7 of
them. The successor of 7 is 8, so the result should be 7 · 8 = 56. The result is verified
by calculation.

It remains to determine the number of summands without actually counting them. If
the students cannot find the answer themselves, the teacher should draw their attention
to the last summand. Students should discover that the number of summands in the
sum equals one half of the last summand. In that way students inductively come to the
conjecture:

2 + 4 + 6 + · · ·+ 2n = n · (n + 1).

2. Inductive reasoning sometimes yields false conjectures

The next three examples illustrate the possibility of getting false conjectures.

Example 6 Let us consider the sums of two consecutive natural numbers.

1 + 2 = 3, 2 + 3 = 5, 3 + 4 = 7.

Notice that these sums are prime numbers. One could rashly conjecture that the sum
of any two consecutive natural numbers is a prime number. This is of course not true,
as shown by the following example:

4 + 5 = 9.

Example 7 Let us find the connection between the number of chosen points on a circle
and the maximal number of disc regions determined by the line segments connecting
these points (see Fig. 5.).
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Figure 5.

Choose one point on the first circle. The number of corresponding disc regions is
one. The line segment joining two points on the second circle, divides the disc into two
regions. The results for depicted cases in Figure 5 are given in the following table:

number of chosen points 1 2 3 4 5 6
maximal number of disc regions 1 2 4 8 16 ?

What is the maximal number of corresponding disc regions for 6 chosen
points?

Students used to come up to conclusions by inductive reasoning will see the following
regularity:
One point leaves the disc complete.
For 2 points, the number of regions is 2.
For 3 points, the number of regions is 2 · 2 = 4.
For 4 points, the number of regions is 2 · 2 · 2 = 8.
For 5 points, the number of regions is 2 · 2 · 2 · 2 = 16.

Based on this, one could easily conjecture that for 6 points one would obtain at
most 2 · 2 · 2 · 2 · 2 = 32 disc regions. But, it can easily be checked that for 6 points the
maximal number of disc regions is 31, and not 32.

The next, striking example, illustrates this point even better.

Example 8 Consider the quadratic polynomial f(x) = x2 − x + 41. After calculating
the values f(x) at, say x = 1, 2, . . . , 10, is there anything reasonable that one can say
about the values which the polynomial f assumes as x runs over the positive integers?

At the first glance, looking at the values f(x) for the first ten positive integers

x 1 2 3 4 5 6 7 8 9 10
f(x) 41 43 47 53 61 71 83 97 113 131

one notices that these are all odd numbers. A more thorough inspection reveals that all
these are prime numbers. Is it possibly true that for every positive integer x the value
of f(x) = x2−x+41 is a prime number? Testing this conjecture for ever larger integer
x, one becomes more and more inclined to believe it is true. But, finally, for x = 41,
the value f(x) = f(41) = 41 · 41 — not a prime number. Hence the conjecture was
false, and all we can say about these values, is that they are odd numbers. Which still
remains to be rigorously proved!

The three previous examples show that hypotheses based on inductive reasoning
might prove to be incorrect. Conjectures have to be proved in order to be accepted as
correct mathematical statements, which is not always possible at this level of educa-
tion. The awareness of the need for proving the inductive hypotheses, at this level of
education, will do.

3. Every conjecture has to be proved

The proofs of hypotheses or mathematical statements which depend on natural number
n, often use the method of mathematical induction. This method consists of two parts.
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The first part consists in verifying the statement for some initial value n0, usually
n0 = 1. This is the so called induction basis. The second part is the so called induction
step: Assuming the hypothesis to be true for n = k, the so called induction assumption,
prove the validity of the statement for n = k +1. This two parts taken together, prove
the hypothesis to be true for all natural numbers n ≥ n0.

Example 9 n circles of arbitrary radii and centers are drawn in the plane (see Fig. 6.a).
Prove that the ‘map’ determined by these circles can be colored with two colors in such
a way that any two neighboring regions are colored by different colors. (Regions are
said to be neighboring if their boundaries contain a common arc.) (Fig. 6.b)

Figure 6.a
A map

Figure 6.b
The same map properly colored

The proof is done using mathematical induction on the number of circles. For
n = 1 we have a disc in the plane. If we color the disc black, and the rest remains
white, we have the map colored as requested. In the induction step let us assume that
we can properly color any map determined by k circles. Let K be an arbitrary map
determined by k + 1 circles (Fig. 7.a). Choose a circle, call it c0, and denote by K ′

the map obtained from K by removing the circle c0. The map K ′ is determined by k
circles, thus, according to the inductive assumption, it can be properly colored (Fig. 7.b).
Adding the circle c0 to the map K ′, gives back our original map K, although not yet
properly colored (Fig. 7.c). But a simple argument shows that by switching the colors
inside c0, the map K becomes properly colored (Fig. 7.d).

This does the induction step and completes the proof.
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Figure 7.a
Map K with k + 1 circles.
Circle c0 is emphasized.

Figure 7.b

Properly colored map K′

with k circles

Figure 7.c

Properly colored map K′

with circle c0 added

Figure 7.d
Colors inside c0 are switched,
giving properly colored map K
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