
Engineering Review, Vol. 38, Issue 1, 51-61, 2017.  51 
______________________________________________________________________________________________________________________ 

PREDICTION OF GROUNDWATER LEVEL FLUCTUATIONS ON 

GROHOVO LANDSLIDE USING RULE BASED REGRESSION  
 

Goran Volf1* – Elvis Žic1 – Nevenka Ožanić1 

 
1Department of Hydraulic Engineering, Faculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 

Rijeka, Croatia 

 

ARTICLE INFO   Abstract: 

Article history:  

Received: 05.05.2017. 

Received in revised form: 10.07.2017. 

Accepted: 19.07.2017. 

 In order to contribute to understanding the effect 

of atmospheric conditions on the groundwater 

level fluctuations on Grohovo landslide, a machine 

learning tool for induction of models in form of the 

set of rules was applied on a dataset comprising 

daily atmospheric and groundwater level data 

measured in 2012. The atmospheric data 

comprises of an average daily air temperature, 

humidity, wind speed, pressure, total 

evapotranspiration, and precipitations. For the 

experiment independent variables i.e. atmospheric 

data and present groundwater level were used to 

model target variable i.e. predicted groundwater 

level for 24 and 48 hours in advance. 

The presented models give predictions 24 (first 

model) and 48 (second model) hours in advance 

for groundwater level fluctuations on Grohovo 

landslide. The first model is consisted from seven, 

and the second model from five rules. Both models 

have very high correlation coefficients of 0.99 and 

0.97, respectively. From the given models, it can 

be concluded that the most influence on the 

groundwater level fluctuations have sum of daily 

precipitations and average daily air temperature.  

The obtained models are intended for use in the 

models for debris flow propagation on the Rječina 

River as a part of an Early Warning System. 
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1 Introduction 
 

Groundwater level fluctuations are usually 

subjected to various variations such as differences 

between the supply and release of groundwater, 

gaining or loosing stream flow variations, tidal 

effects, urbanization, earthquakes, land subsidence, 

meteorological phenomenon, and nowadays global 

climate changes [1, 2]. The meteorological 

phenomena that are important for groundwater level 

fluctuations mainly include atmospheric pressure, 

wind blowing, frost/ice, evapotranspiration and 

precipitations (i.e. rainfalls) [2]. Rainfall causes 

minor or major fluctuations of groundwater. Where 

surface or subsurface losses of rainfall or travel 

time for vertical percolation are sizeable, 

fluctuations are minor, while in adequately 

permeable aquifers, the response of groundwater 
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level to rainfall may be rapid, so rainfall can be 

considered as a good indicator for groundwater 

level fluctuations in such type of aquifers [1, 2].  

The main tools which were used for description of 

hydrological parameters and understanding the 

physical processes in a given observed system are 

physical and conceptual based models. Many 

investigations and experiments have been made in 

predicting groundwater level fluctuations, where 

some of them are physically based numerical 

models which are used to explain the groundwater 

flow in aquifers and some are empirical applying 

models which are used to produce time series of 

water table depths [3, 4]. The physically based 

models mainly need a large quantity of accurate 

measured data since the physical properties of 

groundwater can never be ascertained with absolute 

accuracy. Unavoidable discrepancies between the 

model and the real world system reduce simulation 

accuracy hindering efforts to appropriately manage 

the groundwater resources [5]. Also, the empirical 

time series models have their own limitations, 

because they are not adequate when the dynamical 

behaviour of the hydrological system changes with 

time [6].  

Nowadays, the use of Artificial Intelligence (AI) 

based approaches to build models like: Artificial 

Neural Networks (ANN), Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Genetic Programming 

(GP), Support Vector Machine (SVM) techniques, 

etc. in water resources issues has become viable 

solutions [2]. Recently conducted research of 

groundwater level fluctuations modeling with AI 

approaches has been presented in: for ANN [2, 5, 7, 

8, 10, 11, 12, 13, 14], GP [2, 15], ANFIS [2, 7, 8, 

10, 11], SVM [2, 9]. 

In this research another kind of AI, Machine 

Learning (ML) was used, i.e. an algorithm for 

induction of rule based regression models from 

measured data on the Grohovo landslide. The rule 

based regression models for numeric prediction use 

regression equation in the terminal nodes which 

allow a more accurate prediction of the target 

attribute. The models are interpreted as a set of IF 

THEN rules where each rule is associated with a 

multivariate linear model. Unlike other AI methods 

which provide very good predictions, but sometimes 

are limited in terms of interpretability (black box 

models), the rule based regression models tend to be 

more descriptive and interpretable (white box 

models) [16]. The main purpose of this research is 

to apply the rule based regression model on a data 

set measured on Grohovo landslide to build reliable 

prediction models for groundwater level 

fluctuations. They will be used as a part of Early 

Warning System (EWS) in models for landslide 

movements and debris flow propagation on the 

Rječina River, downstream of the Grohovo 

landslide (see Fig. 1) [17]. 

The Grohovo landslide is a reactivated complex 

landslide near the City of Rijeka, Croatia. Several 

historical episodes of landslide movements and their 

consequences demonstrate the need for a landslide 

behavior forecasting and a EWS establishment in 

order to reduce the landslide risk and to protect 

human lives. An early warning can be defined as a 

timely advice before a potentially hazardous 

phenomenon occurs. An efficient EWS comprises 

of identification and estimation of hazardous 

processes, communication of warnings and adapted 

reaction of local population. Moreover, early 

warning systems have to be embedded into local 

communities to ensure effectiveness of the entire 

system [18]. 

In the last decades with the growth of computational 

capabilities, predictive hydrological models for 

establishing EWS are being developed. As a part of 

the EWS in areas where there is no possibility of 

minimizing human activities or mitigating risk 

prediction of flash floods, mud flows, debris flows 

and landslides movements becomes a crucial tool 

for preventing the consequences caused by the 

mentioned hazards. 

The paper is organized as following: In Section 2, 

study area and measured data are described. Section 

3 gives the modeling methods used in this paper, 

while Section 4 describes the modeling experiment. 

Section 5 provides the results, i.e. the constructed 

models with discussion, and finally Section 6 

contains the conclusions of this paper. 

 

2 Materials and methods 
 

2.1 Study area description 
 

The Grohovo landslide (Fig. 1) is located on the 

north-eastern slope of the Rječina Valley near the 

City of Rijeka, Croatia. It is a complex and 

retrogressive landslide. Movements of mixed rocky 

and soil material in initial landslide body have 

characteristics of debris avalanches. The area in the 

vicinity of the landslide is geomechanically 
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unstable. The rearrangements of the river beds due 

to slides of rock mass represent a significant risk of 

danger. The total size of the landslide is estimated 

at approximately 18 ha (see Fig. 1). Siliciclastic 

flysch or basic rocks are characterized by 

substantial lithological heterogeneity due to 

frequent vertical and lateral alternation of various 

lithological members, such as marls, siltstones, 

shales and fine-grained sandstones [19]. Flysch rock 

mass exhibits weak permeability, which causes 

susceptibility to decomposition and erosion. The 

entire area is characterized by a network of small 

streams that erode slopes and significantly enhance 

the production of sediment in the Rječina River 

watershed area. 

Through the Croatian-Japanese bilateral scientific 

research project “Risk Identification and Land-Use 

Planning for Disaster Mitigation of Landslides and 

Floods in Croatia” the area of Grohovo landslide is 

monitored with the respect to the behaviors of 

landslide bodies, to the causes of and potential for 

sliding, hazard and risk assessments of potential 

surfaces, and to the establishment of a monitoring 

and EWS for new skating areas [20]. In the 

hydrological studies made by [21], continuously 

were collected meteorological, hydrological and 

geological data for the development of the 2D and 

3D numerical models to simulate the propagation of 

flash floods and debris flow during landslides or 

rockslides, in which large quantities of debris 

accumulate in the river bed [17].  

Also, it is very important to notice that groundwater 

level fluctuations influences on development and 

emergence of debris flows and landslides of rock 

mass [17]. 

 

 
 

Figure 1. Grohovo landslide location with data sampling points: 1 - carbonate bedrock; 2 - flysch deposits 

covered by primarily fine-grained slope deposits; 3 - flysch deposits covered by rockfall talus; Pi - 

piezometers; MS - meteorological station [17]. 
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2.2 Data sampling and analysis 
 

As a part of the research activities in the Croatian 

Japanese Bilateral Project “Risk Identification and 

Land-Use Planning for Disaster Mitigation of 

Landslides and Floods in Croatia”, a comprehensive 

integrated real-time monitoring system was installed 

at the Grohovo landslide. 

To monitor the Grohovo landslide, several 

measuring instruments were installed to measure 

hydrologic and hydraulic parameters. 

Meteorological Station (MS) was installed in the 

middle of the crown of the Valići dam (Fig. 1) near 

the Grohovo landslide (approximately 200 m from 

the foot of the Grohovo landslide). The 

meteorological station measured 35 different 

meteorological parameters. The time steps 

(increments) used for the collection of the 

meteorological data consist of 10-minute intervals. 

Also, five piezometers were installed in the area of 

the Grohovo landslide (P1, P2, P3, P5 and P7; see 

Fig. 1). Three piezometers were installed on the 

lower part of the landslide (at the landslide foot), 

and two piezometers were installed in the middle of 

the slide zone. The three lower piezometers (P1, P2 

and P3) measure the groundwater levels, whereas 

groundwater levels (recharge to the Rječina River) 

are measured at the base of the upper piezometers 

(P5 and P7). Continuous monitoring of the 

groundwater levels began in December 2011 for 

piezometer P1 and in February 2012 for piezometer 

P3. In the groundwater data analysis, only 

piezometer P1 was used because other piezometers 

have gaps in measured data.  

 

For better analysis, a 10-minute measured data from 

meteorological station and piezometers were 

converted into the daily data. Table 1 shows data 

used for modeling, while Fig. 2 shows time series of 

measured groundwater levels and precipitations 

during the study period. From Fig. 2, it can be seen 

that the highest groundwater level is observed in 

early autumn (15.10.2012.). 
 

 

 
 

Figure 2. Time series plot of the measured groundwater levels and precipitations (rainfalls). 
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Table 1. Data set used for modeling purpose 

 

Parameter Description  Unit 

Temp 
Average daily air 

temperature 
°C 

Hum Humidity % 

WS Wind speed m/s 

AP Atmospheric pressure hPa 

Tot. Evap Total evapotranspiration mm 

Rain Precipitations mm 

Rain 5 5 day sum of precipitations mm 

Rain 10 10 day sum of precipitations mm 

Rain 15 15 day sum of precipitations mm 

Rain 20 20 day sum of precipitations mm 

Rain 25 25 day sum of precipitations mm 

Rain 30 30 day sum of precipitations mm 

Rain 35 35 day sum of precipitations mm 

Rain 40 40 day sum of precipitations mm 

Rain 45 45 day sum of precipitations mm 

P1 
Groundwater level on 

piezometer P1 
cm 

P1_pred 

24 

Groundwater level shifted 

for 24 hours (First model) 
cm 

P1_pred 

48 

Groundwater level shifted 

for 48 hours (Second model) 
cm 

 

3 Modeling method: rule based regression 

model 
 

ML is a branch of AI concerned with the design and 

development of algorithms that allow computers to 

evolve behaviors based on empirical data, such as 

from sensor data or databases. A learner can take 

advantage of examples (data) to capture 

characteristics of interest of their unknown 

underlying probability distribution. Data can be 

seen as examples that illustrate relations between 

observed variables. A major focus of machine 

learning research is to automatically learn to 

recognize complex patterns and make intelligent 

decisions based on data; the difficulty lies in the 

fact that the set of all possible behaviors given all 

possible input is too large to be covered by the set 

of observed examples (training data). Hence, the 

learner must generalize from the given examples, in 

order to produce a useful output in new cases [22]. 

Kompare [23] in his PhD thesis gives some 

advantages of ML tools: 

 ML generalizes the data and presents their 

knowledge in a more compact, easier to 

understand, 

 build new knowledge about the observed 

domain, 

 identify the system structure and parameter 

values, and with it automatically build the 

model, 

 search space for possible model behavior with 

the use of qualitative modeling. 

 
The tools of ML build models independently, or 

help experts from certain areas in a way to mediate 

him information in a more compact form. With 

these new “views” expert can easily build a better 

model [23]. 

 
3.1 Cubist 

 
Cubist is a powerful software/tool for generating 

rule based models that balance the need for accurate 

prediction against the requirements of intelligibility. 

The Cubist models generally give better results than 

those produced by simple techniques such as 

multivariate linear regression, while also being 

easier to understand (more interpretable) than ANN 

and similar techniques of AI [24]. 

The rule based regression models for numeric 

prediction use regression equation in the terminal 

nodes which allow a more accurate prediction of the 

target attribute. The models are interpreted as a set 

of IF THEN rules where each rule is associated with 

a multivariate linear model [24]. A rule indicates 

that, whenever a case satisfies all the conditions, the 

linear model is appropriate for predicting the value 

of the target attribute. The algorithms for rule 

induction mostly represent different variations of 

the M5 algorithm. The algorithm implemented in a 

software package Cubist (See5/C5.0) was applied 

for modeling, in which the basic M5 algorithm was 

enhanced by combining the model-based and 

instance-based learning [25]. 

The accuracy of predictions can be done by 

simulating the model on a testing set of data and 

comparing the predicted values of the target with 
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the actual values. Another option is to employ 

cross-validation. The given (training) data set is 

partitioned on a chosen number of folds (n). In turn, 

each fold is used for testing, while the remainder (n-

1 folds) is used for training. The final error is the 

averaged error of all the models throughout the 

procedure.  

The size of the error between the actual and the 

predicted values can be calculated by: 
 

1) Average error (AE), 
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where, X is the observed/actual values, Y is the 

predicted/computed values, X is the mean of actual 

data, Y is the mean of computed data and N is the 

total number of data. 

The average error magnitude is straightforward 

enough. The relative error magnitude is the ratio of 

the average error magnitude to the error magnitude 

that would result from always predicting the mean 

value; for useful models, this is less than 1. The 

correlation coefficient measures the agreement 

between the cases' actual values of the target 

attribute and those values predicted by the model. 
 

4 Modeling experiment 
 

For the experiment the ML algorithm See5/C5.0 for 

induction of rules, integrated in the Cubist modeling 

software was employed. The experiment was 

designed to elaborate a prediction models for 

groundwater levels 24 and 48 hours in advance.  24 

and 48 hours predictions have been selected 

because these predictions will be used in numerical 

model to simulate the propagation of flash floods 

and debris flow during landslides or rockslides 

which is incorporated into EWS. 

The groundwater level shifted for 24 hours was set 

as dependant variable in the first model and for 48 

hours in the second model, while the average daily 

air temperature, humidity, wind speed, pressure, 

total evapotranspiration, precipitations and sum of 

5, 10, 15, 20, 25, 30, 35, 40, 45 day precipitations 

and groundwater level in piezometer P1 were given 

as independent variables (see Table 1). 

Model performance was done using 10-fods cross 

validation, while maximum number of set to 10 in 

the Cubist modeling software. The results of 

modeling experiments done by Cubist are given in 

Section 5. 

 

5 Results and discussion 
 

The goal of the presented models is to give a 24 and 

48 hours prediction of groundwater level in the 

piezometer P1 at Grohovo landslide (see Fig. 1). 

The results of the models will be used as part of 

EWS in the model for landslide movements and 

debris flow propagation on the Rječina River, 

downstream of the Grohovo landslide [17].  

 
5.1 First model-24 hours prediction 

 

From the collected data (see Table 1), a model for 

prediction of groundwater level 24 hours in advance 

presented in Table 2 was constructed. The model 

contains seven rules where each rule has equation 

for calculation of predicted groundwater level. The 

accuracy of the model is given by the correlation 

coefficient (R) between the modeled and measured 

values of the groundwater levels, average and 

relative error. The correlation coefficient for the 

presented model (Fig. 2) using 10 fold cross-

validation method is 0.99 with average and relative 

error of 18.196 and 0.08, respectively. How good 

the model is can also be seen from Fig. 3 where 

time series of measured and modeled data are 

presented. With visual inspection, it can be seen 

that the peak values are very well hit. 
 

From Table 2, it can be seen that for the prediction 

of groundwater levels, the model is mostly used for 

rule induction groundwater levels on piezometer P1, 

sum of 5 and 10 day precipitations. In equations 

which describe target variable (predicted 

groundwater levels) are mostly used present 

groundwater level on piezometer P1, sum of 10, 35 

and 45 day precipitations. 
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Table 2. Rule based model for predicting groundwater level 24 hours in advance 
 

Rule No.  Rule  Equation  

Rule 1  P1 <= 675.62 
P1pred24 = -45.607 + 1.011 P1 + 0.06 Rain45 - 0.06 Rain35 - 0.07 

Rain25+ 0.6 Hum 

Rule 2  

Rain10 > 39.6 

Rain5 > 21.6 

P1 > 675.62 

P1pred24 = -20.494 + 1.00 P1 - 0.19 Rain35 + 0.07 Rain45 + 0.5 

Hum 

Rule 3  

ET > 0.47 

Rain10 <= 39.6 

Rain > 0 

P1 > 675.62 

P1pred24 = 308.338 + 0.856 P1 - 34 ET - 3.2 Rain 

Rule 4  

WS > 7.46 

Rain10 > 39.6 

Rain5 <= 21.6 

P1pred24 = 283.389 + 0.754 P1 - 0.04 Rain35 + 0.02 Rain45 

Rule 5  

Rain10 <= 39.6 

Rain <= 0 

P1 > 675.62 

P1pred24 = 32.291 + 0.944 P1 + 2.45 Rain10 

Rule 6  

WS <= 7.46 

Rain10 > 39.6 

Rain5 <= 21.6 

P1 > 675.62 

P1pred24 = 118.286 + 0.948 P1 - 0.47 Rain40 

Rule 7  

ET <= 0.47 

Rain10 <= 39.6 

P1 > 675.62 

P1pred24 = 121.249 + 0.893 P1 + 2.13 Rain10 - 3.2 Rain 

  

 
 
Figure 2. Measured and predicted (modeled) values 

of groundwater level in cm on piezometer 

P1 for the first model-24 hours prediction. 
 

5.2 Second model-48 hours predictions 

 

From the collected data (Table 1), a model for 

prediction of groundwater level 48 hours in advance 

presented in Table 3 was constructed.  The model 

contains five rules where each rule has equation for 

calculation of predicted groundwater level. The 

accuracy of the model is given by the correlation 

coefficient (R) between the modeled and measured 

values of the groundwater levels average and 

relative error. The correlation coefficient for the 

selected model (Fig. 4) using 10 fold cross-

validation method is 0.97 with an average and 

relative error of 35.676 and 0.15, respectively. How 

good the model is can also be seen from Fig. 5 

where time series of measured and modeled data are 

presented. With visual inspection, it can be seen 

that the peak values are very well hit, as in the first 

model. 
 

Table 3 shows that for prediction of groundwater 

level, the model mostly used for rule induction 

groundwater level on piezometer P1, sum of 5 and 
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10 day precipitations, like in the first model. In 

equations which describes target variable (predicted 

groundwater level) almost all modeling parameters 

are used.  

 

 
 

Figure 3. Measured and modeled groundwater level data on piezometer P1-time series for the first model-24 

hours prediction.

  

Table 3. Rule based model for predicting groundwater level 48 hours in advance 

  

Rule No.  Rule  Equation  

Rule 1  P1 <= 569.53 
P1pred48 = -17.644 + 0.949 P1 - 0.37 Rain25 + 0.2 Rain20 + 0.11 Rain40 

- 0.33 Rain5 + 0.7 Hum + 0.15 Rain10 - 0.05 Rain35 + 0.02 Rain45 

Rule 2  Rain5 > 45.4 
P1pred48 = -4.697 + 0.977 P1 - 0.13 Rain35 + 0.05 Rain45 + 0.06 Rain30 

- 0.05 Rain15 + 0.3 Hum - 0.08 Rain5 – 1.00 ET 

Rule 3  
Rain10 <= 39.6 

P1 > 569.53 

P1pred48 = 311.69 + 4.94 Rain10 + 0.775 P1 - 0.75 Rain15 - 0.05 Rain40 

+ 0.9 Temp 

Rule 4  

ET > 0.29 

Rain10 > 39.6 

Rain5 <= 45.4 

P1 > 569.53 

P1pred48 = 108.021 + 4.12 Rain10 + 0.459 P1 + 61 ET - 0.51 Rain40 

 

Rule 5  

ET <= 0.29 

Rain5 <= 45.4 

P1 > 569.53 

P1pred48 = 298.826 + 0.725 P1 - 0.41 Rain40 + 7.1 Temp - 0.07 Rain35 + 

0.03 Rain45 + 0.03 Rain30 
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Figure 4. Measured and predicted (modeled) values 

of groundwater level in cm on piezometer 

P1 for the second model-48 hours 

prediction. 
 

By comparing models, it can be seen that the first 

model (24 hours prediction) has seven rules and 

correlation coefficient of 0.99. The second model 

(48 hours prediction) has 5 rules and correlation 

coefficient of 0.97 which is insignificantly lower 

than correlation coefficient for the first model. In 

both models peak values are very well hit (see Figs. 

3 and 5).  
 

Overall, both models accurately predict the time 

when the groundwater level starts increasing. 

Additionally, the model’s response is more 

important for the development of the EWS than 

precise groundwater level prediction when 

considering the short time of the response of water 

level to rainfall in the small watersheds, like 

Rječina River watershed. 

 
Also, the results of the experiments show that it is 

useful to use different approaches during modeling, 

as in this case ML. As for any modeling method 

where measured data is used, it is essential that the 

database consists of sufficiently different situations 

from which the ML algorithm can learn to predict 

the dependent variable. Also, for better model 

results, it would be useful to have more measured 

parameters that affect the dependent variable. 

However, the resulting models behave in line with 

expectations and yields satisfactory results. 

Regarding very high predictions of both models, 

they can be used as a part of EWS in model for 

landslide movements and debris flow propagation 

on the Rječina River. 

 

 
 

Figure 5. Measured and modeled groundwater level data on piezometer P1-time series for the second 

model-48 hours prediction. 
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6 Conclusion 
 

In this research rule based regression using the 

Cubist modeling software was applied on measured 

data at the Grohovo landslide to induce predictive 

models for 24 and 48 hours groundwater level. The 

models have very good predictive power and have 

proven that rule based regression models can be an 

extremely useful method for predicting groundwater 

levels. With this method different view on data was 

obtained than from other analysis (AI techniques) 

because these models are presented in a set of 

descriptive IF-THEN rules which give a useful 

insight in modeling parameters that affect the 

groundwater levels. 

Overall, the models accurately predict the time 

when the water level starts increasing. Additionally, 

the model’s response is more important for the 

development of the EWS than precise water level 

prediction when considering the short time of the 

response of water level to rainfall in the small 

watersheds like Rječina River watershed. 

Therefore, some of the advantages of using ML 

tools in modeling can be highlighted, namely 

building descriptive models, or a white box models, 

which makes it easier to interpret the models 

themselves. Therefore, the models are more 

appropriate, enabling them to see their functioning, 

i.e. the functioning of the system that is modeled. 

Overall, it is especially important to emphasize the 

use of ML tools for easier and more efficient 

modeling of hydrological process, as shown in this 

paper. 

The ongoing research is focused on the 

implementation of the model results in models for 

landslide movements and debris flow propagation 

as a part of EWS. 

 

Acknowledgements 
 

This paper is a part of the scientific project “Risk 

identification and Land-Use Planning for Disaster 

Mitigation of Landslides and Floods in Croatia” 

with financial support from the Japan International 

Cooperation Agency (JICA), and „Hydrology of 

Water Resources and Risk Identification from 

Floods and Mudflows in Karst Areas“ 

(13.05.1.1.03) funded by the University of Rijeka. 

The authors also greatly appreciate the comments of 

the two anonymous reviewers who helped us to 

substantially improve the paper. 

References 

 
[1] Todd, D. K., Mays, L. W.: Groundwater 

Hydrology, Third revision by John Wiley and 

Sons Inc., 636p, 2005. 

[2] Shiri, J., Kisi, O., Yoon, H., Lee, K-K., 

Nazemi, A. H.: Predicting groundwater level 

fluctuations with meteorological effects 

implications-A comparative study among soft 

computing techniques, Computers and 

Geosciences, 2013, 56, 32-44. 

[3] Box, G.E.P., Jenkins, G.M.: Time series 

analysis: Forecasting and control, Holden 

Day, Boca Raton, Florida, 1976. 

[4] Hipel, K.W., Mc Leod, A.I.: Time series 

modelling of water resources and 

environmental systems, Development of Water 

Science, vol. 45, Elsevier Science, New York, 

1994. 

[5] Coppola, E., Rana, A., Poulton, M., 

Szidarovsky, F., Uhl, V.: A neural network 

model for predicting aquifer water level 

elevations, Ground Water, 2005, 43 (2), 231-

241. 

[6] Bierkens, M. F. P.: Modeling water table 

fluctuations by means of a stochastic 

differential equations, Water Resources 

Research, 1998, 34 (10), 2485-2499. 

[7] Barzegar, R., Adamowski, J., Moghaddam, 

A.A.: Application of wavelet-artificial 

intelligence hybrid models for water quality 

prediction: a case study in Aji-Chay River, 

Iran, Stochastic Environmental Research and 

Risk Assessment, 2016, 30, 1797-1819. 

[8] Barzegar, R., Moghaddam, A. A., Baghban, H.: 

A supervised committee machine artificial 

intelligent for improving DRASTIC method to 

assess groundwater contamination risk: a case 

study from Tabriz plain aquifer, Iran, 

Stochastic Environmental Research and Risk 

Assessment, 2016, 30, 883-899. 

[9] Raghavendra, S., Deka, P.C.: Forecasting 

monthly groundwater level fluctuations in 

coastal aquifers using hybrid Wavelet packed-

Support vector regression, Civil and 

Environmental Engineering, 2015, 2:999414. 

[10] Djurovic, N., Domazet, M., Stricevic, R., 

Pocuca, V., Spalevic, V., Pivic, R., Gregoric, 

E., Domazet, U.: Comparation of groundwater 

level models based on artificial neural 

networks and ANFIS, 2015, The Scientific 



Engineering Review, Vol. 38, Issue 1, 51-61, 2017.  61 
______________________________________________________________________________________________________________________ 

World.Journal,742138,.http://dx.doi.org/10.115

5/2015/742138. 

11 Jalalkamali, A., Sedghi, H., Manshouri, M.: 

Monthly groundwater level prediction using 

ANN and neuro-fuzzy models: a case study on 

Kerman plain, Iran, Journal of 

Hydroinformatics, 2011, 13 (4) 867-876. 

[12] Daliakopoulos, I. N., Coulibaly, P., Tsanis, I. 

K.: Groundwater level forecasting using 

artificial neural networks, Journal of 

Hydrology, 2012, 309, 229-240. 

[13] Kumar, S., Indian, A., Khan, Z.: Neural 

network model for prediction of groundwater 

level in Metropolitan considering rainfall-

runoff as a parameter, International Journal of 

Soft computing and Engineering, 2013, 3 (3), 

195-198. 

[14] Sušanj, I., Ožanić, N., Marović, I.: 

Methodology for developing hydrological 

models based on an artificial neural network to 

establish an early warning system in small 

catchments, Advances in Meteorology, 2015, 

Article ID 430217. 

[15] Shiri, J., Kisi, O.: Comparation of genetic 

programming with neuro-fuzzy systems for 

predicting short-term water table depth 

fluctuations, Computers and Geosciences, 

2011, 37 (10), 1692-1701. 

[16] Volf, G., Atanasova, N., Kompare, B., Precali, 

R., Ožanić, N.: Descriptive and prediction 

models of phytoplankton in the northern 

Adriatic, Ecological Modelling, 2011, 222, 

2502-2511. 

[17] Žic, E., Arbanas, Ž., Bićanić, N., Ožanić, N.: A 

model of mudflow propagation downstream 

from the Grohovo landslide near the city of 

Rijeka (Croatia), Natural Hazards and Earth 

System Sciences (NHESS), 2015, 15, 293-313. 

[18] Thiebes, B.: Landslide Analysis and Early 

Warning Systems, Ph.D Thesis, 2012, The 

University of Vienna, Austria, Springer, 

Heidelberg. 

[19] Benac, Č., Jurak, V., Oštrić, M.: Qualitative 

assessment of geohazard in the Rječina Valley, 

Croatia, Proceedings of the 10th IAEG 

International Congress: IAEG Engineering 

geology for tomorrow’s cities, The Geological 

Society of London, 2006, 658, 1-7. 

[20] Arbanas, Ž., Mihalić, S.: Progress in the 

Croatian-Japanese joint research project on 

landslides, Proceedings of the IPL Symposium, 

Sassa, K.; Takara, K.; He, B. (ed.). Kyoto: ICL, 

2012, 38-46. 

[21] Ožanić, N., Arbanas, Ž., Mihalić, S., Sušanj, I., 

Žic, E., Ružić, I., Dragičević, N.: Hrvatsko-

japanski projekt o poplavama i klizištima: 

znanstvene aktivnosti i primjena rezultata, 

Zaštita od poplava u Hrvatskoj, Okrugli stol, 

Biondić, D.; Holjević, D. (ur.), Hrvatske vode, 

Vukovar, 2012a, 171-188. 

[22] Witten, I.H., Frank, E.: Data Mining - 

Practical Machine Learning Tools and 

Techniques with Java Implementations, 2000, 

Academic Press, USA. 

[23] Kompare, B.: The use of artificial intelligence 

in ecological modelling, Ph.D. Thesis, 1995, 

FGG, Ljubljana, Royal Danish School of 

Pharmacy, Copenhagen, Ljubljana. 

[24] Cubist, modeling tool, web address: 

http://www.rulequest.com/cubist-info.html. 

[25] Quinlan, J. R.: Learning with continuous 

classes, In: Proceedings of the AI’92, 5th 

Australian Joint Conference on Artificial 

Intelligence, Adams & Sterling, Singapore, 

World Scientific, 1992, 343-348.

 


