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On the first passage over the one-sided
stochastic boundary*

ZORAN VONDRACEK'

Abstract. We present two methods on how to compute the distri-
bution of an Ité diffusion at the first moment it becomes smaller than a
function of its current maximum.
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Sazetak. O vremenu prvog prelaska preko jednostrane sto-
hasticke granice. Pokazane su dvije metode kako izracunati distribu-
cigu Itove difuzije u prvom trenutku kada postane manja od funkcije
tekuceqg maksimuma.

Kljuéne rijeéi: Itova difuzija, vrijeme prvog prelaska, jednostrana
stohasticka granica

Let X; denote the price of a share of a certain stock, and let S; be the maximal
price of that stock by the time t > 0. There is some interest in computing the
distribution of the price at the first moment it becomes smaller than a function of
the current maximum. Typical examples are the distribution of the price when it
falls a units below the current maximum, or when it falls to a certain fraction of
the current maximum.

A common model for stock prices (see, e.g. [2]) is a process that solves the
stochastic differential equation

dXt = M(Xt)dt+ O'(Xt)th, XO =, (1)

where W = (W;;¢ > 0) is a standard one-dimensional Brownian motion, and o :
R — (0,00), p : R — R are Lipschitz continuous functions. The process X =
(Xi;t > 0) is usually called an It6 diffusion. There exists a function s, the scale
function of X, such that s(X;) is a local martingale. Explicitly,

s(u) = /z exp ( /y i’;gg dz) dy.
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Let S; = maxg<,<¢ X, be the maximum of X by the time ¢, and let g : [0,00) — R
be a monotone function. Let us introduce the stopping time

T=inf{t > 0; X; < g(St)}.

Then 7 is the first time that X becomes less than a function of its current maximum.
The random variable S; is the maximum of X at time 7.

Theorem 1. The distribution function Fs, of the random variable S; is given by

Fsr(u)—lexp</:8(t)(isit()g<t))>, u> . 2)

Distribution of X is easily obtained from Fg, and the fact that X, = g(S,).

In order to prove the theorem one first assumes that X is a Brownian motion
(p=0,0=1).

There are two different approaches in calculating the distribution of S in case
X is a Brownian motion. The first approach relies on the first-order calculus for
semimartingales ([1], [4]) and was in the same context exploited in [5]. The main
ingredient is the fact that for a C'-function H, the process H(S;) — (S; — X;)H'(S)
is a martingale. The optional stopping theorem gives that

E[H(S;)] = E[(S- — X-)H'(S:)] (3)

with H(t) = fot h(u)du, h a continuous, nonnegative function with compact support.
Simple calculations imply that

E[H(S,) = / (1 - Fs, (u)h(u)du, (4)

BIH(S, - X)H'(5:)] = | " (u— g(u))h(w)dFs, (u). (5)

From (3),(4) and (5), one obtains the differential equation for Fs_: (1—Fg_(u))du =
(u—g(u))dFs, (u). Tt is easily seen that Fg_ given in (2) (with s(r) = r, x = 0)
solves this equation.

The second approach to calculate Fs_ relies on the excursion theory, and can
also be applied to Lévy processes with no positive jumps. For u > 0, let

T(u) = inf{t > 0;S; > u} = inf{t > 0; X; > u}.

Then {S; > u} = {T(u) < 7}. Hence, it suffices to compute P(T(u) < 7). The
first passage time process {T'(t);t > 0} is an increasing Lévy process. For t > 0
such that T'(t—) < T'(t), let hy = sup{(S — X)pp-)450 < 5 < T(t) — T(t—)}
be the height of the excursion of the reflected process S — X at the local time ¢.
Then {(t, h:);t > 0} is a Poisson point process with characteristic measure dt x dv,
where v(t,00) = 1/t (see, for example, [3]). The key observation in this approach
(see [6]) is that T(u) < 7 if and only if H; < ¢ — g(¢), for all ¢ € [0,u]. Let
A={(t,y):y >t —g(t)}, and let

NN} = > 1a(t )

0<t<u
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be the number of points in A up to the (local) time u. Then {NA = 0} = {h; <
t —g(t),vt € [0,u]}. But N2 is a Poisson random variable with parameter dt x
dv(AN[0,u] x (0,00)) = [ v(t — g(t), 00)dt. Therefore,

P(NA =0) =exp (— /Ou v(t — g(t), oo)dt) = exp (— /Ou t_d;(t)> .

Once again, (2) easily follows from the preceding calculations.

Finally, in order to prove (2) for an Itd diffusion, it suffices to use the change of
scale.
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