.

Energy Sustainability and Its Impacts on Croatian Tourism

Marinela Krstinić Nižić

University of Rijeka, Faculty of Tourism and Hospitality Management in Opatija, Croatia marikn@fthm.hr

Zvonimira Šverko Grdić

University of Rijeka, Faculty of Tourism and Hospitality Management in Opatija, Croatia zgrdic@fthm.hr

Renata Endres

University of Rijeka, Faculty of Tourism and Hospitality Management in Opatija, Croatia renatad@fthm.hr CroEconSur Vol. 19 No. 2 December 2017 pp. 83-104

Received: February 10, 2017 Accepted: July 24, 2017 Review Article

doi:10.15179/ces.19.2.3

Abstract

Energy efficiency, renewable energy sources, and environmental protection projects play a pivotal role in tourism. The World Tourism Organization (UNWTO) addresses resource management and energy use as one of the major issues. The main goal of the paper is to present the economic–financial analysis and the assessment of investment projects in the construction of a conventional mid-size hotel using fossil fuels and a mid-size hotel based on sustainable principles and renewable energy sources. Comparative analysis of conventional and energy-efficient hotels is used to calculate the key financial indicators in decision-making. Case study shows that the introduction of renewable energy sources meets the needs of modern guests and increases the hotel's competitiveness, while the effects of energy sustainability reflect on the environment and reduced CO_2 emissions. Based on the results, the paper suggests measures for improving

energy sustainability in hotels and other tourism facilities. The paper is intended for those who deal with theoretical and practical issues of energy sustainability in tourism, tourism certificates, renewable energy sources and investment costs—scientists, researchers, PhD candidates and students as a basis for further comparative studies and benchmarking. It can also be useful for a considerably wider circle of users—managers at all levels and other business decision makers, as well as proprietors, investors, and creditors.

Keywords: energy sustainability, hotel industry, ecological certificate, CO₂ emission, investment costs, energy efficiency measures

JEL classification: O13, P28, Q01, Q50, Z32

1 Introduction¹

Tourism is considered to be not only one of the fastest growing economic sectors, but also one of the key drivers of socio-economic progress of the country (Snowden Duffield, 1982). According to the Croatian National Bank (CNB) (CNB, 2016), the revenues from travel and tourism in the period July-September 2016 amounted up to EUR 5.46 billion, which is EUR 450.2 million, or nearly nine percent more compared to the third quarter of 2015. In Croatia, tourism is one of the main sources of income, generating 18 percent of direct contribution to the GDP and is therefore the most vital economic activity (IZTZG, 2014). This implies a significant potential for growth, development and a stronger involvement of all relevant stakeholders in Croatian economy (Blažević, 2007). However, tourism is susceptible to various risks such as geopolitical instability, climate change and other environmental problems. There is a growing interest of business entities, including hotels, to solve the problem of using fossil energy sources and to meet current environmental standards. In its document Agenda 21 for the Tourism and Travel Industry, the World Tourism Organization (UNWTO) addresses resource management and energy use as one of the major issues (Becken,

 $^{1\}quad \text{This paper has been financially supported by the University of Rijeka, for the project ZP~UNIRI~4/16.}$

2013). The goal of Agenda 21 is to assist tourism authorities—ministries, tourist organizations, business associations, hotels, and businesses in the tourism sector realize their potentials, achieve sustainable development, and a higher level of energy efficiency (UNEP and ICLEI, 2003). Hotel energy efficiency constitutes a vital part of the eco-efficiency and tourism operations (Tsagarakis et al., 2011). The implementation of green concepts in the construction and operation is part of the Croatian Tourism Development Strategy until 2020 (MINT, 2013), whereby green hospitality represents a movement that has been recognized by the environmentally-conscious guests (UNEP and UNWTO, 2012), as well as hotel managers (Baker, Davis and Weaver, 2014; Manan et al., 2010). The goal of the paper is to present the economic-financial analysis and the assessment of investment projects in the construction of a conventional mid-size hotel using fossil fuels and a mid-size hotel based on sustainable principles and renewable energy sources. The paper is structured as follows. The following section provides the conceptual framework of the analysis. Section three explains the methodology and hotel characteristics used as the research sample. Using the example of two average hotels in Croatia, a preliminary financial analysis and a business plan were carried out to calculate not only the key financial indicators, but also the reduction of CO₂ emissions. Section four proposes new energy measures needed for improving energy sustainability in hotels. Section five provides the conclusion.

2 Literature Review

Many foreign authors (Chan, 2008; Chan, 2012; Kirk, 1995; Marunda, Judias Sai and Muchenje, 2013), as well as local authors (Petrić and Pranić, 2009, Radić Lakoš, Sladoljev and Goleš, 2009) agree that those hotels, which are a part of large hotel chains, apply energy efficiency and sustainable development measures more quickly and more often. The reason for this, other than simple rationalization measures, is that most activities require a significant initial investment. Although the return on this investment is relatively quick, the hotels that operate without a secure and stable financial and managerial support find such an investment

more difficult to afford. Hotel facilities are great consumers of energy, which implies high energy costs (Farrou, Kolokotroni and Santamouris, 2012). However, energy costs can be effectively controlled, which in turn affects the financial results and increases profits (Santamouris et al., 1996). Although there are many investment studies and energy efficiency projects which aim to reduce energy costs (HES, 2011), they should be approached and applied selectively, without decreasing the level of service quality and guest satisfaction. One way to encourage energy efficiency and the rational use of energy in hotels is to promote guests' environmental awareness. The most flexible, practical and cost-effective solution for improving energy efficiency is the use of renewable energy sources. In order to develop a sustainable and renewable energy system, it is important to encourage the use of renewable energy sources for heating and cooling. This can be achieved through the promotion of individual systems that use renewable energy sources (RES) (or electricity from RES) or by using centralized heating systems for district heating and cooling using renewable energy sources (or electricity from RES). One prerequisite for the achievement of this objective is an increase in energy efficiency, i.e. reducing the need for heating and cooling technologies (Enea, 2010). This, in turn, requires specific legislative measures at the state level, as well as support mechanisms and subsidies which would motivate the hoteliers to implement RES more often. One of the mechanisms of achieving that would involve each of the regional energy agencies operating in Croatia informing the hotel owners and managers about the tenders published by the Environmental Protection and Energy Efficiency Fund, as well as applications for various EU funds (EC, 2014). One of the motives behind such a mechanism could include environmentally-conscious guests who are increasingly interested in accommodation that meets the environmental standards and who are willing to pay more for a green service (Kostakis and Sardianou, 2012). In addition to energy efficiency measures, the implementation of green certificates can also be one of the more important goals for policy-makers (Stefanica, 2013). A number of hotels in Croatia base their operation on green hospitality principles. The analysis of the 2017 situation reveals that Croatia currently has 41 hotels

with the Sustainable Hotel Certificate by UPUHH, awarded by the Association of Employers in Croatian Hospitality (UPUHH) (UPUHH, 2016) for the period from 2014 to 2016. The certificate guarantees that the facility follows global trends in sustainable business, such as: successful sustainability management in daily hotel business, environmental protection, continuous environmental protection awareness raising, energy efficiency, staff training, energy and water saving, sustainable procurement, sales, marketing and PR, and the control of CO₂ emissions. Figure 1 shows the current list of certified eco-friendly hotels in Croatia. The competitiveness of firms (hotels) depends on internal efforts, but also on a number of external factors such as the overall perception of producers coming from a region or city (Stojčić, Bačić and Aralica, 2016).

Cakovec

Varaždin Koprivnica

Pagreb Bjelovar Virovitica

Rijeka Karlovac Sisak Požega Vinkovci Slavonski Brod

Rovinj

Pazin

Gospić

11 sustainable hotels

3 sustainable hotels

2 sustainable hotels

1 sustainable hotels

1 sustainable hotels

1 sustainable hotels

Norčula

Nijet

Dubrovnik

Figure 1: Map of Certified Eco-friendly Hotels by Destination in Croatia

Source: Authors' analysis of UPUHH Zagreb data.

One reason for concern is the fact that out of 200 UPUHH members, which account for about 80 percent of the total Croatian hotel industry, only 41 have been rewarded the *Sustainable Hotel Certificate*. However, the plan is that by the end of 2018, other hotels also adopt the concept of a green business, and that new professional associations (from camping, nautical and other segments of tourism) join the project. The costs of this project are covered by the UPUHH and cofinanced by the Ministry of Tourism and other partners. The strategic goal of the project is in line with the goals of the *Croatian Tourism Development Strategy until 2020*, which are based on the introduction of green business practices and which imply a synergy of economic benefits, concerns for the environment in its broadest sense, and social inclusion in a wider community (IZTZG, 2016; MINT, 2013), all in accordance with the principles of sustainable development and energy efficiency.

3 Methodology and Results

This section provides the research methodology and a description of survey data analysis. Information needed for the cost-effectiveness analysis of the construction of a conventional hotel and an energy-efficient hotel has been collected on the market, and refers to the prices of accommodation, food and drinks, energy prices, construction costs, employee costs etc. Research data was obtained by interviewing the members of the controlling services and human resources in similar hotel companies in the Primorje-Gorski Kotar County and Istria. Basic technical parameters and legal and legislative regulations of the Republic of Croatia were also used in the research. The final sources of data are the assumptions and forecasts that, in the absence of exact data, have to be applied in certain cases. All of the abovementioned parameters were used in the presented model of the conventional and energy-sustainable hotel. The paper presents not only the assessment of the financial elements, but also the assessment of the social benefits of the two hotels and an estimate of CO₂ emission reduction

for both hotels. It should be emphasized that the 15-year projection (until 2031) was made on the following bases:

- Both hotels are situated on the Croatian coast and are categorized as fourstar hotels.
- Both hotels have 50 double rooms, i.e. 100 accommodation units.
- Both hotels have one pool, a restaurant and a congress hall; a total area of 3000 m²; the size of each room is 26 m².
- Both hotels have 41 employees.
- The average room price is EUR 195.
- During the first three years, both hotels increased their revenues by six percent per year. In years four through seven, the annual increase was seven percent per year, followed by six percent per year until the end of the period observed. The pace of the revenue increase is based on the UNWTO tourists' arrival forecasts for the Mediterranean and on conversations with workers in the tourism sector who deal with tourism revenue calculations in Croatia. The forecast of the pace of revenue increase is held the same for both hotels in order to avoid biasing the revenue-based financial results of one of the hotels. Financial revenues in both hotels increase by 0.2 percent per year. Those revenues are not large amounts and therefore their increase does not have a significant share in total revenues.
- Expenditures include material costs that increase by two percent per year in both hotels and other expenses that increase by 0.5 percent annually. In addition, depreciation rate is calculated based on the Croatian accounting regulations, while financial expenses are calculated based on a five percent interest rate. Income tax, which is currently 20 percent, is also calculated according to the Croatian accounting regulations. Revenue increases are based on the hotel sector forecasts for future periods.

• Costs for employees in a classic hotel are somewhat lower at the beginning, while increasing at an average two percent annual rate. In order to maintain the whole system, the energy-efficient hotel needs to hire experts on energy efficiency, and therefore, the starting costs for employees are somewhat higher while continuing to grow at a three percent yearly rate. Due to the fact that other costs in an energy-efficient hotel are lower than in a conventional hotel, it was possible to forecast a higher wage increase.

- Parameters needed to analyze hotels are not based on any particular hotel operation, but rather on common characteristics across a range of existing hotels and on information gathered through interviews with hotel experts.
- The conventional hotel uses fuel oil, while the energy-efficient hotel uses solar energy.

The parameters required for the analysis of the conventional and energy-sustainable hotel models do not refer to any particular hotel, but are based on certain prominent characteristics of the existing hotel facilities on the Croatian coast. The coastal part of Croatia is used for case analysis because real estate prices are higher than in the continental part. The tables below show the basic business elements of both models.

Table 1: Basic Business Elements in a Conventional Hotel

Initial investment	36.703							Value	Value in 000 HRK	HRK					
							Bu	Business year	ar						
ELEMENTS/YEAR	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Business revenue	13338	14138	14987	16036	17158	18359	19644	20823	22072	23397	24801	26289	27866	29538	31310
Financial and extraordinary gains	100	102	104	106	108	110	113	115	117	120	122	124	127	129	132
TOTAL REVENUE	13438	14240	15091	16142	17266	18470	19757	20938	22190	23516	24922	26413	27993	29667	31442
Business expenses	11088	11141	11201	11268	11342	11421	11509	11603	11704	11810	11923	12043	12167	12299	12436
Material costs	3600	3672	3745	3820	897	3975	4054	4135	4218	4302	4388	4476	4566	4657	4750
Other expenditures	2700	2714	2727	2741	2754	2768	2782	2796	2810	2824	2838	2852	2867	2881	2895
Staff costs	2953	3012	3072	3134	3196	3260	3326	3392	3460	3529	3600	3672	3745	3820	3896
Amortization	1835	1743	1656	1573	1494	1418	1347	1280	1216	1155	1097	1043	066	941	894
Financial expenses	1835	1750	1660	1567	1468	1365	1256	1142	1023	897	765	626	481	328	168
TOTAL EXPENSES	12923	12891	12861	12835	12810	12786	12765	12745	12727	12707	12688	12669	12648	12627	12604
GAIN	515	1349	2230	3307	4457	5683	6992	8193	9463	10809	12234	13744	15344	17040	18838
Income tax	103	270	446	661	891	1137	1398	1639	1893	2162	2447	2749	3069	3408	3768
PROFIT	412	1079	1784	2646	3565	4547	5594	6554	7570	8647	2826	10995	12276	13632	15071
PROFIT + AMORTIZATION	2247	2823	3440	4219	5059	5965	6941	7834	8786	9802	10884	12038	13266	14573	15965

Source: Authors' results based on simulation.

The projection is made based on the abovementioned input parameters, with an investment made in the construction of a conventional hotel in value of HRK 36.7 million.

.

Apart from the financial indicators, the environmental features of the hotel itself (i.e., CO_2 emissions) are also shown. Fuel oil consumption and higher levels of greenhouse gas emissions are to be expected in a conventional hotel, as shown in the following table.

Table 2: CO₂ Emissions by Energy Source Relating to the Consumption in a Conventional Hotel

Description	Conventional hotel
Greenhouse gas emission:	
Water consumption	2.605 kg/year
Fuel oil consumption	128.471 kg/year
Electrical energy	227.370 kg/year
Electricity produced by photovoltaic collectors	
TOTAL	357.906 kg/year
Fee per 1 t of CO ₂ emitted	HRK 18,00
Annual fee in HRK	6.444,00

Source: Authors' results based on simulation.

An average conventional hotel emits around 358 000 kilograms of CO_2 into the atmosphere every year. Other than the financial data obtained, no additional economic benefits have been taken into account in the analysis, such as indirect employment, regional economic growth, improved infrastructure and competitiveness, labor and population mobility, support to related industries and businesses etc.

Table 3: Basic Business Elements in an Energy-efficient Hotel

R 2017 2018 2019 2020 2021 2022 2024 2025 2026 2026 2026 2026 2026 2022 2024 2025 2024 2025 2026 2026 2026 2026 2026 2026 2026 2026 2026 2029 2020 2020 2020 2020 2020 2039 2020 2039 2020 2039 2030 20	Initial investment	47.866						Λ	Value in 000 HRK	00 HRK						
AAR 2017 2018 2019 2020 2021 2022 2024 2025 2026 2020								Ви	siness ye.	ar						
ains 10338 14138 14987 16036 17158 18359 19644 20823 22072 23397 7 ains 100 102 104 106 108 110 113 115 117 120 s 10393 10428 15091 16142 17266 18470 19757 20938 22190 23516 uces 10393 10428 1644 10529 10593 10666 10750 10842 10943 11055 uces 2600 2613 2626 2639 2652 2666 2679 2692 2706 2719 uces 3600 3607 3715 3827 3667 1676 1759 1671 1851 1750 1679 2719 ses 2393 2273 2160 2052 1949 1851 1759 1671 1850 ses 12786 12780 1678 1278 1678 1679 <th>ELEMENTS/YEAR</th> <th>2017</th> <th>2018</th> <th>2019</th> <th>2020</th> <th>2021</th> <th>2022</th> <th>2023</th> <th>2024</th> <th>2025</th> <th>2026</th> <th>2027</th> <th>2028</th> <th>2029</th> <th>2030</th> <th>2031</th>	ELEMENTS/YEAR	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
ains 100 102 104 106 108 110 113 115 117 120 s 104 106 106 18470 19757 20938 22190 23516 23516 s 10393 10428 10474 10529 10593 10666 10750 10842 10943 11055 ures 2000 2040 2081 2122 2165 2208 2252 2297 2343 2390 ures 2600 2613 2626 2666 2679 2692 2706 2719 ses 2393 2273 2160 2052 1949 1851 1759 1671 1569 ses 2393 2282 2165 2043 1915 1780 1638 1490 1334 1170 ses 1530 2452 3572 12508 12446 12388 12372 12275 12278 ses 1530 46	Business revenue	13338			16036	17158	18359	19644	20823	22072	23397	24801	26289	27866	29538	31310
L REVENUE 1343 14240 15091 16142 17266 18470 19757 20938 22190 23516 2 se expenses 10393 10428 10474 10529 10593 10666 10750 10842 10943 11055 11055 10382 2000 2040 2081 2122 2165 2208 2252 2297 2343 2390 2 costs 2600 2613 2626 2639 2652 2666 2679 2692 2706 2719 2 costs 3400 3502 3607 3715 3827 3942 4060 4182 4307 4436 2 ciritation 2393 2273 2160 2052 1949 1851 1759 1671 1587 1509 2 cial and dinary loses 2393 2273 2160 2052 1949 1851 1759 1671 1587 1509 2 cial and dinary loses 2393 2273 2165 2043 1915 1780 1638 1239 12277 12225 2 cial and dinary loses 250 250 2504 2504 2504 2504 2504 2504 2	Financial and extraordinary gains	100		104	106	108	110	113	115	117	120	122	124	127	129	132
se expenses 10393 10428 10474 10529 10593 10666 10750 10842 10943 11055 rial costs 2000 2040 2081 2122 2165 2208 2252 2297 2343 2390 costs 3400 3502 3607 3715 3827 3942 4060 4182 4307 4436 critation 2393 2273 2160 2052 1949 1851 1759 1671 1587 1509 dinary loses 2393 2282 2165 2043 1915 1759 1671 1587 1509 LEXPENSES 12786 12710 12639 12572 12508 1248 1334 1170 LEXPENSES 12786 12710 12639 12572 12508 1246 1238 1490 1334 1170 rax 130 306 490 714 952 1205 1474 1721 1982	TOTAL REVENUE	13438	_	15091	16142	17266	18470	19757	20938	22190	23516	24922	26413	27993	29667	31442
rial costs 2000 2040 2081 2122 2165 2208 2252 2252 2297 2343 2390 costs 260 2613 2626 2639 2652 2666 2679 2692 2706 2719 costs 3400 3502 3607 3715 3827 3942 4060 4182 4307 4436 riziation 2393 2273 2160 2052 1949 1851 1759 1671 1587 1500 dinary loses 2393 2282 2165 2043 1915 1780 1678 1436 150 LEXPENSES 12786 12710 12639 12572 12508 1246 1238 1439 1170 LEXPENSES 12786 1450 475 6023 7369 8606 9912 11291 reax 130 306 490 714 952 1205 4819 5895 6884 7930	Business expenses	10393	_	10474	10529	10593	10666	10750	10842	10943	11055	11173	11302	11438	11583	11737
rexpenditures 2600 2613 2626 2639 2652 2666 2679 2679 2679 2719 costs 340 3502 3607 3715 3827 3942 4060 4182 4307 4436 ritation 2393 2273 2160 2052 1949 1851 1759 1671 1587 150 dinary loses 2393 2282 2165 2043 1915 1780 1638 1490 1334 1170 L EXPENSES 12786 12710 12639 12572 12508 12446 1238 1490 1334 1170 rex 130 4950 2452 3570 4758 6023 7369 8606 9912 11291 rex 130 490 714 952 1267 4819 5895 6884 7930 9033 T T 1224 141 4908 4756 6679 7654 8	Material costs	2000		2081	2122	2165	2208	2252	2297	2343	2390	2438	2487	2536	2587	2639
costs 340 3502 3607 3715 3827 3942 4060 4182 430 4436 trization 2393 2273 2160 2052 1949 1851 1759 1671 1587 1500 tall and dinary loses 2393 2282 2165 2043 1915 1780 1638 1490 1334 1170 L EXPENSES 12786 12710 12639 12572 12508 12446 1238 1237 12225 tax 130 306 490 714 952 1205 1474 1721 1982 2588 T 522 1224 1961 2856 3807 4819 5895 6884 7930 9033 T 74 1961 2856 3807 4819 5895 6884 7930 9033 T 74 4908 4756 6670 7654 8555 9517 10542	Other expenditures	2600		2626	2639	2652	2666	2679	2692	2706	2719	2733	2747	2760	2774	2788
rtization 2393 2273 2160 2052 1949 1851 1759 1671 1587 1509 ial and dinary loses 2393 2282 2165 2043 1915 1780 1638 1490 1334 1170	Staff costs	3400		3607	3715	3827	3942	4060	4182	4307	4436	4569	4706	4848	4993	5143
ial and dinary loses 2393 2282 2165 2043 1915 1780 1638 1490 1334 1170 LEXPENSES 12786 12710 12639 12572 12508 12446 12388 12372 12277 12225 124	Amortization	2393		2160	2052	1949	1851	1759	1671	1587	1509	1433	1362	1294	1229	1167
LEXPENSES 12786 12710 12639 12572 12508 12446 12388 12332 12277 12225 124x 1532 1277 12225 124x 1532 1277 12225 124x 130 2452 3570 4758 6023 7369 8606 9912 11291 11291 124x 130 306 490 714 952 1205 1474 1721 1982 2258 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Financial and extraordinary loses	2393		2165	2043	1915	1780	1638	1490	1334	1170	866	817	627	428	219
T	TOTAL EXPENSES	12786	_	12639	12572	12508	12446	12388	12332	12277	12225	12171	12119	12065	12011	11956
130 306 490 714 952 1205 1474 1721 1982 2258 522 1224 1961 2856 3807 4819 5895 6884 7930 9033 2915 3497 4121 4908 5756 6670 7654 8555 9517 10542	GAIN	652		2452	3570	4758	6023	7369	9098	9912	11291	12751	14294	15927	17656	19486
522 1224 1961 2856 3807 4819 5895 6884 7930 9033 2915 3497 4121 4908 5756 6670 7654 8555 9517 10542	Income tax	130		490	714	952	1205	1474	1721	1982	2258	2550	2859	3185	3531	3897
2915 3497 4121 4908 5756 6670 7654 8555 9517 10542	PROFIT	522	_	1961	2856	3807	4819	5895	6884	7930	9033	10201	11435	12742	14125	15589
	PROFIT + AMORTIZATION	2915		4121	4908	5756	0/99	7654	8555	9517	10542	11634	12797	14036	15354	16756

Source: Authors' results based on simulation.

.

Based on literature research, it is estimated that the construction costs will be increased by 30 percent for an energy-efficient hotel model compared to the conventional hotel (Hrs Borković, Kulišić and Zidar, 2008). Investments in the construction of this hotel amount up to HRK 47.8 million.

An energy-efficient, sustainable hotel uses solar energy and thus emits less ${\rm CO}_2$ than the conventional hotel, as can be seen in the following table.

Table 4: CO, Emissions by Energy Source Relating to the Consumption in a Sustainable Hotel

Description	Sustainable hotel
Greenhouse gas emission:	
Water consumption	1.605 kg/year
Fuel oil consumption	0,00 kg/year
Electrical energy	136.446 kg/year
Electricity produced by photovoltaic collectors	-29.812 kg/year
TOTAL	108.239 kg/year
Fee per 1 t of CO ₂ emitted	HRK 18,00
Annual fee in HRK	1.944

Source: Authors' results based on simulation.

The energy-efficient, sustainable hotel annually emits around 108,000 kilograms of CO_2 into the atmosphere, which is significantly less than the conventional hotel. Just like the conventional hotel, the energy-efficient hotel also brings economic and social benefits, but the importance of the realization of such investments is reflected in its environmental benefits, as well as the creation of a new image of an environmentally-friendly business on the market. By using renewable energy sources, this hotel is involved in environmental protection and climate change in terms of reducing the amount of CO_2 emissions and contributing to the energy supply security. The concluding assessment of both projects is presented in the following table.

.

Table 5: A Comparative Analysis and Concluding Assessment of the Conventional and

Description	Conventional hotel	Sustainable hotel
IRR	10,81%	8,36%
Payback period	15 years	18 years
NPV (with discount rate of 5%) in 000 HRK	24.439	16.754

Notes: IRR - Internal Rate of Return; NPV - Net Present Value.

Source: Authors' results based on simulation.

Sustainable Hotel

The discount rate in economic analysis tends to reflect the public view of the ways in which future benefits and expenditures should be valued in relation to current benefits and expenditures. It may differ from the financial yield rate when the capital market is imperfect (Blažević and Krstinić Nižić, 2011). This research takes a five percent discount rate, while for future research, a lower discount rate is recommended. Although the construction of a conventional hotel is more acceptable based on economic rating, this hotel type is not sufficiently aligned with the guests' environmental requirements and does not use alternative sources of energy, which is the primary goal of the European Union energy policy. The World Tourism Organization predicts an increase in the number of eco-tourists and Croatian tourism will also need to adjust to this trend. This is exactly what a sustainable hotel strives for, oriented toward the future and the promotion and implementation of renewable energy sources. The 18-year return on investment period for an energy-efficient hotel should not play a crucial role for the investors in their consideration of a responsible business and greater competitiveness not only for the hotel, but also for the Croatian tourism in general. Similarly, the construction of such hotels results in the reduction of CO, emissions, which is in line with the goals set out during the 21st United Nations Framework Convention on Climate Change (UNFCCC) (Conference of the Parties – COP 21) Conference held in Paris in December 2015. The conference adopted a new global climate change agreement which includes an action plan to keep global warming 'to well below two degrees Celsius' (UNFCCC, 2015).

4 Measures and Recommendations for Energy Sustainability Improvement of Croatian Tourism

Croatian energy statistics and state policy measures have not yet recognized the problem of power consumption in tourism facilities, camps, hotels, and apartments. Unfortunately, there was also no encouragement for the energy renovation of those facilities, even though the energy and financial effects that could be achieved by energy renovation are substantial. Therefore, the following table provides a number of proposed measures for improving energy sustainability in tourism facilities.

Table 6: Proposed Measures for the Improvement of Energy Sustainability in Hotels and Other Tourism Facilities

Measure 1 – The use of solar thermal heating systems for domestic hot water	This measure aims to eliminate the use of electricity and fossil fuels for heating and to promote the use of Sun's energy whenever possible. Each tourism facility should at least consider heating domestic hot water using the Sun. In order for these procedures to become used on a large scale, it is necessary to develop various analyses and implementation projects, which would allow better support and maintenance, and remove barriers to implementation.
Measure 2 – Increasing the efficiency of cooling systems in hotels and other tourism facilities	This measure aims to encourage a wider use of energy-efficient cooling systems in hotels. This refers to the use of a centralized cooling system in larger hotels, the use of heat pumps, and utilizing the environment for thermal energy storage (sea water). In addition to energy savings, this also results in peak load reductions. Furthermore, this measure also allows a centralized heating system that ensures a longer season during the winter.
Measure 3 – Implementation of green certificates	Apart from the standard norms such as ISO 14001, facilities in tourism are encouraged to implement ISO 50001 (for systematic energy management), as well as other environmental certificates that not only contribute to the image of the facility but also oblige the management to comply with a set of environmental criteria.
Purpose and application	Measures of energy sustainability are primarily intended for managers and hotel owners.
Implementation	The Ministry of Economy, Entrepreneurship and Crafts, the Ministry of Environmental Protection and Energy, and the Ministry of Tourism should all include these measures in their programs and promote them among the owners of hotels and other tourism facilities.
Financing	 The Environmental Protection and Energy Efficiency Fund (FZOEU) Croatian Bank for Reconstruction and Development (HBOR) Croatian Agency for Small Business and Investments (HAMAG INVEST) The European Investment Bank (EIB) The European Bank for Reconstruction and Development (EBRD) The European Energy Efficiency Fund (EEEF) CroPSSF Sustainable Energy (a line of credit developed in cooperation between the EBRD and the EU).

Source: Authors' research.

The Republic of Croatia has recognized the importance of financial support for environmental protection, energy efficiency and renewable energy projects by setting up special programs, funds and credit lines for the entrepreneurial sector. National institutions such as the Environmental Protection and Energy Efficiency Fund and the Croatian Bank for Reconstruction and Development, which are engaged in the achievement of energy goals, are also supported by the European development banks such as the European Investment Bank and the European Bank for Reconstruction and Development. This paper lists the currently available financial sources in the Republic of Croatia, while a deeper analysis is recommended for further research. The Croatian tax system has no special fiscal instruments which would encourage the procurement or investment in equipment for an increase in energy efficiency. In the European Union, 14 member states have so far introduced some type of special fiscal measures to boost energy efficiency investments (MGIPU, 2015). These mostly refer to various types of tax exemption aimed at specific consumer groups (citizens or the entrepreneurial sector), while a smaller number of countries have also introduced a lower value added tax (VAT) rates for energy-efficient equipment. One of the advantages of introducing a lower VAT rate is that it refers to all consumer groups. However, it also brings additional complications into the tax system and makes

The aim of the recommendations that are presented below is to encourage researchers, hoteliers, managers, and citizens to implement energy efficiency measures in their operations as much as possible, and to be guided by best practices of investment in green technologies and renewable energy sources

incentives.

it administratively more expensive to implement. Nevertheless, experiences from other countries show that lower tax rates and tax incentives have a significant impact on increasing investments in energy-efficient equipment and represent an excellent complementary instrument, along with preferential credit lines and subsidies for entrepreneurs. It is important to note that the limitations defined by the European Commission regarding the amount of state aid also include tax

(Zografakis and Sifaki, 2010). At the national level, it is necessary to implement various national policies to increase energy efficiency (MINGO, 2009; MINGO, 2014). Likewise, it is equally important to systematically improve and ensure the implementation of energy-efficiency measures and policies as a strong incentive to reduce energy dependence. Reducing energy dependence also leads to reduced energy imports, a positive balance of payments, and a parallel increase of domestic production through local jobs and the development of renewable energy sources (Krstinić Nižić, Šverko Grdić and Hustić, 2016).

5 Conclusion

European hotels innovate their products and services and introduce green measures into their business practice. Their businesses become recognizable on the market by various environmental certificates (e.g., Green Key, Sustainable Hotels etc.). Tourism in Croatia has not yet sufficiently recognized the quality and importance of these and other environmental certificates.

Therefore, these models of conventional and energy-efficient hotels can help future researchers, as well as investors, in deciding on their business model. Although it is evident that the return on investment period is shorter for the conventional hotel and that the internal rate of return and net present value are higher, the evaluation process needs to analyze not only market efficiency, but also the socio-economic efficiency. The proposed model of a sustainable hotel can become the basis for hotel industry trends in Croatian tourism. An energy-efficient hotel can prove that an advanced sustainability strategy does not exclude economic success. Such a hotel follows environmental guidelines, providing future guests with safe, energy-efficient accommodation and raising the competitiveness of Croatian tourism. Social benefits, which are defined as positive effects influencing the process of socio-economic development, are also immeasurable benefits not marketed and to which it is difficult or impossible

to attribute monetary value (quality of stay in a destination, air purity, energy

supply, security etc.).

Therefore, the authors recommend involving both the staff and the guests in energy sustainability processes from the very beginning in order to increase their awareness of energy saving. The analyzed and estimated CO₂ emissions in hotels stress the importance of removing the obstacles to the implementation of energy-efficiency measures in existing tourism facilities, as well as the importance of introducing renewable energy sources and energy-efficient technologies. It can be concluded that, despite the fact that the conventional hotel has better economic results, this should not be the sole indicator for the decision to build a certain type of hotel.

The paper highlights undeniable opportunities and benefits of energy sustainability. Furthermore, it stresses the necessity of a new approach to future tourism development in this area, which must necessarily be based on energy sustainability and sustainable development. The authors put forward the proposed measures and activities to be taken in order to successfully integrate Croatian tourism in the European market, and to ensure a long-term, sustainable development of Croatian tourism.

Literature

Association of Employers in Croatian Hospitality (UPUHH), 2016, *Sustainable Hotels Certificate*, http://www.upuhh.hr/en/projekti/green-sustainable-business/sustainable-hotels/item/28-dodjela-sustainable-hotel-certificate-by-upuhh (accessed October 18, 2017).

Baker, A. Melissa, Erica A. Davis and Pamela A. Weaver, 2014, "Ecofriendly Attitudes, Barriers to Participation, and Differences in Behavior at Green Hotels", *Cornell Hospitality Quarterly*, 55(1), pp. 89–99. https://doi.org/10.1177/1938965513504483

Becken, Susanne, 2013, "A Review of Tourism and Climate Change as an Evolving Knowledge Domain", *Tourism Management Perspectives*, 6, pp. 53–62. https://doi.org/10.1016/j.tmp.2012.11.006

Blažević, Branko, 2007, *Turizam u gospodarskom sustavu*, Opatija: University of Rijeka, Faculty of Tourism and Hospitality Industry.

Blažević, Branko and Marinela Krstinić Nižić, 2011, "Ocjena investicijskog modela primjenom diskrecijske diskontne stope – slučaj obnovljivih izvora energije u turizmu", *Ekonomski pregled (Economic Review)*, Zagreb: Croatian Economic Association – The Institute of Economics, Zagreb, 11, pp. 636–661.

Chan, Eric Siu Wa, 2008, "Barriers to EMS in the Hotel Industry", *International Journal of Hospitality Management*, 27(2), pp. 187–196.

Chan, Wilco, 2012, "Energy Benchmarking in Support of Low Carbon Hotels: Developments, Challenges, and Approaches in China", *International Journal of Hospitality Management*, 3, pp. 1130–1142. https://doi.org/10.1016/j. ijhm.2012.02.001

Croatian National Bank (CNB), 2016, *Makroekonomska kretanja i prognoze*, Zagreb: Croatian National Bank, https://www.hnb.hr/documents/20182/1199956/hMKP_01.pdf/2c76ca58-0c4a-4423-b00b-a131bcdf06e8 (accessed January 15, 2017).

Enea, Constanța, 2010, "Increase Efficiency Ecological – Objective of Tourism Policy – An Integral Part of National and World Sustainable Development",

Journal of Tourism, 9, pp. 49-55.

European Commission (EC), 2014, Commission Decision on the Annual Work Programme for 2015 in the Field of Energy, Brussels: European Commission, https://ec.europa.eu/energy/sites/ener/files/documents/c_2014_7588_f1_commission_decision_v3_p1_785382_en.pdf (accessed December 20, 2016).

Farrou, Ifigenia, Maria Kolokotroni and Mat Santamouris, 2012, "A Method for Energy Classification of Hotels: A Case-Study of Greece", *Energy and Buildings*, 55, pp. 553–562. https://doi.org/10.1016/j.enbuild.2012.08.010

Hotel Energy Solutions (HES), 2011, Best Practices Guide: Successful Energy Efficiency Technologies Integration in**SME** Hotels. Hotel World Energy Solutions project publications, Spain: Tourism Organization (UNWTO), http://hes.unwto.org/sites/all/files/docpdf/ bestpracticesguidesuccessfuleetintegrationinsmehotelsaugustfinalversion2.pdf (accessed November 20, 2016).

Hrs Borković, Željka, Biljana Kulišić and Margareta Zidar, 2008, "Energy Audit – Method for Energy Conservation in Hotels, Renewable Energy Sources in the Development of the Hotel and Tourism Industry", paper presented at the conference "Tourism and Hospitality Industry" organized by the Faculty of Tourism and Hospitality Management, Opatija, May 7–9.

Kirk, David, 1995, "Environmental Management in Hotels", *International Journal of Contemporary Hospitality Management*, 7, pp. 3–8. https://doi.org/10.1108/09596119510095325

Kostakis, Ioannis and Eleni Sardianou, 2012, "Which Factors Affect the Willingness of Tourists to Pay for Renewable Energy?", *Renewable Energy*, 38(1), pp. 169–172. https://doi.org/10.1016/j.renene.2011.07.022

Krstinić Nižić, Marinela, Zvonimira Šverko Grdić and Andreja Hustić, 2016, "The Importance of Energy for the Tourism Sector", *Academica Turistica*, *Tourism and Innovation Journal*, 9(2), pp. 77–83.

Manan, Zainuddin Abdul, Lim Jeng Shiun, Sharifah Rafidah Wan Alwi, Haslenda Hashim, K. S. Kannan, Norhasliza Mokhtbar and Ahmad Zairin Ismail, 2010, "Energy Efficiency Award System in Malaysia for Energy Sustainability", *Renewable and Sustainable Energy Reviews*, 14(8), pp. 2279–2289. https://doi.org/10.1016/j.rser.2010.04.013

Marunda, Edmond, Peter Judias Sai and Blessing Muchenje, 2013, "Challenges Facing Use of Energy in the Tourism and Hospitality Industry in Zimbabwe and Policies that Can Promote the Sustainable Use of Renewable Energy and Tourism Development", *International Journal of Development and Sustainability*, 2, pp. 472–484.

Ministry of Construction and Physical Planning (MGIPU), 2015, *Program energetske obnove komercijalnih nestambenih zgrada za razdoblje 2014.–2020. s detaljnim planom energetske obnove komercijalnih nestambenih zgrada za razdoblje 2014.–2016.*, Zagreb: Ministry of Construction and Physical Planning (MGIPU), http://cei.hr/upload/2014/08/program_eo_kz_2014-2020_53fb246f3ec10.pdf (accessed June 9, 2017).

Ministry of Economy, Entrepreneurship and Crafts (MINGO), 2009, *Strategija energetskog razvoja Republike Hrvatske (Croatian Energy Strategy)*, Zagreb: Ministry of Economy, Entrepreneurship and Crafts (MINGO), https://narodnenovine.nn.hr/clanci/sluzbeni/2009_10_130_3192.html (accessed January 12, 2017).

Ministry of Economy, Entrepreneurship and Crafts (MINGO), 2014, *Treći nacionalni akcijski plan energetske učinkovitosti za razdoblje 2014.–2016. (Third National Energy Efficiency Action Plan for the Period 2014–2016*), Zagreb: Ministry of Economy, Entrepreneurship and Crafts (MINGO), http://www.mingo.hr/public/3%20Nacionalni_akcijski_plan.pdf (accessed November 18, 2017).

Ministry of Tourism (MINT), 2013, Strategija razvoja turizma Republike Hrvatske do 2020. godine (Croatian Tourism Development Strategy until 2020), Zagreb: Ministry of Tourism (MINT), http://www.mint.hr/UserDocsImages/Strategija-turizam-2020-editfinal.pdf (accessed October 18, 2017).

Petrić, Lidija and Ljudevit Pranić, 2009, "Croatian Hoteliers' Attitudes Towards Environmental Management", paper presented at the international conference "Challenges of Europe: Financial Crisis and Climate Change" organized by the Faculty of Economics Split, Split, May 21–23.

Radić Lakoš, Tanja, Jasmina Sladoljev and Divna Goleš, 2009, "Norma ISO 14000 u hrvatskim hotelima" u Marko Bešker and Miroslav Drljača, eds., *Kvaliteta i procesno upravljanje*, pp. 1–9, Zagreb: Croatian Quality Managers Society, https://bib.irb.hr/datoteka/582662.Norma_ISO_14000_u_hrvatskim_hotelima.pdf (accessed January 10, 2017).

Santamouris, Matheos, Constantinos Balaras, Elena Dascalaki, Athanassios A. Argiriou and Athina Gaglia, 1996, "Energy Conservation and Retrofitting Potential in Hellenic Hotels", *Energy and Buildings*, 24(1), pp. 65–75. https://doi.org/10.1016/0378-7788(95)00963-9

Snowden Duffield, Brian, 1982, "Tourism: The Measurement of Economic and Social Impact", *Tourism Management*, 3(4), pp. 248–255. https://doi.org/10.1016/0261-5177(82)90046-2

Stefanica, Mirela, 2013, "Ecological Certification and Labelling of Tourist Services", CES Working Paper, 5(4), pp. 615–625, December, Iasi: Centre for European Studies (CES).

Stojčić Nebojša, Katarina Bačić and Zoran Aralica, 2016, "Is Creative Economy in Croatia a Myth or Reality? Some Evidence on the Impact of Creativity on Regional Economic Growth", *Croatian Economic Survey*, 18(2), pp. 113–138. https://doi.org/10.15179/ces.18.2.4

The Institute for Tourism (IZTZG), 2014, Satelitski račun turizma RH za 2011. godinu i izračun neizravnih ukupnih učinaka turizma u RH, Zagreb: The Institute for Tourism.

The Institute for Tourism (IZTZG), 2016, Akcijski plan razvoja zelenog turizma, Zagreb: The Institute for Tourism, http://www.mint.hr/UserDocsImages/160715_AP_Zelenog_t.pdf (accessed October 15, 2016).

The 21st United Nations Framework Convention on Climate Change (UNFCCC) (Conference of the Parties – COP 21) Conference, 2015, *Report of the Conference of the Parties on its Twenty-first Session*, Paris: United Nation Framework Convention on Climate Change (UNFCCC), http://unfccc.int/resource/docs/2015/cop21/eng/10.pdf (accessed June 10, 2017).

Tsagarakis, P. Konstantinos, Fanouria Bounialetou, Konstantinos Gillas, Maroulitsa Profylienou, Antrianna Pollaki and Nikolaos Zografakis, 2011, "Tourists' Attitudes for Selecting Accommodation with Investments in Renewable Energy and Energy Saving Systems", *Renewable and Sustainable Energy Reviews*, 15, pp. 1335–1342. https://doi.org/10.1016/j.rser.2010.10.009

United Nations Environment Programme (UNEP) and International Council for Local Environmental Initiatives (ICLEI), 2003, *Tourism and Local Agenda 21, The Role of Local Authorities in Sustainable Tourism*, Paris and Freiburg: United Nations Environment Programme (UNEP) and International Council for Local Environmental Initiatives (ICLEI).

United Nations Environment Programme (UNEP) and The World Tourism Organization (UNWTO), 2012, *Tourism in the Green Economy – Background Report*, Madrid: The World Tourism Organization (UNWTO), https://www.e-unwto.org/doi/pdf/10.18111/9789284414529 (accessed December 18, 2016).

Zografakis, Nikolas and Elli Sifaki, 2010, "Assessment of Public Acceptance and Willingness to Pay for Renewable Energy Sources in Crete", *Renewable and Sustainable Energy Reviews*, 14, pp. 1088–1095. https://doi.org/10.1016/j.rser.2009.11.009