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Surface generating on the basis of
experimental data∗

Rudolf Scitovski†

Abstract. The problem of surface generating on the basis of experi-
mental data is presented in this lecture. Special attention is given to the
implementation of moving ordinary least squares and moving total least
squares. Some results done in the Institute for Applied Mathematics in
Osijek are mentioned which were published in the last several years.
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Sažetak. Generiranje ploha na osnovi eksperimentalnih po-
dataka. U predavanju izložen je problem generiranja plohe na osnovi
eksperimentalnih podataka. Kod toga posebna pažnja posvećena je pri-
mjeni pomične metode običnih i pomične metode potpunih najmanjih
kvadrata. S tim u vezi navedeni su neki rezultati urad̄eni u Institute
for Applied Mathematics in Osijek, a objavljeni u posljednjih nekoliko
godina.

Ključne riječi: generiranje plohe, zaglad̄ivanje, pomična metoda
najmanjih kvadrata, eksperimentalni podaci

1. Introduction

Let the data (xi, yi, zi), i = 1, . . . , m, be given, where Pi(xi, yi) ∈ Ω ⊆ R2 are
points in some region of interest, and zi = g(xi, yi) + εi, where g is an unknown
smooth function and εi ∼ N(0, σ2). Using the given data one has to approximate
the unknown function g by the function ĝ (global approximant).

This problem is considered by numerous authors as the global and/or local
approximation or interpolation problem. Let us mention just a few of the possible
applications of such problems in applied research: determining geological layers
(petroleum exploration, geological maps), plotting geographical maps, investigation
of heart potentials, etc. (see [3], [7], [6], [5], [14], [12], [13], [15], [20]).
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In recent literature approaches based upon least squares splines (see e.g. [10],
[22]) or the one based upon moving least squares (see [4], [10], [20], [19]) are most
often presented, but some other ones (see [10], [8], [6]) are presented as well.

In this lecture we shall consider the approach based on moving least squares and
presented some results done at the Institute for Applied Mathematics in Osijek in
the last several years (see [13], [14], [15], [20], [19]).

2. Moving ordinary least squares for surface generating

We are going to smooth the given data by a function ĝ. First, we are going to
approximate the function g in a neighborhood of every point T (ξ, η) ∈ Ω in its
domain by a local approximant of the form

L0(x, y;p) = p1

L1(x, y;p) = p1 + p2x + p3y
L2(x, y;p) = p1 + p2x + p3y + p4xy + p5x

2 + p6y
2

(1)

where p = (p0, . . . , pn) denotes the vector of parameters. Unknown parameters
will be determined such that a more significant influence have data at points closer
to the point T . In order to do this, first to each Pi(xi, yi) we will associate a
nonnegative weight function wi : Ω −→ [0, 1] which will attain its maximal value
equal 1 at the point Pi and its value will die out with the distance from Pi. Various
ways of choosing such weight functions can be found in the literature (see e.g. [3],
[4], [10].

Figure 1. Weight functions

Following [16] in the papers [13], [19] and [14] the weight function w is defined by

wi(x, y) =

{
exp

(− 1
2 σ2

i
[(x− xi)2 + (y − yi)2]

)
, (x− xi)2 + (y − yi)2 ≤ r2

i

0, (x− xi)2 + (y − yi)2 > r2
i ,

where the parameter σi > 0 determines the extent of the influence of the i-th data.
The parameter ri, which defines compact support of the weight function wi is also
chosen depending on σi.
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In the paper [20] another possibility is used. As in [3], the weight function w is
defined by

wi(ξ, η) = W
(

d(Pi,T )
∆q

)
, W (u) =

{
(1− u3)3 , 0 ≤ u ≤ 1,

0 , u > 1.

where d(Pi, T ) denotes the distance from Pi to T and ∆q is the q-th least distance
d(Pi, Pj), j = 1, . . . , m.

The optimal parameter p? for the local approximant LT in the neighbourhood
of the point T can be obtained by minimizing the functional

F (p) =
m∑

k=1

wk(ξ, η) [LT (xk, yk;p)− zk]2 . (2)

where LT is of the form (1). Minimization of the functional (2) boils down to
solving the linear least squares problem

DJp = Dz, (3)

where D = diag
(√

w1(ξ, η), . . . ,
√

wm(ξ, η)
)

, and

Jij =
∂LT (xi, yi;p)

∂pj
, z = (z1, . . . , zm)T .

The most suitable method for solving the linear least squares problem (3) is the
QR decomposition (see e.g. [1], [23]).

Finally, we smooth the given data (xi, yi, zi), i = 1, . . . , m, by the function
(global approximant) ĝ defined by

ĝ(x, y) := LT (x, y)

For practical purposes, it suffices to calculate the value of the global approximant
ĝ at finitely many points. In the papers [13] and [20] we assumed that the region
of interest Ω is a rectangle [a, b]× [c, d]. The local approximants were calculated on
the equidistant set of nodes (ξi, ηj) contained in the rectangle Ω where

ξi = a + ihx, hx = b−a
n ηj = c + jhy, hy = d−c

k , (4)

where i = 1, . . . , n, j = 1, . . . , k.
After that, the global approximant can be obtained as a least squares two-

dimensional spline (see [22]). Another possibility is by folowing [4], to do the convex
combination of the local approximants

S(x, y) =
n×k∑
ν=1

Lν(x, y)ων(x, y), ων(x, y) = uν(x, y)
n×k∑
µ=1

uµ(x, y)
, ν = 1, . . . , n× k.

where uν is the weight function associated to the local approximant Lν . The weight
functions uν can be the same as the functions wν , but can also be defined in another
way.
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In the paper [19] we are proposed an algorithm which by means of a median
divides the rectangle Ω = [a, b]× [c, d] into subcells:

Ω =
N∪

ν=1
Ων , Ων disjoint

such that each subcell Ων contains roughly the same number of points. In each
subcell we chose only one node. Namely, the local approximants would then be
located at the neighbourhood of the centroid (ξ̄ν , η̄ν) of the subcell Ων , where ξ̄ν

(resp. η̄ν) represents the arithmetic mean of all xi (resp. yi), whose corresponding
data points lie in the subcell Ων (see Fig. 1.). The centroid (ξ̄ν , η̄ν) has a property
that the sum of squared distances to all data points in that subcell is minimal
([3]). The number of data points in the subcell should be sufficient for evaluating
parameters of the local approximant. By evaluation of the local approximant for
the centroid (ξ̄ν , η̄ν) the data used in evaluating this local approximant would be
taken from a somewhat larger region containing Ων .

In that way the number of nodes at which we evaluate local approximants can
be considerably reduced, and local approximants can be chosen in the class of the
quadratic function of two variables (local paraboloids).

Remark 1. In literature there also appear other method of choosing the alloca-
tion of nodes at which we evaluate local approximants. It would be more acceptable
to use polygons for the shape of a subcell in the partition of the basic cell. In that
case the Dirichlet or Delaunay tessallation (see e.g. [2]) should be used.

The optimal allocation of nodes is according to ([4]) attained at the global min-
imum of the function:

GN2 =
m∑

i=1

min
ν

[(xi − ξ̄ν)2 + (yi − η̄ν)2],

and the measure of the “equal representation” is given by D =
∑N

ν=1(qν − m
N )2,

where qν is the number of data points in the ν-th subcell.

3. Moving total least squares for surface generating

When the errors occur in measurements of all the variables, it makes more sense
to determine the local approximants in the sense of the total least squares (see e.g.
[1], [9], [11], [17], [16]). We are going to call this method the moving total least
squares method (MTLS method). In this sense in the papers [15] and [20] we
suppose that

zi = g(xi + δi) + εi, i = 1, . . . ,m,

where εi denotes the unknown error in zi, and δi is the vector of unknown errors
in xi. Furthermore, we suppose that εi is a normal random variable with mean 0
and variance σ2, and δi are normal random vectors with mean 0 and the covariance
matrix σ2I.
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In the neighbourhood of the point T (ξ, η) we are going to approximate the
function g by a local total least squares plane. Since this local plane always goes
through the weighted centroid of the data (see [20]), we shall search for it of the
form

rT (ξ − ξ̄T ) + sT (η − η̄T ) + tT (ζ − ζ̄T ) = 0,

where

ξ̄T :=
1

κT

m∑

i=1

wi(ξ, η)xi, η̄T :=
1

κT

m∑

i=1

wi(ξ, η)yi, ζ̄T :=
1

κT

m∑

i=1

wi(ξ, η)zi ,

with κT :=
m∑

i=1

wi(ξ, η). The optimal parameters r?
T , s?

T , t?T of the local TLS plane

are obtained by minimization of the functional

G(rT , sT , tT ) =
m∑

i=1

wi(ξ, η)

[
rT (xi − ξ̄T ) + sT (yi − η̄T ) + tT (zi − ζ̄T )

]2
r2
T + s2

T + t2T
(5)

The minimum of the functional G is attained at the eigenvector corresponding
to the smallest eigenvalue of the matrix BT B, where

B :=




√
w1(ξ, η)(x1 − ξ̄T )

√
w1(ξ, η)(y1 − η̄T )

√
w1(ξ, η)(z1 − ζ̄T )

...
...

...√
wm(ξ, η)(xm − ξ̄T )

√
wm(ξ, η)(ym − η̄T )

√
wm(ξ, η)(zm − ζ̄T )




(see [11], [20]).
Thus, if the third component of the eigenvector corresponding to the smallest

eigenvalue of the matrix BT B is non-zero, the local TLS plane in the neighbourhood
of the point (ξ, η) is defined by (see [20]):

LT (ξ, η) =

{
− r?

T

t?
T

(ξ − ξ̄T )− s?
T

t?
T

(η − ζ̄T ) + ζ̄T , t?T 6= 0
ζ̄T , t?T = 0

(6)

The TLS local plane will be determined on the net of nodes defined by (4).
Finding an eigenvector corresponding to the smallest eigenvalue of the regular ma-
trix BT B can be made very efficient because of the particular form of this matrix
(see [21]). First, take the QR–decomposition of the matrix B, by which the matrix
BT B becomes

BT B = RT R,

where RT is a lower-triangular and R is an upper-triangular matrix. Now, by
using the Inverse Power Method we easily obtain an eigenvector corresponding to
the smallest eigenvalue of the matrix RT R. The rate of convergence of the Inverse
Power Method is linear, but with a good choice of the initial vector, the convergence
can be quite fast. Therefore, at each node (ξi, ηj) we take for the initial vector the
vector obtained earlier for the previous node. Doing so, the number of iterations in
the Inverse Power Method needed at each node is small (usually 1–2, seldom 3–4).
Note, moreover, that the matrix used at each iteration step is the same.
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4. Numerical examples

Example 1. Consider the function g(x, y) = (x2 − y2)2 defined on the region
Ω = [−1, 1]× [−1, 1]. Take a random uniformly distributed set of points Pi(xi, yi),
i = 1, . . . , 225, in Ω (see Fig. 3 and take zi := g(xi + δx

i , yi + δy
i ) + εi, i = 1, . . . ,m,

where δx
i ∼ N(0, 0.07), δy

i ∼ N(0, 0.07) and εi ∼ N(0, 0.05).
Fig. 2 a shows the graph of the function g, and Fig. 2 b shows the data surface

using the Delaunay tessellation.

a) Garaph of the function g b) Generated data

Figure 2. Graph of the function g and the generated data

If the rectangle Ω according to the algorithm proposed in [19] is divided into
subcells such that each subcell contains roughly 18 data points, we obtain 16 subcells.
Fig. 3 shows the data points, subcells and the corresponding centroids. Fig. 4.a shows
the corresponding surface obtained as a convex combination of the local paraboloids
generated in centroids of subcells.

a) Data points b) Choice of nodes

Figure 3. Data points and the choice of nodes

The same surface is generated by using moving total least squares as proposed
in [20]. For that purpose the nodes (ξi, ηj) in the region Ω are determined by hx =
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hy = 0.2, and each TLS local plane is determined by using q = 15 nearest neighbour
points.

Fig. 4 b shows the graph of the approximation ĝ of the function g, which was
obtained as a convex combination of local TLS planes.

a) Convex combination b) Convex combination
of the local paraboloids of local TLS planes

Figure 4. Generated surfaces

Example 2. Along the the skin of the back fat of the pig the thickness is
measured by ultrasound every 14 days at about 20 points on the right half of the
pig. On the basis of these measurements a surface is generated which shows the
configuration and thickness of back fat of the measured pig. We shall use the moving
total least squares method described in ([20]). In surface generating it is taken into
consideration that errors can appear both in the measured thickness of back fat and
in the coordinates of the point at which the measurement was done. Fig. 5 shows a
such generated surface.

a) Surface of pig’s b) cross-sections along
back fat the spine of the pig
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Figure 5. Surface of pig’s back fat and cross-sections along the spine of the pig

Cross-sections along the spine of the pig done during measurement can also be
seen in Fig. 5. This investigation was used for decision making in pigs-selection.
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