Inequalities for the internal angle-bisectors of a triangle

Walther Janous*and Šefket Arslanagić ${ }^{\dagger}$

Abstract

Several new inequalities of type $\sum w_{a}^{-2 m} \geq \alpha_{m} \cdot \sum a^{ \pm m}$ for angle-bisectors are proved. Certain algebraic cyclic inequalities are derived. Two conjectures and an open question are mentioned.

Key words: geometric inequalities, angle-bisectors, cyclic inequalities.

Sažetak. Dokazano je nekoliko novih nejednakosti tipa $\sum w_{a}^{-2 m} \geq$ $\alpha_{m} \cdot \sum a^{ \pm m}$ za simetrale kutova. Izvedene su neke cikličke nejednakosti. Spomenute su dvije pretpostavke i jedno otvoreno pitanje.

Ključne riječi: geometrijske nejednakosti, simetrale kutova, cikličke nejednakosti

AMS subject classifications: 51M16
Received March 31, 1997, Accepted June 6, 1997

1. Introduction

In this note we extend methods from [2] in order to get some further inequalities linking the angle-bisectors and other elements of a (planar) triangle. We also state some conjectures.

As usual, for triangles w_{a}, w_{b}, w_{c} denote the internal angle-bisectors and a, b, c, s, r and R the sides, the semiperimeter, the inradius and the circumradius, resp. .

All sums appearing are cyclic. (e.g. $\sum b c$ means $a b+b c+c a$, etc.) Throughout this note we let $m>0$ be a real number.

2. Some lemmata

In this section we shall establish triangle-inequalities of type $\sum a^{m} \geq k_{m} \cdot \sum(b c)^{m}$, where $k_{m}:=k_{m}(s, R)$ is "best possible". [Due to the fact that for, say, c fixed and

[^0]$a=b \rightarrow c / 2$ we get $R \rightarrow \infty$, there are factors k_{m} favourable not depending on R.] We firstly prove the algebraic

Lemma 1. Let x, y and z be nonnegative real numbers such that $x+y+z \neq 0$. Then

$$
\begin{equation*}
\frac{x y+y z+z x}{x+y+z} \leq \frac{x+y+z}{3} \tag{1}
\end{equation*}
$$

Proof. We have

$$
\text { (1) } \begin{aligned}
& \Leftrightarrow 3(x y+y z+z x) \leq(x+y+z)^{2} \Leftrightarrow \quad x y+y z+z x \leq x^{2}+y^{2}+z^{2} \\
& \Leftrightarrow(x-y)^{2}+(y-z)^{2}+(z-x)^{2} \geq 0 \square
\end{aligned}
$$

a) k_{m} is of type $K_{m} / s^{m}, K_{m}$ best possible constant. Then there holds the following

Lemma 2. $K_{m}=(3 / 2)^{m}$ for $0<m \leq 1$. I.e., if $0<m \leq 1$ then $\sum a^{m} \geq[3 /(2 s)]^{m} \cdot \sum(b c)^{m}$.

Proof. Starting from $(1 / 3) \cdot \sum[3 a /(2 s)]=1$ we get via the general meansinequality $(1 / 3) \cdot \sum[3 a /(2 s)]^{m} \leq 1$. Putting in Lemma $1 x=[3 a /(2 s)]^{m}$ etc. we get

$$
\frac{\sum[3 b /(2 s)]^{m}[3 c /(2 s)]^{m}}{\sum[3 a /(2 s)]^{m}} \leq(1 / 3) \cdot \sum[3 a /(2 s)]^{m} \leq 1
$$

and thus $[3 /(2 s)]^{m} \cdot \sum(b c)^{m} \leq \sum a^{m}$, as claimed.
Remark 1. It remains an open question to determine the value of K_{m} in case $m>1$. Computer-searches indicate the following

Conjecture 1.. Let $\mu:=\ln 2 /(\ln 3-\ln 2)=1.709511291 \ldots$. . Then

$$
K_{m}= \begin{cases}(3 / 2)^{m}, & \text { if } 0<m \leq \mu \\ 2, & \text { if } m>\mu\end{cases}
$$

b) k_{m} is of type $L_{m} / R^{m}, L_{m}$ best possible constant. Then we have the following

Lemma 3. $L_{m}=(1 / \sqrt{3})^{m}$ for $0<m \leq \tau$, where $\tau:=(\ln 9-\ln 4) /(\ln 4-\ln 3)=$ 2.8188416793.... I.e., if $0<m \leq \tau$ then $\sum a^{m} \geq[1 /(R \sqrt{3})]^{m} \cdot \sum(b c)^{m}$

Proof. [1] has as item 5.28 that the inequality $(1 / 3) \cdot \sum[a /(R \sqrt{3})]^{m} \leq 1$ holds true if and only if $0<m \leq \tau$. The rest of the proof of Lemma 3 is similar as for Lemma 2.

Remark 2. Again it remains an open question to determine L_{m} in case $m>\tau$. For this we state the following

Conjecture 2.. Let $\sigma:=\ln 4 /(\ln 4-\ln 3)=4.8188416793 \ldots$. Then

$$
L_{m}= \begin{cases}(1 / \sqrt{3})^{m}, & \text { if } 0<m \leq \sigma \\ 1 / 2^{m-1}, & \text { if } m>\sigma\end{cases}
$$

It should be noted that due to [1], item 5.3, i.e. $2 s \leq 3 R \sqrt{3}$, for $m \leq 1$ Lemma 2 always yields the better factor k_{m} than Lemma 3 (in case of validity of Conjecture 1 even for $m \leq \mu$). On the other hand, if both conjectures are valid, for $m>\mu$ it depends on the shape of a triangle whether Lemma 2 or 3 yields the better factor k_{m}.
c) An all-over lower estimation of the factor $k_{m}=k_{m}(s, R)$. We shall now prove

Lemma 4. $k_{m}>\max \left\{1 / s^{m}, 1 /(2 R)^{m}\right\}$ for all $m>0$.
I.e., if $m>0$ then $\sum a^{m}>\max \left\{1 / s^{m}, 1 /(2 R)^{m}\right\} \cdot \sum(b c)^{m}$

Proof. Due to $a, b, c \leq 2 R$ and $a, b, c<s$ we get $a, b, c \leq \min (s, 2 R)=: M$ with at least one side $<M$. Hence $\sum(b c)^{m}<M^{m} \cdot \sum a^{m}$ and the claimed inequality follows.

Remark 3. In view of a) and b) Lemma 4 deserves attention if $m>1$.

3. The results

A) Case $\mathbf{m} \geq \mathbf{1}$. We are now in the position to prove the following

Theorem 1. Let $m \geq 1$. Then

$$
\begin{equation*}
\sum w_{a}^{-2 m} \geq\left[\frac{s^{2}+(4 R+r)^{2}}{12 R r s^{3}}\right]^{m} \cdot \sum a^{m} \tag{2}
\end{equation*}
$$

Proof. We start from the well-known formulae $w_{a}=\frac{2 b c \cos (A / 2)}{b+c}$, etc. Since inequality (2) is symmetric with respect to a, b and c we may and do let $a \leq b \leq c$. Then
i) $1 / c \leq 1 / b \leq 1 / a$ and further $1 / b+1 / c \leq 1 / c+1 / a \leq 1 / a+1 / b$ and
ii) $A \leq B \leq C$ and thus $1 / \cos (A / 2) \leq 1 / \cos (B / 2) \leq 1 / \cos (C / 2)$.

Using Chebyshev's and the arithmetic-geometric inequalities we get

$$
\begin{align*}
\sum w_{a}^{-2 m} & =\sum \cos ^{-2 m}(A / 2) \cdot\left[\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\right]^{2 m} \geq \frac{1}{3} \sum \cos ^{-2 m}(A / 2) \cdot \sum\left[\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\right]^{2 m} \\
& \geq \frac{1}{3} \sum \cos ^{-2 m}(A / 2) \cdot \sum\left[\frac{1}{b c}\right]^{m} \tag{3}
\end{align*}
$$

The general means-inequality and [3], p. 35, yield

$$
\frac{1}{3} \sum \cos ^{-2 m}(A / 2) \geq\left[\frac{1}{3} \sum \cos ^{-2}(A / 2)\right]^{m}=\left[\frac{s^{2}+(4 R+r)^{2}}{3 s^{2}}\right]^{m}
$$

This inequality and the observation

$$
\sum\left[\frac{1}{b c}\right]^{m}=\frac{\sum a^{m}}{(a b c)^{m}}=\frac{\sum a^{m}}{(4 R r s)^{m}}
$$

immediately via (3) lead to the claimed inequality (2).
Applying Lemma 3 we get from (2) the following
Corollary 1. Let $1 \leq m \leq \tau$. Then

$$
\begin{equation*}
\sum w_{a}^{-2 m} \geq\left[\frac{s^{2}+(4 R+r)^{2}}{3 s^{2} R \sqrt{3}}\right]^{m} \cdot \sum a^{-m} \tag{4}
\end{equation*}
$$

Using [1], items 5.5 and 5.12, i.e. $(4 R+r)^{2} \geq 3 s^{2}$ and $R r \leq 2 s^{2} / 27$, resp., we get from (4) and (2) the further

Corollary 1^{\prime}.

$$
\begin{equation*}
\sum w_{a}^{-2 m} \geq\left[\frac{4}{3 R \sqrt{3}}\right]^{m} \cdot \sum a^{-m} \tag{5}
\end{equation*}
$$

where $1 \leq m \leq \tau$
and

Corollary 2.

$$
\begin{equation*}
\sum w_{a}^{-2 m} \geq\left[\frac{1}{3 R r s}\right]^{m} \cdot \sum a^{m} \geq\left[\frac{9}{2 s^{3}}\right]^{m} \cdot \sum a^{m}, \tag{6}
\end{equation*}
$$

where $m \geq 1$.
Remark 4. For $m=1$ we get from (2) and (6) the following improvement (interpolation) of [4], p. 217, item 11.1:

$$
\sum w_{a}^{-2} \geq \frac{s^{2}+(4 R+r)^{2}}{6 R r s^{2}} \geq \frac{2}{3 R r} \geq \frac{9}{s^{2}}
$$

B) Case $\mathbf{0}<\mathbf{m}<\mathbf{1}(\mathbf{0}<\mathbf{m} \leq \mathbf{1})$. In this case there can hold only a (clearly) weaker inequality stated as

Theorem 2.

$$
\sum w_{a}^{-2 m} \geq\left[\frac{1}{4 R r^{3} s^{5}}\right]^{m / 3} \cdot \sum a^{m}
$$

Proof. Proceeding as for Theorem 1 we get from (3) and [3], p. 35, via the arithmetic-geometric inequality

$$
\sum w_{a}^{-2 m} \geq\left[\frac{1}{\Pi \cos (A / 2)}\right]^{\frac{2 m}{3}} \cdot \sum\left[\frac{1}{b c}\right]^{m}=\left(\frac{4 R}{s}\right)^{\frac{2 m}{3}} \cdot \frac{\sum a^{m}}{(a b c)^{m}}
$$

and the claimed inequality follows.
We now add some consequences of Theorem 2. Via Lemma 2 we get
Corollary 3.

$$
\begin{equation*}
\sum w_{a}^{-2 m} \geq\left(\frac{54 R^{2}}{s^{5}}\right)^{\frac{m}{3}} \cdot \sum a^{-m} \tag{7}
\end{equation*}
$$

Using once more $3 R \sqrt{3} \geq 2 s$ inequality (7) leads us to

Corollary 4.

$$
\sum w_{a}^{-2 m} \geq\left(\frac{2}{s}\right)^{m} \cdot \sum a^{-m}
$$

Remark 5. The above proofs immediately imply that equality holds in either of the inequalities if and only if $a=b=c$.

4. Algebraic analoga of inequalities (6) and (7)

In this section we will apply the useful transformation $a=x_{2}+x_{3}, b=x_{3}+x_{1}$ and $c=x_{1}+x_{2}$, where x_{1}, x_{2} and x_{3} are arbitrary positive real numbers (see e.g. [1], chapt. II). It always links geometric and algebraic (three-variable) inequalities.

Then upon normalizing $(s=) x_{1}+x_{2}+x_{3}=1$ short simplifications yield $w_{a}^{-1}=$ $\left(1+x_{1}\right) /\left(2 \sqrt{x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right)}\right)$, etc. and $R=a b c / 4 F=\left(1-x_{1}\right)\left(1-x_{2}\right)(1-$ $\left.x_{3}\right) /\left(4 \sqrt{x_{1} x_{2} x_{3}}\right)$. Hence we get the following algebraic analoga of Corollaries 1' and 3

$$
\sum_{k=1}^{3}\left[\left(1+x_{k}\right)^{2} \frac{1-x_{k}}{x_{k}}\right]^{m} \geq\left(\frac{4}{\sqrt{3}}\right)^{m} \cdot\left(\sqrt{x_{1} x_{2} x_{3}}\right)^{m} \cdot \sum_{k=1}^{3} \frac{1}{\left(1-x_{k}\right)^{m}}
$$

where $1 \leq m \leq \tau$,
and

$$
\sum_{k=1}^{3}\left[\left(1-x_{k}\right) \frac{\left(1+x_{k}\right)^{2}}{x_{k}}\right]^{m} \geq 6^{m} \cdot\left\{\prod_{k=1}^{3}\left[\frac{1-x_{k}}{x_{k}}\right]\right\}^{\frac{m}{3}} \cdot \sum_{i<j}\left(1-x_{i}\right)^{m}\left(1-x_{j}\right)^{m}
$$

where $0<m<1(0<m \leq 1)$.
Both inequalities lead to the following
Open Questions. Determine the respective sets A and B of all natural numbers n such that the n-dimensional analoga are valid with " \geq " throughout all $x_{1}, \ldots, x_{n} \in$ $(0,1), x_{1}+\ldots+x_{n}=1$, and similarly " $\leq "$, resp., and the respective constant factors are replaced by the suitable constants yielding equality at $x_{1}=\ldots=x_{n}(=1 / n)$.

References

[1] O. Bottema, R. Z. Djordjević, R. R. Janić, D. S. Mitrinović, P. M. Vasić, Geometric Inequalities, Wolters-Noordhoff, Groningen 1969.
[2] W. Janous, An inequality for the internal angle-bisectors of a triangle, Univ. Beograd Publ. El. Fak. Ser. Mat. 7(1996), 74-75.
[3] W. P. Soltan, S. I. Mejdman, Identities and Inequalities for Triangles, [in Russian], Stiinca, Kishinev, 1982.
[4] D. S. Mitrinović, J. E. Pečarić, V. Volenec, Recent Advances in Geometric Inequalities, Kluwer, Dordrecht, 1989.

[^0]: *Ursulinengymnasium, Fürstenweg 86, A-6020 Innsbruck, Austria
 ${ }^{\dagger}$ Prirodno-matematički fakultet, Zmaja od Bosne 43, BiH-71000 Sarajevo, Bosnia and Hercegovina

