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Summary 

Reliability-based inspection planning is one of the most popular methods in determining 

the time of inspection and repairs in various structures. In this way, inspection and repair 

times are determined mainly by putting a lower limit for the reliability index. The detection 

and measurement of cracks is one of the possible outputs at the time of inspecting fatigue 

cracking. One way to use this output is to update the parameters of the fatigue reliability 

equation. In this study, statistical distribution of the parameters of the problem is updated and 

fatigue reliability is calculated for inspection planning using the Bayesian updating concept 

through the Markov Chain Monte Carlo (MCMC) method and the Metropolis–Hasting 

algorithm. The distribution of crack growth equation material parameters and the initial crack 

length will be updated with this method. The application of the proposed method has been 

shown in a structural member of a ship. 

Key words: Reliability-based; inspection planning; Fatigue failure; crack growth 

parameters; Bayesian updating; Markov Chain-Monte Carlo. 

1. Introduction 

Various structures such as marine structures are aging over time. Fatigue cracking is one 

of the main factors that can reduce the strength of the structural members of a ship with the 

passage of time, thus increasing the probability of failure. To maintain the safety of ship 

structures, some maintenance activities over the lifetime of ships should be conducted. These 

activities are carried out in the form of the inspection of different parts of the ship at certain 

times, and, if necessary, by repairing them.  

For inspection planning of structures, various methods are provided, with reliability-

based inspection planning being one of the most famous methods. In this way, the reliability 

index is calculated over the lifetime of the structure. The degree of structural reliability 

reduces over time. In this planning method, usually a lower limit for reliability is defined as 

the target reliability index to control the structural safety a ship. The first inspection is 

planned for the structure after reliability reaches the limit value. This process is schematically 

shown in Figure 1.  
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No crack detection, crack detection without size measurement, and crack detection with 

size measurement are the three possible outputs of the inspection of the damage caused by 

fatigue cracking. Several studies (e.g. [1&2]) have worked on the use of the results of 

inspections under fatigue failure. In these studies, mostly Bayesian theory and equations, 

including the equations proposed by Madsen in [3], have been used to update the failure 

probability and its corresponding reliability index. In these research studies, random variables 

of fatigue reliability equations after repairing the structural components are considered equal 

to the amounts prior to the repair. This means that the results of the inspection are not used to 

update the distribution of random variables of the problem. Accordingly, using the Bayesian 

approach, the reliability can be calculated after the first inspection and then the second 

inspection can be scheduled. 

An alternative approach for the above-mentioned procedure is to update the random 

variables of the problem based on inspection results and then to calculate the structural 

reliability for planning the next inspection time. Little research has been carried out in this 

regard so far. 

Garbatov and Guedes Soares [4] proposed a Bayesian approach to update some of the 

parameters of the probability distributions governing the reliability assessment of the 

maintained floating structures. Based on the time-dependent fatigue reliability and using the 

information from the inspections, the description of the time to crack initiation, crack growth 

law, and the probability of crack detection were updated. Heredia-Zavoni and Montes-

Iturrizaga [5] investigated a Bayesian framework using an analytical model for updating the 

initial crack size distribution at a certain point in time for the tubular joints of fixed offshore 

structures. The crack size measurement is used for updating as the new data. Soliman and 

Frangopol [6] proposed a Bayesian updating approach to find the updated distributions of 

fatigue crack growth model parameters based on inspection results. The updated parameters 

were used to find the next inspection time based on a cost-based optimization approach. 

 

Fig. 1  Single figure example 

In this study, the first structural inspection time is planned by calculating the fatigue 

reliability. After that, by assuming that cracks can be measured with different lengths at the 

time of the first inspection, the distribution of the parameters of the fatigue reliability equation 

has been updated with the Markov Chain Monte Carlo method by using the Bayesian 

updating concept. Finally, the next inspection time is planned after calculating the fatigue 

reliability using the updated parameters. 

One of the features of the proposed approach is that it can be used in minimizing aging 

effect of ship structure integrity. The effect of fatigue cracks on aging effect of ship structures 

was previously investigated in some articles. By updating the distribution of effective 
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parameters, a more accurate approximation of the parameters governing the problem can be 

studied and then the aging effects of structures can be investigated more accurately. 

2. Fatigue Failure 

According to linear elastic fracture mechanics, the Paris–Erdogan equation provides the 

crack growth as: 

 C
mda

K
dN

   (1) 

Where a is the crack size, N is the number of loading cycles, and m and C are material 

constants. DK is the stress intensity range, which is given in the following: 

( )K K a a     (2) 

Here Ds is the applied stress range and K(a) is the geometry function. Integrating the 

above equation, the number of cycles of stress applying that is required for the crack growth 

from sizes a1 to a2 can be obtained from the following equation: 

 

2

1

1 2

( )

a

m
a
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N

C K a a 
 


  (3) 

Owing to random wave-induced loads, variable amplitude fatigue loading is inherent to 

ship structures, thus adding complexity to predicting the crack growth. Therefore, simplified 

models are preferred [7]. An equivalent constant amplitude stress range is a simplified method 

that renders the same degree of damage (i.e. crack growth) as the variable amplitude loading. 

It can be expressed as [8]: 

     
1

0eq f d



   




     
    (4) 

Where β is the interaction coefficient and  f   is the probability density function of 

the stress range. 

By integrating Equation 1 and using an equivalent stress range, the following safety 

margin can be used for calculating the fatigue reliability as: 

0 ( ( ) )

ca m
eqma

da
G C N

K a a



   (5) 

Where a0 and ac are initial and critical crack lengths. The probability of failure Pf and 

the reliability index β can be obtained as: 

   0fP P G      (6) 

Where F( ) is the standard normal distribution function.  

Reliability evaluation can be performed with approximate methods like First Order 

Reliability Method (FORM), Second Order Reliability Method (SORM) or Monte Carlo 

simulation (MCS). In the present study, the probability of failure and the corresponding 

reliability indices are calculated by the MCS method.  
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The Weibull distribution is an adequate approximation for the long-term stress range in 

ship structural members. Hence, the m-th statistical moment of the long-term stress range can 

be expressed in terms of Scale A and shape parameters B of the Weibull distribution as: 

(1 )m m
eq

m
A

B
     (7) 

In this study, with Bayesian updating, it has been tried to obtain the updated distribution 

of the model parameters, including a0, m, and C, using new data of the crack size measured in 

the inspection time. By updating these parameters, Equation 5 is rewritten as: 

0 ( ( ) )

c upd

upd
upd

a m
upd eq updma

da
G C N

K a a



   (8) 

Where 
0upd

a is the updated initial crack length, and 
upd

m and updC are the updated material 

constants.  

3. Bayesian theorem 

The Bayesian theory has been widely used to update the parameters of various 

equations. This theory can be rewritten to update the required parameters of the reliability 

equation. Based on this, the updated or posterior distribution of the parameters can be 

obtained by combining the prior distribution of the parameters with new information on the 

crack size obtained from the structural inspection. The Bayesian theory can be rewritten based 

on probability distribution functions (PDFs). Hence, in this regard, R and S represent the 

model parameter and measured parameter, respectively [9]: 

 
  (r)

( )

S R
R

S

f r R r f
f r S s

f s


   (9) 

Where fR(r) is the prior PDF of the model parameters, fS(s) is the PDF of the 

measurement, fS(s|R=r) is the likelihood function of obtaining the measured values 

conditioned on the estimated model parameters, and fR(r|S=s) is the updated or posterior PDF 

of the model parameters. The denominator in the above equation is the normalization constant 

[10] and thus it can be removed from the equation as: 

   (r)R R Sf r S s f f r R r    (10) 

3.1 Bayesian updating 

It is assumed that a member has been subjected to fatigue failure and the Paris–Erdogan 

equation governs the growth of cracks. The general model for crack growth prediction can be 

expressed as: 

( , ; )da M N x y e   (11) 

Where ad is the measured value of the crack size and e is the general error term that 

includes the measurement error t and the modeling error e. M(N,x;y) is the crack growth 

model in which x is the model parameter for updating and y is the model independent 

variable. N in the above equation is a non-random variable such as the number of applied 

stress cycles or time. 
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Model parameters in the problem include a0, m, and ln(C) (natural logarithm of the 

material parameter C) that create the model parameter vector x={ln(C),m,a0}. The error terms 

e and t are usually considered as normal variables with zero mean and finite variances of se
2 

and st
2. The likelihood function has been defined as [11]: 

 

 
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2 22 2
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( ) exp
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 
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 (12) 

The general error term e~Normal(0,se
2) can be substituted instead of measurement and 

modelling errors, and, then, the likelihood function can be defined as: 

 
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  
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 
 

 (13) 

This function represents the probability of detecting a crack with size ad after the N 

loading cycles provided the variable input vector x. If the crack size is measured "n" times in 

different cycles for a particular component, the likelihood function can be defined as: 

 

 
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  (14) 

Here ad,i are measured values of crack sizes at Ni corresponding loading cycles. Putting 

the likelihood function in Equation 10, it is possible to calculate the posterior or updated 

distribution of model parameters. 

3.2 Markov Chain Monte Carlo (MCMC) 

It is difficult to find an analytical solution of Equation 10 in general terms and that is 

why simulation-based methods, such as the MCMC method, are used. Here the cascade 

Metropolis–Hasting algorithm has been used. The Markov chain is formed in this method by 

iterative sampling. The convergence of the chain is among the features of the Markov chain 

regardless of the starting point. To update the parameter x, it starts from an initial value x1 in a 

chain and the value xi+1 is produced in a way that is independent of x1, ..., xi-1, xi. This process 

is as the following [9]: 

1. Each chain starts at i=1, x1. 

2. Generate a random value x* using the transition or proposal density function, 

q(x|xi) 

The proposal distribution function q is usually zero mean normal or uniform density 

function; therefore, it is a symmetric function. 

* * *( ) ( ) ( )i i iq x x q x x q x x     (15) 

3. Prior acceptance of the probability evaluation is given as the following: 

**

*

(x x )(x )
min 1,

(x ) (x x )

ix
p

x i i

qf

f q


 
 

  
  

 (16) 

Considering the symmetry of proposal density function: 



Mohammad reza Zareei, Mehdi Iranmanesh. Reliability-based inspection planning 

 using the inspection measurement   

124 

*(x )
min 1,

(x )

x
p

x i

f

f


  
  

  

 (17) 

Where fx(x) is the prior PDF of input parameters. 

4. Calculation of up~Uniform[0,1] 

• If up< αp(xi,x*), accept and go to Step 5. 

• Otherwise, go to Step 2. 

5. The likelihood acceptance of probability evaluation is given as: 

*(x )
min 1,

(x )

x
L

x i

L

L


  
  

  

 (18) 

Where Lx is the likelihood given in Equations 13 and 14. 

6. Calculation of uL~Uniform[0,1] 

• If uL< αL(xi,x*) accept and set xi+1=x*, i+1=i and go to Step 2. 

• Otherwise go to Step 2. 

This process should be repeated to achieve the desired number of elements in the 

Markov chain. To make the chain independent of its initial value, the initial portion of the 

chain, which is known as the burn-in portion, will be discarded. 

The convergence of the chain is the important issue in using this method. Various 

methods have been proposed to evaluate the convergence of the Markov chain. Here the 

approach provided by [12] is used. According to this method, multiple chains should be 

created with different starting points. Variances within each chain are compared with the 

variances between chains [9]. The large difference between these two values indicates a lack 

of convergence. If there are v chains with n elements (which burn-in period is discarded), the 

variance between chains, B, is obtained as: 

 
2

1

1

1

v

j

j

B
X X

n v 

 

  (19) 

In the above equation, jX is the average value of the j-th chain, and X  is the average 

value of all chains. The within chain variance is calculated as:  

 
2

1 1

1

( 1)

v n

ji j

j i

W X X
v n  

 

  (20) 

Where jiX  is the i-th element of the j-th chain. The variance ratio R is defined as: 

V
R

W
  (21) 

1 1n v
V W B

n vn

 
   (22) 

Accordingly, if chains converge to the target distribution, R should be close to 1. 

According to [12], the R value less than 1.1 or 1.2 represents the convergence of the method. 

Here we consider the amount of 1.2 as the convergence criteria. Initial samples with the 

variance ratio greater than 1.2 will be discarded, while the other samples will be used to 

describe the posterior or updated distribution function. 
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4. Verification example 

Virkler et al. [13] reported the results of a set of crack growth experiments on the 

Aluminium 2024 alloy. A total of 68 centre-through crack specimens with the same loading, 

geometry, and material were tested. The specimens were tested with the initial length of crack 

a0=9 mm, the width w=154.2 mm, the thickness d=2.54mm, and under a constant tension of 

48.82 MPa. The geometry function for Virkler samples is as: 

( ) sec
a a

K
w w

 
  

 
 (23) 

Several researchers have analysed the results of these tests. In [11], a total of 15 crack 

growth curves (Figure 2) were selected for achieving the prior distribution of {ln(C),m}. Also, 

according to the correlation between these two variables, a bivariate normal distribution was 

proposed as: 

0

ln 26.7060 ln 26.70601 1
(ln , ) exp

2.9684 2.968422

0.5335 0.0886

0.0886 0.0148

C C
p C m

m m

                  
 

 
   

 

 (24) 

Σ is the covariance matrix of these two variables. According to the prior distribution of 

the material parameters, the crack growth curve is shown in Figure 3. On this curve, the 

average and the range of 95% confidence interval (CI) have been shown. 

  

Fig. 2  Experimental data for parameter 

identification of Virkler tests [11] 
Fig. 3  Crack growth curve using prior distribution of 

parameters 

To update the parameters, additional data on the crack size is required. This additional 

data can be obtained through inspection or health monitoring. Here three points of a crack 

growth curves provided by [11] are used as measured crack sizes in different cycles for 

updating. This is shown in Table 1. In the three steps, each paired data of Table 1 has been 

used to perform the update. As many as four chains with 30,000 elements are formed to 

update the parameters. Here se=0.2 mm is considered. After updating, the distribution of 

parameters with respect to each of the points 1 to 3 is shown in Figure 4. The mean vector and 

the covariance matrix associated with prior and posterior distributions are obtained in Table 2. 

Crack growth curves using posterior distributions are shown in Figure 5. Comparing 

Figures 3 and 5, it can be seen that using additional data on the crack size, the average value, 

as shown in Figure 5, is inclined towards the additional crack size information based on the 
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data given in Table 1, while the range of CI of 95% decreases. These two effects show the 

reduced uncertainty of crack growth parameters. 

 

Table 1  Additional information of crack growth size for model parameter updating [11] 

Crack size a (mm) Cycles number N Point 

10 38485 1 

11 64064 2 

12 85164 3 

 

Table 2  Prior and posterior distributions of crack growth parameters 

covariance matrix  Mean vector {ln(C),m} Point used 

 
{-26.7060,2.9684} Prior 

 
{-27.4128,3.0767} 

1 

 
{-27.8356,3.1404} 

2 

 
{-28.0052,3.1656} 

3 

 

 

(a) 

 

(b) 

Fig. 4  Posterior distribution of parameters using crack sizes: (a) ln(c), (b) m 

In this example, the critical crack length is considered equal to 49.8 mm. Considering 

the constant loading stress and using Equation 5, the failure probability curves are provided 

based on prior and posterior distributions in Figure 6. As is evident from this figure, the use of 

updated parameters based on the additional data on crack size has a very significant effect on 

failure probability values in various cycles. 

5. Application example 

To illustrate the application of model parameter updating in reliability-based inspection 

planning, a ship structural detail at the intersection between deck transverse and deck 

longitudinal is considered. This detail is selected from an article of [7] and shown in Figure 7. 

The critical crack depth is assumed to be the flange thickness. It is assumed that this detail is 

located in deck structure of a tanker with 237 m length. 

The geometry function for a semi-elliptical crack shape is defined as [7]: 

( ) E S T GK a K K K K  (25) 
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0.5
1.65

1 4.5945.
2

E

a
K basic crack shape factor

c

  
    

   

 (26) 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5  Crack growth curve using posterior distribution of parameters related to: (a) Point 1, (b) Point 2, (c) Point 

3. 

 
Fig. 6  Failure probability curves using prior and posterior distributions 

1 0.16.
2

S

a
K front face factor

c

 
    

 
 (27) 

   2.454 2 1.0052 ; 1 0.008 0.0534TK x a c y a h finite thickness factor y x y x      

 (28) 
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 
0.6051

1
1.158

G

SCF
K Stress gradient factor

a h
 



 (29) 

Here SCF is the stress concentration factor, which is considered to be equal to 2.1. Also, 

the crack aspect ratio is assumed to be 2c=6.71+2.58a. 

All necessary data for predicting crack size and calculating reliability index is provided in 

Table 3. The initial crack size is assumed to follow a normal distribution with mean value of 0.5 

mm and standard deviation of 0.05 mm [6]. The natural logarithm of the material parameter C 

(ln(C)) is treated as normal distribution random variable with a mean value of -29.97 and 

standard deviation of 0.514 [14] while the material parameter m is assumed to follow a normal 

distribution with a mean value of 3.0 and standard deviation of 0.15. The correlation coefficient 

between m and ln(C) is assumed to be -0.9 [15].  

It is assumed that the long-term stress range of the detail following the Weibull 

distribution. Parameters of stress range can be calculated from DNV [16]. For a detail located in 

deck structure, the Weibull shape parameter can be calculated as: 

 102.21 0.54logB L   (30) 

The Weibull scale parameter A can be defined as: 

 
0
1

0ln
h

A
n


  (31) 

Here, ∆σ0 is the reference stress range value at the local detail, which exceeded once out 

of no cycles, and n0 is the total number of cycles associated with the stress range level ∆σ0. In 

the present study, it is assumed that ∆σ0 is equal to 125 MPa. Shape and scale parameters are 

respectively obtained as 0.9276 and 13.288. The number of cycles is defined as N=n0.t that t is 

the time and n0 is the long-term average zero crossing frequency. The frequency n0 can be 

obtained as [16]: 

0
10

1

4.log ( )L
   (32) 

The frequency n0 is calculated as 0.1053 Hz and hence the annual number of cycles is 

3.32e6.  

 
Fig. 7  Ship structural detail and crack location [7] 
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5.1 Estimation of first inspection time 

The reliability index over time is calculated by Equation 5 and shown in Figure 8. The 

first inspection is done at a time when the reliability index is equal to the target reliability index. 

Several studies have focused on the establishment of the target reliability index. Mansour [17] 

proposed values for the target reliability index in accordance with Table 4.  

 

Table 3  Variable for crack growth prediction and reliability calculation 

Variable 
Notation 

(units) 
Mean Standard deviation Distribution type 

Initial crack size a0 (mm) 0.5 0.05 Normal 

Material parameter 
Ln(C) -29.97 0.514 Normal 

m 3.0 0.15 Normal 

Annual number of 

cycles 
Nan 

(cycles/year) 
3.32×106 - Deterministic 

 

The first inspection times for different values of the target reliability index are given in 

Table 5. Also, the mean values of crack size at the first inspection time are presented in Table 5. 

In this study, the point 2.5 has been considered as the target reliability index. Based on prior 

distributions of the parameters, the structure must be inspected in 6.72 years and the mean value 

of crack size at this time is 2.07 mm. 

 

Table 4: Target reliability indices [17] 

Consequences Tanker Cruiser 

Not serious 2.0 2.5 

Serious 2.5 3.0 

Very serious 3.0 3.5 

 
Fig. 8  Fatigue reliability index of the selected structural detail 

 

Table 5: First inspection times 

Target reliability index First inspection time (year) Mean crack size (mm) 

3.0 5.43 1.62 

2.5 6.72 2.07 

2.0 8.4 2.78 



Mohammad reza Zareei, Mehdi Iranmanesh. Reliability-based inspection planning 

 using the inspection measurement   

130 

5.2 Model parameter updating and next inspection time  

As noted earlier, the parameters ln(C), m, and a0 are updated with the MCMC method 

using the Metropolis–Hasting algorithm in this section. Prior distributions of these variables are 

presented in Table 3. Two Markov chains with 30,000 elements are considered. To investigate 

the convergence, the variances ratio is considered equal to 1.2. se =0.2 mm is considered. 

Additional information of crack size is required for parameter updating. Here it is 

assumed that cracks of various sizes have been detected at the first inspection time and thus the 

effect of the measurement of the cracks with different sizes on the posterior distribution of the 

parameters is investigated. It is assumed that cracks with lengths equal to 1, 1.5, 2.5, 3, and 4 

mm during the first inspection time are detected.  

A sample curve of the variance ratio associated with the detection of a crack with the 

length of 1.0 mm at the first inspection time is shown in Figure 9. Based on this figure, the 

initial 10,000 elements are discarded from the chain, while the others are used to describe the 

posterior distribution. Prior and posterior distributions of the parameters are shown in Figure 10. 

The mean values and standard deviations of the posterior distributions based on different crack 

size measurement values are shown in Table 6. In general, it can be said that with updating, the 

standard deviation of parameters has decreased, which implies the reduced uncertainty in the 

parameters. Any crack detected with a length lower than the mean value of 2.07 mm increases 

the average value of ln(C) and decreases the average values a0 and m and vice versa. The larger 

crack is detected at the first inspection time, where the lower standard deviation of ln(C) and m 

are observed. Also, the correlation coefficient between the two variables is also reduced. A 

similar process can be observed for verification. 

 

(a) 

 

(b) 

Fig. 9  Variance ratio in the Markov Chain Monte Carlo iterations: (a) R for mean values, (b) R for standard deviation 

values 

The curve of mean crack size has been shown in Figure 11. Based on this figure, if a 

crack larger than 2.07 mm is detected, the slope of the crack growth curve increases and vice 

versa. The mean crack size at the time equal to first inspection time, 6.72 years, has been shown 

in the last column of Table 7 considering the updated parameters. As can be seen, considering 

the updated values of parameters, the mean value of crack size is very close to the assumed 

measured values of the cracks. For instance, when it is assumed that a crack with 3.0 mm is 

detected in the first inspection time and updating the parameters, the mean value of crack size at 

6.72 years will be 2.95 mm. This shows that posterior distributions can predict the crack size 

with more accuracy.  

After updating the parameters of the problem, fatigue reliability is calculated by using 

Equation 8 and shown in Figure 12. Assuming a target reliability index value of 2.5, the time 

interval between the first and second inspections is presented in Table 7.  
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Table 6:  Prior and posterior distributions of crack growth parameters 

Crack size 

measured 

(mm) 

Mean Value Standard deviation Correlation 

coefficient between 

ln(C) and m Ln(C) m a0 (mm) Ln(C) m a0 (mm) 

Prior -29.97 3.00 0.500 0.5140 0.1500 0.0500 -0.900 

1.0 -29.57 2.79 0.479 0.4740 0.1077 0.0489 -0.943 

1.5 -29.74 2.88 0.498 0.4736 0.1010 0.0504 -0.962 

2.5 -29.98 3.01 0.502 0.4580 0.0899 0.0505 -0.986 

3.0 -30.08 3.06 0.503 0.4578 0.0881 0.0496 -0.991 

4.0 -30.20 3.11 0.508 0.4383 0.0829 0.0524 -0.993 

 

(a) 

 

(b) 

 

(c) 

Fig. 10  Posterior distribution of parameters using inspection measurements: (a) ln(c), (b) m, (c)a0 

 

 
Fig. 11  Curve of mean crack size using posterior distribution of parameters based on inspection measurements 
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From these results, it can be said that the larger the crack size measured at the time of 

inspection, the earlier is the re-inspection of the structure. Also, the second inspection time of 

the structure can be predicted with more accuracy by reducing the uncertainty of the parameters. 

Furthermore, due to the reduction in uncertainty in model parameters, by measuring the larger 

crack size the updated reliability curve decreases more rapidly. As expected, the size of the 

detected crack has a significant impact on the estimation of the second inspection time. 

 

Table 7:  Time interval between second and first inspection and mean crack size at time of first inspection 

Crack size measured 

(mm) 

Time interval between 

inspections, tinsp2-tinsp1 

(year) 

Mean value of crack 

size at 6.72 year (mm) 

Prior - 2.07 

1.0 24.62 1.11 

1.5 19.82 1.48 

2.5 14.99 2.45 

3.0 13.57 2.95 

4.0 11.50 3.95 

 
Fig. 12  Fatigue reliability index based on time after first inspection 

6. Conclusion 

Fatigue is a major cause of failure in steel structures. Fatigue reliability assessment is one 

of the methods for scheduling the inspection times of a structure. The prior distributions of 

parameters in fatigue reliability formulae can be achieved by performing various experiments or 

through the existing rules. In conventional methods, these distributions are also used for 

evaluating the reliability after the repair. One of the outputs of the structural inspection is the 

detection and measurement of crack length. Here the results of measuring the crack length at the 

time of inspection are used to update the distribution of the parameters of fatigue reliability 

formula. For this, the Bayesian updating concept along with the Markov Chain Monte Carlo 

(MCMC) method with the Metropolis–Hastings algorithm has been used. In this paper, the 

proposed method is used to update the material parameters in the equation of crack growth 

(ln(C) and m in the Paris–Erdogan equation) and initial crack length. From the results, the 

following items can be concluded: 
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1. Any update of the parameters reduces their uncertainty and thus the behaviour of the 

growth of cracks in the structure can be predicted with more certainty. 

2. If during the inspection time of the structure there is a possibility to measure the 

crack length with high accuracy, then the structure lifetime and future inspection 

times can be estimated with higher accuracy. 

3. The proposed approach can be used for other deteriorating mechanisms of ship 

structures such as corrosion. 

4. During the inspection time of the structure, if cracks with much higher or lower than 

the predicted size are detected, they must be re-examined along with other conditions 

relating to the problem such as loading. In general terms, this method can also be 

used in the update of loading conditions. 
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