
Mathematical Communications 2(1997), 135–141 135

Least orthogonal absolute deviations problem
for generalized logistic function ∗

Tomislav Marošević†

Abstract.We consider the existence of optimal parameters for gene-
ralized logistic model by least orthogonal absolute deviations, and prove
the existence of such optimal solution, under the monotonicity condition
on the data.
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Sažetak. Najmanja ortogonalna apsolutna odstupanja za
generaliziranu logističku funkciju. Razmatra se problem egzisten-
cije optimalnih parametara za generaliziranu logističku funkciju u smislu
najmanjih ortogonalnih apsolutnih odstupanja, te dokazuje egzistenciju
takvog optimalnog rješenja, uz uvjet monotonosti podataka.
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1. Introduction

The generalized logistic function

f(t; b, c) =
A

(1 + be−cγt)
1
γ

, b > 0 , (1)

is often used in applied research (see [5], [13]). It is the solution of the so-called
Nelder’s model

y′ = cy
(
1− ( y

A

)γ
)

, A, γ > 0 ,

(see [8]). The constant A > 0 denotes the saturation level, and the constant γ > 0
is the so-called asymmetry coefficient (see [10]).
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The unknown parameters b, c have to be determined on the basis of the given
data (wi, ti, fi), i = 1, . . . , m (m > 2), where ti are the measured values of the
independent variable, fi are the measured values of the dependent variable, and
wi > 0 are the data weights.
In the case when only the measured values f1, . . . , fm of the dependent variable
contain unknown additive errors εi, the estimation of the parameters b, c is usually
done in the sense of ordinary least squares, i.e. the L2-norm (see [3], [6]), by
minimizing the functional

G(b, c) =
m∑

i=1

wi

(
fi − A

(1 + be−cγti)1/γ

)2

.

Some results on the existence problem for generalized logistic function in the sense
of ordinary least squares can be found in [2], [5], [10].

The least squares criterion is most suitable in cases where errors are normally
distributed with mean zero and variance σ2I. When errors do not follow the normal
(Gaussian) distribution, the use of other Lp-norms (p 6= 2) is recommended (see [3]).

In general case, significant errors exist both in measurements ti of the indepen-
dent variable and in measurements fi of the dependent variable ([1]). If one assumes
that ti has the unknown additive error δi and fi has the unknown additive error εi,
then we have the model

fi =
A

(1 + be−cγti)1/γ
+ εi , i = 1, . . . , m,

and the parameters b, c can be estimated by the total least squares approach (see
[1], [4]), which leads to minimization of the functional

T (b, c, δ1, . . . , δm) =
m∑

i=1

wi

((
fi − A

(1 + be−cγti)1/γ

)2 + δ2
i

)
. (2)

Note that T (b, c, δ1, . . . , δm) is the weighted sum of squares of the distances from
the data points to the curve Γf , where t 7→ f(t; b, c) = A

(1+be−cγt)1/γ .
In this paper we consider the existence problem of optimal parameters for the

generalized logistic function in the sense of the least orthogonal absolute deviations
(LOAD, see [9], [12]). The LOAD approach leads to minimization of the weighted
sum of orthogonal distances from measurement points to the model function (see
[7]). In this case, the problem of estimating the parameters b and c is reduced to
the problem of minimizing the functional

F (b, c, δ) =
m∑

i=1

wi

√(
fi − A

(1 + be−cγti)1/γ

)2

+ δ2
i , (3)

where δ = [δ1, . . . , δm]T ∈ Rm. We are going to prove, for monotonic data, the
existence of a point (b∗, c∗, δ∗) which minimizes the functional F . The idea of the
proof is based on [7] and [11].
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2. The existence problem

Assume we are given the data (wi, ti, fi), i = 1, . . . ,m, m > 2, t1 < t2 < . . . < tm.
Further, suppose that fi > 0, i = 1, . . . , m, and that we apply the generalized
logistic model function. Let us observe that if f1 ≤ f2 ≤ . . . ≤ fm, then it is
appropriate to describe such data by an increasing function. Also, if f1 ≥ f2 ≥
. . . ≥ fm, then it is suitable to use a decreasing function.

With regard to the existence problem of optimal parameters b∗, c∗ of the gener-
alized logistic function in the sense of least orthogonal absolute deviations, we have
the following theorem.

Theorem 1. Let the given data (wi, ti, fi), i = 1, . . . ,m, m > 2, t1 < . . . < tm, be
such that 0 < fi < A, ∀i.
(i) If f1 ≤ f2 ≤ . . . ≤ fm , then there exists a point (b∗, c∗, δ∗) ∈ S × Rm,

S = {(b, c) ∈ R2 : b > 0 , c ≥ 0},
at which the functional F defined by (3) attains its infimum on the set S × Rm.
(ii) If f1 ≥ f2 ≥ . . . ≥ fm , then there exists a point (b∗, c∗, δ∗) ∈ D × Rm,

D = {(b, c) ∈ R2 : b > 0 , c ≤ 0},
at which the functional F defined by (3) attains its infimum on the set D × Rm.
Proof. Case (i). Since F ≥ 0, there exists F ∗ := inf

(b,c,δ)∈S×Rm
F (b, c, δ) .

(If f1 = f2 = . . . = fm, then F
((

A
f1

)γ − 1, 0,0
)

= 0, and the functional F has its

global minimum for b =
(

A
f1

)γ − 1, c = 0, δ = 0; hence, the assertion of theorem
was proved. So, let us suppose further that f1 < fm.)

Let (bn, cn, δn) be a sequence in S × Rm such that

F ∗ = lim
n→∞

F (bn, cn, δn) = lim
n→∞

m∑

i=1

wi

√(
fi − A

(1 + bne−cnγ(ti+δn
i ))1/γ

)2

+ (δn
i )2 .

(4)
Note that the sequences (δn

i ), i = 1, . . . , m, are bounded. If it were not, we would
have lim sup

n
F (bn, cn, δn) = ∞, which contradicts the assumption (4).

We are going to show, by contradiction, that the sequence (cn) is also bounded.
Assume that the sequence (cn) is unbounded. By the Bolzano-Weierstrass theorem,
we may assume (without loss of generality, by taking appropriate subsequence if
necessary) that cn →∞ and

lim
n→∞

δn
i = δ∗i , i = 1, . . . , m.

But, let us show that the infimum of the functional F cannot be attained in such
way. We are going to find a point in S × Rm at which the functional F defined
by (3) attains a value which is smaller than lim

n→∞
F (bn, cn, δn) .

Denote M := {1, . . . , m} . Note that when cn → ∞, sequences (bne−cnγ(ti+δn
i )),

i ∈ M , (or respectively, without loss of generality, their corresponding subsequences)
have the following property:
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If lim
n→∞

bne−cnγ(ti0+δn
i0

) = r < ∞ for some i0 ∈ M , then lim
n→∞

bne−cnγ(ti+δn
i ) =

0 for every i ∈ M such that ti + δ∗i > ti0 + δ∗i0 .

Namely, if ti + δ∗i > ti0 + δ∗i0 , then

lim
n→∞

bne−cnγ(ti+δn
i ) = lim

n→∞
bne−cnγ(ti0+δn

i0
) · lim

n→∞
e−cnγ(ti+δ∗i−ti0−δn

i0
) = 0 .

Similarly, if lim
n→∞

bne−cnγ(tl0+δn
l0

) = ∞ for some l0 ∈ M , then lim
n→∞

bne−cnγ(ti+δn
i ) =

∞ for i ∈ M such that ti + δ∗i < tl0 + δ∗l0 .
Because of that, for the sequences (bne−cnγ(ti+δn

i )), i ∈ M , (or respectively, by
the Bolzano-Weierstrass theorem, for their corresponding subsequences), we may
assume that one of the two following cases appears when cn →∞.
Subcase (i1). All the sequences (bne−cnγ(ti+δn

i )), i ∈ M, are unbounded and
lim

n→∞
bne−cnγ(ti+δn

i ) = ∞, ∀i ∈ M . In this case we have

F ∗= lim
n→∞

F (bn, cn, δn)=
∑

i∈M

wi

√
f2

i + (δ∗i )2 >
∑

i∈M

wi|fi−f1| = F
(
(
A

f1
)1/γ−1, 0,0

)
,

which contradicts the assumption (4). Therefore, in this subcase the infimum of
the functional F cannot be attained.
Subcase (i2). There exists at least one i0 ∈ M such that:
the sequence (bne−cnγ(ti0+δn

i0
)) is bounded, lim

n→∞
bne−cnγ(ti0+δn

i0
) = ri0 < ∞ and

lim
n→∞

bne−cnγ(ti+δn
i ) =

{ ∞, for i ∈ K−,
0, for i ∈ K+,

where

K− := {i ∈ M : ti + δ∗i < ti0 + δ∗i0}, K+ := {i ∈ M : ti + δ∗i > ti0 + δ∗i0} .

In order to show that the infimum of the functional F cannot be attained in such
way, we are going to find a point in S×Rm at which the functional F defined by (3)
attains a value which is smaller than F ∗ = lim

n→∞
F (bn, cn, δn) .

By using the notations τ∗ := ti0 + δ∗i0 and K := {i ∈ M : ti + δ∗i = τ∗} , we obtain

lim
n→∞

F (bn, cn, δn) ≥
∑

i∈K−

wi

√
f2

i + (δ∗i )2 +
∑

i∈K

wi|δ∗i |+
∑

i∈K+

wi

√
(fi −A)2 + (δ∗i )2 =: F0 . (5)

Let us show that there exists a point in the set S × Rm at which the functional F
attains value which is smaller than F0. For that purpose, let us define functions
b̂(c), δ̂i(c), i = 1, . . . ,m, from R+ to R :

b̂(c) = b0e
cγτ∗ ,

δ̂i(c) =

{
δ∗i , i ∈ K− ∪K+

τ∗ − ti − 1
cγ ln

( A
fi

)γ−1

b0
, i ∈ K ,
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where

b0 =

{
max{( A

fi
)γ − 1 : i ∈ K & ti ≥ τ∗}, if {i ∈ K : ti ≥ τ∗} 6= ∅,

( A
fm

)γ − 1, if {i ∈ K : ti ≥ τ∗} = ∅.

From there it follows

F (b̂(c), c, δ̂(c)) =
∑

i∈K−∪K+

wi

√(
fi − A

(1 + b0e−cγ(ti+δ∗i−τ∗))1/γ

)2

+ (δ∗i )2

+
∑

i∈K

wi

∣∣∣∣∣δ
∗
i −

1
cγ

ln
( A

fi
)γ − 1

b0

∣∣∣∣∣ . (6)

For a sufficiently large positive c we have

√
(fi)2 + (δ∗i )2 >

√(
fi − A

(1 + b0e−cγ(ti+δ∗i−τ∗))1/γ

)2

+ (δ∗i )2 , for i ∈ K− ,

√
(fi −A)2+ (δ∗i )2 >

√(
fi − A

(1 + b0e−cγ(ti+δ∗i−τ∗))1/γ

)2

+ (δ∗i )2 , for i ∈ K+ .

Further, by the property of monotonic data and by the definition of b0, it is not
difficult to see that for a sufficiently large c

|δ∗i | ≥
∣∣∣∣∣δ
∗
i −

1
cγ

ln
( A

fi
)γ − 1

b0

∣∣∣∣∣ , for i ∈ K .

Therefore, by comparing (5) and (6), from above inequalities it follows that for a
sufficiently large positive c

F (b̂(c), c, δ̂(c)) < F0 ≤ F ∗ ,

which contradicts the assumption (4). This means that, when cn →∞, the infimum
of the functional F cannot be obtained.

Hence, the sequence (cn) is bounded. By the Bolzano-Weierstrass theorem we
may assume that the sequence (cn) is convergent. Let cn → c∗.

Then, it follows from (3) that the sequence (bn) is bounded, too. If not, i.e. if
bn →∞, it would be

lim
n→∞

F (bn, cn, δn) ≥
∑

i∈M

wi|fi| >
m∑

i=1

wi|fi − f1| = F
(
(
A

f1
)γ − 1, 0,0

)
,

which contradicts the assumption (4). Analogously, we can assume that bn → b∗ ≥
0.

By continuity of the functional F , we get

inf
(b,c,δ)∈S×Rm

F (b, c, δ) = lim
n→∞

F (bn, cn, δn) = F (b∗, c∗, δ∗) .
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Furthermore, for b = 0, c ∈ [0,∞〉 and δ ∈ Rm we have

F (0, c, δ) =
m∑

i=1

wi

√
(fi −A)2 + (δi)2 >

m∑

i=1

|fi − fm| = F
(
(

A

fm
)γ − 1, 0,0

)
.

Therefore, we conclude that b∗ > 0, i.e. (b∗, c∗) ∈ S.

Case (ii). Let c < 0. Since
√√√√

(
fi − A

(1 + be−cγ(ti+δi))
1
γ

)2

+δ2
i =

√√√√
(

fi − A

(1 + be−(−c)γ(−ti−δi))
1
γ

)2

+ (−δi)2 ,

and the data (−ti, fi) i = 1, . . . ,m have the increasing property, this case reduces
to Case (i). ¤

Let A < 0. Since the symmetrical expressions

(
fi− A

(1 + be−cγ(ti+δi))1/γ

)2

=
(
(−fi)− (−A)

(1 + be−cγ(ti+δi))1/γ

)2

, i = 1, . . . , m ,

hold, from Theorem 1. we get the following corollary.

Corollary 1. Let the given data (wi, ti, fi), i = 1, . . . ,m, m > 2, t1 < . . . < tm,
such that A < fi < 0, ∀i.
(i) If f1 ≥ f2 ≥ . . . ≥ fm , then there exists a point (b∗, c∗, δ∗) ∈ S × Rm, S =
{(b, c) ∈ R2 : b > 0 , c ≥ 0}, at which the functional F defined by (3) attains its
infimum on the set S × Rm.
(ii) If f1 ≤ f2 ≤ . . . ≤ fm , then there exists a point (b∗, c∗, δ∗) ∈ D × Rm, D =
{(b, c) ∈ R2 : b > 0 , c ≤ 0}, at which the functional F defined by (3) attains its
infimum on the set D × Rm. ¤

Remark 1. In the approximation problem for the generalized logistic function
one can also show analogously that Theorem 1. is applicable in the case of the
approximation by the total least squares criterion, i.e. Theorem 1. is applicable for
the functional T defined by (2).
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