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Abstract. The main objective of this paper is to present an empirical application of the 
DEA method, by proposing an adequate model for determining the relative efficiencies of 
seven Croatian airports, and by analysing the obtained scores. To highlight different 
crucial aspects of airport performance in Croatia, four indicators are used for the period 
2009-2014: personnel costs/airport throughput unit (ATU), total expenditures excluding 
personnel costs/ATU and total assets/ATU as input variables, while the output variable 
is total revenue/ATU.  
To overcome certain limitations associated with the relationship between the number of 
the observed entities and the number of employed variables, and to provide dynamic effici-
ency results that usually reflect reality better than static ones, window analysis is used as 
an extension of basic input-oriented DEA models. In general, the findings indicate that, 
over the observed period, performance rankings change, and, with the exception of the last 
observed year, the relative performance of Croatian airports is gradually declining. 
Consequently, the airports of Split, Pula and Zadar were found to be efficient (“best prac-
tice” airports) in the four years, and the airports of Zagreb and Osijek in one single year. 
Based on the efficiency score averaged across the observed period, Split turned out to be 
most efficient whilst Osijek appeared to be least efficient. Total assets per ATU are 
identified as the most significant source of inefficiency.  
Using both constant and variable returns to scale assumptions, this paper is the first to 
decompose the technical efficiency of Croatian airports into two components – pure 
technical efficiency, which reflects the ability of an airport to obtain maximal outputs at 
an optimal scale, and scale efficiency, which reflects the distance of an observed airport 
from the most productive scale size. The significance of these results is in the fact that 
they offer the possibility of directly identifying inefficiency causes, and can serve as a basis 
for an a posteriori correction of previously made disadvantageous decisions. 
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1. Introduction 
 
The airport industry throughout the world is becoming an increasingly important 
factor in development. The role of airports is particularly important in the 
countries that rely on tourism. As a capital-intensive industry, airports endeavour 
to attract as many airlines as possible, often cooperating with local authorities. 
This is the rule in most Croatian airports that have seasonal traffic pattern. There 
are seven international airports in Croatia: Zagreb (ZG), Split (ST), Dubrovnik 
(DU), Zadar (ZD), Pula (PU), Rijeka (RI) and Osijek (OS), the efficiencies of 
which will be analyzed in this paper. All airports analyzed are state or region/mu-
nicipality owned with major state ownership.   
Measuring the efficiency in the airport industry often includes different non-
related ratios that give a segmented view of airport performance. Although partial 
analysis has its purpose, contemporary management requires a more comprehend-
sive and integrated approach. Such an approach may involve simultaneous evalu-
ation of different types of productivity that can be indirectly achieved by a 
performance measurement technique and which includes all parameters used to 
calculate these productivities and, at the same time, provides a comparison of 
efficiency levels among airports over a period of time. Therefore, the purpose of 
this paper is to propose Data Envelopment Analysis (DEA) as a suitable efficiency 
measurement method that satisfies the aforementioned requirements, and to 
present the results of analyzed efficiencies of airports in Croatia [13]. 
DEA is a linear programming-based non-parametric technique used for evaluating 
the relative efficiency of homogenous operating entities or decision-making units 
(DMUs) on the basis of empirical data on their multiple inputs and outputs. It 
leads to an efficient frontier determined by the existing DMUs which are identified 
as best practice units (benchmarks) and given a rating of 1, whereas the degree of 
inefficiency of other entities is calculated on the basis of their distances from the 
efficient frontier and attributed to input excesses and output shortfalls [13]. 
The first literature survey focusing on DEA applications is the study of Liu et al. 
[9] that covers DEA papers indexed in the Web of Science database over the 
period of 32 years (from 1978 through August 2010). The industries in which the 
DEA is most addressed are banking, healthcare, agriculture and farm, transport-
tation and education. 
International literature reports numerous studies on airport efficiency. What is 
worth mentioning is an interesting and frequently cited article in which DEA is 
combined with the stochastic frontier model to analyze and evaluate the 
operational efficiency of 33 European airports in the period between 1995 and 
1997, in order to assess under which returns to scale each airport operates and to 
determine technical and scale efficiency coefficients [11]. The results imply 
objectivity, accuracy and practicability of DEA in addressing these issues. Most 
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of DEA applications in the airport industry rely on absolute values of traffic 
and/or financial variables. Martin and Roman [10] included air traffic movements, 
number of passengers and tons of cargo transported in each airport as output 
variables, while input variables were introduced as expenditures and classified 
according to labor, capital and materials. Kakouris et al. [7] set the number of 
passengers as output and number of employees, number of flights and area of 
terminals as input variables. Schaar and Sherry [14] showed DEA methods used 
in airports benchmarking and analyzed seven different studies that used DEA in 
the airport industry. All of them used absolute values as input variables while 
there was only one case that used relative measure as an output variable 
(percentage of on-time operations). 
The literature regarding DEA application in measuring airport efficiency and 
productivity can be considered from several perspectives. Kadziński et al. [6] point 
to the substantial existing literature on this topic and group the perspectives 
according to: 
 

 employed models – ranging from the CCR or BCC model for measuring 
airport efficiency in a single year or season, through to DEA coupled with 
the Malmquist productivity index to measure changing airport efficiency 
over a period of a few years, up to the DEA two-stage model that first 
examines airport efficiencies, and then uses a procedure to bootstrap DEA 
scores with a regression model for explanatory purposes, 

 type of considered inputs – from monetary inputs to those related to 
terminal services, the movement model, labor and/or airport localization, 

 type of considered outputs – again from monetary aspects to those related 
to terminal services and/or to the movement model, and 

 geographical scope – from single countries to continental or intercontinental 
scope. 
 

To the authors’ knowledge, the only reported study applying DEA methodology 
to the airport business in Croatia is Bezić et al. [2]. Based on two inputs (expen-
ditures and number of employees) and one output (total number of passengers), 
the paper analyzed the overall efficiency of seven Croatian airports in the year 
2008 and over a five-year period covering 2004-2008, utilizing an input-oriented 
CCR model. The analysis revealed that the average efficiency scores of Croatian 
airports, except for Dubrovnik and Rijeka, have increased over the observed 
period. 
Since there is an obvious lack of literature on DEA-based efficiency evaluation of 
Croatian airports, this research can serve as a basis for future related studies, 
particularly bearing in mind that it is the first to provide a more detailed 
investigation of the causes behind the results. It also uses relative instead absolute 
measures of efficiency that better represent efficiency itself and diminish variati-
ons in size of variables.  
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2. Data and analytical framework 
 
In Croatia, there are 23 airports – nine civil, twelve sport and two military air-
ports. The traffic and financial results they achieve on national level are not 
relevant, except for the seven international out of a total of nine civil airports 
listed in introduction. This is the main reason we have focused specifically our 
research on these seven airports. 
The selection of airport performance indicators for the purposes of this study was 
based on the following criteria: importance of human resources and assets used; 
consideration of finance aspects of air transport efficiency; exact measurability of 
indicators; availability and accessibility of data on indicators; ensuring timely, 
comprehensive, understandable and, above all, useful information both for mana-
gers and owners of the respective airports. 
Taking into account the criteria mentioned, four indicators were selected and 
included in the analysis. Personnel costs, total expenditures excluding personnel 
costs (hereinafter, total expenditures) and total assets represent inputs, while total 
revenue represents the single output. It should be noted that large disparities in 
the size of Croatian airports cause significant differences in the values of the 
selected input and output variables. Thus, for, example, personnel costs, total ex-
penditures and total revenue for the airport in Zagreb are on average about forty 
times higher than those for the airport in Osijek. To mitigate these variations and 
make comparison more reliable, all four indicators are taken per ATU.  
For the purpose of this research, data were collected from airport annual reports 
as well as from the Croatian Statistical Bureau and Croatian Civil Aviation 
Agency. Data relates to the period from 2009 to 2014 covering the most challen-
ging period of the Croatian modern economy when GDP was constantly declining. 
The basic DEA models usually used in applications are CCR [4] and BCC [1]. 
The first is characterized by constant returns-to-scale (CRS) activities. In order 
to adapt it to processes with variable returns-to-scale (VRS), by either increasing 
(IRS) or decreasing (DRS), the CCR model was extended to the BCC model. In 
addition, a management strategy can be aimed at either reducing the input amo-
unts or at augmenting the output levels, while in both cases keeping the rest of 
the variables at their original levels. Accordingly, DEA models are molded to 
reflect input or output-orientation. [13] 
Since an improvement in airport performance requires a reduction of all three 
inputs, as well as an augmentation of output, both model orientations are suitable. 
Nevertheless, input-orientation is selected as more appropriate for the purpose of 
this study, since the airports have more control over the inputs than over the 
output, i.e. more opportunities to reduce inputs used to produce output. Hence, 
the concept of efficiency will be explained by using input-oriented models. 
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Assume there are n DMUs (DMUj, j = 1, 2, ..., n) each of which produces s 
outputs and to produce them uses m inputs. Let 𝑥௝ = ൛𝑥௜௝ , 𝑖 = 1,2, … , 𝑚ൟ and 𝑦௝ =

൛𝑦௥௝ , 𝑟 = 1,2, … , 𝑠ൟ denote the vectors of inputs and outputs, respectively. The 
data set is then given by two matrices – the m x n matrix of inputs 𝑋 = ൫𝑥௜௝൯ and 
the s x n matrix of outputs 𝑌 = ൫𝑦௥௝൯. The following two-phase linear 
programming procedure is based on [5], pp. 43-46, 87-89, 140-142. 
The input-oriented model employed to evaluate the relative efficiency of real 
DMUo (𝑜𝜖{1,2, … , 𝑛}) in the first phase can be formulated using a standard linear 
programming problem as 
         min

ఏ,
𝜃                                               (1) 

  
                              subject to   𝜃𝑥௢ − 𝑋 ≥ 0                                        (2) 
   
                                                𝑌 ≥ 𝑦௢                                             (3) 
   
                                                   ≥ 0                                              (4) 
   
                                                 𝑒 = 1                                             (5) 
 
where e is a row vector with all elements of unity and  = (ଵ, ଶ, … , ௡) is the 
vector of weights used in the linear combination of efficient DMUs that form the 
projection of DMUo onto the frontier. Thus, the projection point represents a 
composite (virtual) DMU, with the vectors of inputs and outputs respectively 
equal to X and Y, that is better or at least not worse than the evaluated DMUo. 
The input-oriented CCR and BCC models consist of conditions (1)-(4) and (1)-
(5), respectively. Conditions (2), (3) and (4) comprise m, s and n constraints, 
respectively. When considering Croatian airports, n is 7, m is 3 and s is 1. The 
last condition (5) distinguishes two models by causing significant differences in 
their production frontiers. It should be noted that BCC-efficiency is easier to 
attain than CCR-efficiency since BCC-frontier is closer. Therefore, BCC-efficiency 
scores are never lower than CCR estimates. Nevertheless, the optimal objective 
value 𝜃∗ is the efficiency score and, for inefficient DMUo, it is also the reduction 
rate of its inputs (0 < 𝜃∗ ≤ 1). 
The conditions (2) and (3) signify that (𝑋, 𝑌) outperforms (𝜃∗𝑥௢, 𝑦௢) when 𝜃∗ <
1, and that the input excesses and the output shortfalls are expressed as 
𝑠ି = 𝜃𝑥௢ − 𝑋,     𝑠ା = 𝑌 − 𝑦௢, 
respectively, with 𝑠ି ≥ 0, 𝑠ି ∈ 𝑅௠ and 𝑠ା ≥ 0, 𝑠ା ∈ 𝑅௦ for any feasible solution 
(𝜃, ). 
This second phase is carried out to detect possible output shortfalls and remaining 
input excesses, which is realized by maximizing their sum while maintaining 𝜃 =
𝜃∗. 
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Definition 1 (Efficiency): If an optimal solution (𝜃∗,∗, 𝑠ି∗, 𝑠ା∗) obtained in 
this two-phase process satisfies 𝜃∗ = 1 and has no slack (𝑠ି∗ = 0, 𝑠ା∗ = 0), then 
the DMUo is called efficient, otherwise it is inefficient. 
 
Definition 2 (Weak Efficiency): If an optimal solution (𝜃∗,∗) satisfies 𝜃∗ =

1, then the DMUo is called weakly efficient. 
 
Definition 3 (Reference Set): For an inefficient DMUo, its reference set 𝐸௢ is 
defined based on an optimal solution ∗ by 𝐸௢ = ൛𝑗 ห ௝

∗ > 0ൟ   (𝑗 𝜖 {1,2, … , 𝑛}). 
 
An optimal solution can be formulated as 
 

                                      𝜃∗𝑥௢ = ∑ 𝑥௝௝
∗ + 𝑠ି∗

௝ఢா೚
, 

                                         𝑦௢ = ∑ 𝑦௝௝
∗ − 𝑠ା∗

௝ఢ ೚
, 

 
suggesting that the efficiency of DMUo can be improved by reducing the input 
values, at first radially using the ratio 𝜃∗ and then non-radially eliminating the 
input excesses 𝑠ି∗, and also by augmenting output values using the output 
shortfalls 𝑠ା∗. The radial improvement of inputs removes technical inefficiency, 
while the non-radial improvements of inputs and outputs remove mix inefficiency. 
It can be calculated using the formula called the projection: 
 
                                        𝑥ො௢ = 𝜃∗𝑥௢ − 𝑠ି∗, 
                                           𝑦ො௢ = 𝑦௢ + 𝑠ା∗. 
 
The inefficiency of a DMU may arise due to its inefficient operation or the disad-
vantageous conditions under which it operates, or both. To explore that, the 
input-oriented CCR and BCC scores should be compared. Since it takes no 
account of scale effect, the CCR score is called the (global) technical efficiency 
and denoted as TE. In contrast, the BCC model takes scale effect into account 
thus expressing the (local) pure technical efficiency denoted as PTE. BCC-
efficient DMU with a low CCR score is locally but not globally efficient due to its 
scale size. It is therefore rational to calculate the scale efficiency of a DMU, 
denoted as SE, as the ratio of the CCR and BCC efficiency measures. 
 
 
 
Definition 4 (Scale Efficiency): Let the CCR and BCC scores of a DMU be 
𝜃஼஼ோ

∗  and 𝜃஻஼஼
∗ , respectively. The scale efficiency is defined by 

 

                                           𝑆𝐸 =
ఏ಴಴ೃ

∗

ఏಳ಴಴
∗ .                                              (6) 
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It apparently cannot exceed one. For a CCR-efficient DMU, it is equal to one. 
Obviously, the formula (6) reveals an efficiency decomposition as 
 

Technical Efficiency = Pure Technical Efficiency × Scale Efficiency. 
 

This decomposition reveals whether the overall technical inefficiency (TE) is caus-
ed by inefficient operation (PTE) or disadvantageous conditions (SE) or both. 
The request for the monitoring airport efficiency patterns, which is exceptionally 
important for any airport management, leads to the use of window analysis as a 
time-dependent extension of DEA models. In this case, data for multiple periods 
are included in the analysis, and each DMU is regarded as if it is a different DMU 
in each observed period. All the findings in the next section are based on the 
results of input-oriented CCR and BCC window analysis models. 
 
3. Empirical results and discussion 
 
Due care should be exercised in selecting an appropriate returns-to-scale (RTS) 
type. Knowing the production frontier characteristics of the analyzed process is 
crucial. Due to the inability of determining the type of RTS with certainty in the 
case of airport performance, the analysis was carried out under both (CRS and 
VRS) assumptions. It showed that differences between the results reached by 
CCR and BCC model were significant. They may be attributed to the return 
effect with respect to the range of airport activities thus making the BCC model 
more suitable for describing the analyzed airport activity and for determining the 
inefficiency sources in the first phase of this research. However, the second step is 
intended to reveal inefficiency causes, which points to the need for doing 
calculations and mutual comparisons of different types of inefficiency. Hence, the 
analysis was carried out under both CRS and VRS assumptions. 
The evaluation of relative efficiency of Croatian airports was carried out on 
empirical data relating to four airport performance indicators over a six-year 
period from 2009 to 2014. The nature of the selected indicators allowed compare-
sons on an annual basis. 
The window is the period within which the comparisons were carried out, and its 
duration ranges from one to six years. One window that spans the entire period 
was used. The relative efficiency scores generated by the input-oriented CCR and 
BCC models are listed in Table 1. 
On average and according to both models, Split is the most efficient airport. It 
has never scored the worst efficiency result, and was ranked as the best performing 
airport in even four separate years. According to both models, average airport 
efficiency is less than the value of one throughout the entire period, meaning that 
Croatian airports are inefficient in (pure) technical terms if they are analyzed 
using average values of CCR and BCC scores. The efficiency results differ signify-
cantly depending on the model, which, in average terms, is most prominent in the 
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case of Pula for the years 2013 and 2014. One third (14 out of 42) of the observed 
entities turned out to be BCC-efficient, mostly in the last year. Only 6 of them 
were also CCR-efficient. None of the seven airports was efficient throughout the 
entire period. Dubrovnik and Rijeka were the only continuously inefficient air-
ports, although Dubrovnik according to the CCR model shows the second best 
average result. On average and according to both models, efficiency scores were 
highest in the last observed year‡, and lowest in the year before that. These two 
years were also the years with the highest and lowest number of efficient airports, 
respectively. At the same time, the disparities among airports, best seen from the 
absolute and relative differences between the best, the average and the worst 
efficiency scores, are most pronounced in 2011, again according to both models. 
It should also be noted that the standard deviations (SD) are generally somewhat 
lower, as a result of slightly more balanced performance, when observing the same 
airport in different years than when observing different airports in the same year. 
This claim is additionally supported by the values of the coefficients of variation 
(CV). 
Table 1 also includes the values of progressive time-weighted means (PTWM) and 
Fibonacci weighted geometric means (FWGM). The PTWM [8] and the FWGM 
[3] are the methods to compute a kind of weighted average of a non-empty set of 
numbers that gives more weight to recent data points and makes it more 
responsive to the new information. For the period 1 to T, a set of relative efficiency 
values, say 𝑒௧ , 𝑡 = 1, … , 𝑇 is considered. 
The progressive time-weighted mean can be defined as 
  

PTWM = ෍ 𝑤௧𝑒௧

்

௧ୀଵ

 

                                                                                                      (7) 
where 𝑤௧ = 2𝑡 (𝑇ଶ + 𝑇)⁄ , 𝑡 = 1, … , 𝑇 are associated non-negative normalized 
weights. The Fibonacci weighted geometric mean can be defined as 
 

FWGM = 𝐸𝑥𝑝 ቆ
∑ 𝑤௧ ln 𝑒௧

்
௧ୀଵ

∑ 𝑤௧
்
௧ୀଵ

ቇ 

                                                                                                 (8) 
where 𝑤 = {0, 0.146, 0.236, 0.382, 0.5, 0.618, … } are the associated Fibonacci we-
ights. Obviously, 𝑤௧ < 𝑤௧ାଵ, ∀𝑡, which implies that more emphasis is placed on 
the recent data points than its immediate past. Moreover, the FWGM completely 
ignores the initial point. 

                                                
‡ Data on Zagreb airport efficiency should be taken with caution. Namely, in 2012, a concession was granted 
over the airport and the investment began realization in 2014 which had a big influence on revenues which 
increased significantly but not on account of flying and related operations. 
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In our case, the period spans from 1 (2009) to 6 (2014). As can be seen from Table 
1, PTWM and FWGM expectedly alter initial rankings in favor of the airports, 
the performance of which has been improving in recent years. 
In window analysis model, each airport is represented by six entities – one for 
each of the observed years. Due to the need to mutual distinguish them, the name 
of each entity should consist of the airport name and the corresponding year. 
Table 2 displays the findings of the BCC model regarding the reference sets. The 
table is designed to provide two types of results, depending on whether it is 
analyzed by rows or by columns. Thus, each table row corresponds to one efficient 
airport in one year, and contains its reference set frequencies in each of the 
observed years together with the list of the corresponding inefficient entities. 
Thus, for example, the airport in Split due to its performance characteristics for 
the year 2012 (row Split-2012) is a member of four reference sets – Dubrovnik in 
2009, Rijeka in 2013 and Osijek in 2010 and 2013. On the other hand, each table 
column corresponds to one year of observation and, by synthesizing data from a 
particular column, the reference set for each airport that was inefficient in that 
particular year can be reconstructed. Thus, for example, the reference set for the 
airport in Zagreb in the year 2010 consists of four entities – Pula and Zadar in 
2010 and Split in 2011 and 2014. 
Despite being inefficient in 2010 and 2013, Split sets an example by serving as a 
reference for the largest number of inefficient airports and particularly stands out 
in terms of its performance in the year 2014. Interestingly enough, and bearing in 
mind the earlier observation of an airport’s relative efficiency across different 
periods of time, there are evidently cases where an airport that was efficient in 
one period appears as the reference to itself in an inefficient period. Such cases 
show that a particular airport operating inefficiently in a certain period may refer 
to its previous performance from another period. It is also clear that an efficient 
year may become a reference to more than one inefficient years. At the same time, 
an inefficient year may have more than one efficient year which should serve as a 
reference model. The airport in Pula is a suitable example for illustrating these 
points. Its performance in 2010 is a reference for performance in 2012 and 2013, 
while both 2010 and 2014 are representative for 2013. 
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Table 1: Comparison of CCR and BCC input-oriented efficiency scores 
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Efficient 
airport 

Reference set frequency 
Year 

 To-
tal 2009 2010 2011 2012 2013 2014 

Zagreb-2014 1 
ZG 

1 
DU 

2 
DU, OS 

1 
DU 

2 
ZG, DU 

2 
DU, 
OS 

9 
 

Zagreb 9 

Split-2009 0 0 1 
ZG 

1 
ZG 0 0 2 

 

Split-2011 0 
3 

ZG, 
ST, RI 

1 
RI 

1 
RI 

1 
ST 

1 
RI 7 

 

Split-2012 1 
DU 

1 
OS 0 0 2 

RI, OS 0 4 
 

Split-2014 

3 
ZG, 
DU, 
ZD 

3 
ZG, 
DU, 
ST 

4 
ZG, DU, 
ZD, OS 

3 
ZG, 

DU, OS 

3 
DU, 

ST, RI 

2 
DU, 
OS 

1
8 

 

Split 31 

Pula-2009 0 0 0 1 
Pula 0 0 1 

 

Pula-2010 
2 

ZD, 
RI 

3 
ZG, 

ST, RI 

1 
RI 

2 
PU, RI 

2 
ST, PU 

1 
RI 

1
1 

 

Pula-2011 0 0 1 
ZG 

1 
ZG 

1 
ZG 0 3 

 

Pula-2014 0 0 0 0 1 
PU 0 1 

 

Pula 16 

Zadar-2010 
2 

DU, 
ZD 

2 
ZG, 
ST 

1 
ZD 

2 
PU, OS 

2 
ST, RI 

1 
RI 

1
0 

 

Zadar-2012 1 
ZD 

1 
DU 

3 
DU, ZD, 

OS 

3 
DU, 

PU, OS 
0 1 

OS 9 
 

Zadar-2013 0 0 0 0 0 0 0 
 

Zadar-2014 0 0 0 0 0 0 0 
 

Zadar 19 
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Osijek-2009 1 
ZG 

1 
OS 0 0 2 

DU, OS 
1 

DU 5 
 

Osijek 5 

Table 2: Reference set frequency in the BCC model 
 
Using data envelopment analysis, the respective inefficiency sources, together with 
amounts of their contribution to inefficiency and proposed improvements, should 
be identified. This valuable information serves as the starting point for setting 
goals and making appropriate decisions. Since the BCC model emerged as the 
more suitable model for this analysis, the proposed improvements based on the 
CCR model are not considered important, and therefore are omitted. 
Unlike basic DEA models, window analysis does not provide inefficiency sources 
and amounts of their contribution to inefficiency. Hence, a new model was 
constructed [12]. Four data sets on four selected indicators, one for each of the 
years examined, were included in the basic model for each airport. Thus, each of 
the 42 is treated as a separate entity. The construction of this model is justified 
because it calculates additional crucial results, while not affecting relative effici-
ency scores identified by window analysis that uses a single six-year window. To 
provide insight into the extent of inefficiency, the differences between projected 
and empirical values of each indicator are averaged across inefficient airports and 
displayed in Table 3. They represent inefficiencies that can be decomposed into 
radial and non-radial components and eliminated by conducting the previously 
described two-phase procedure. To illustrate this decomposition, Table 3 also 
presents the proposed input and output improvements averaged across all 
airports. For example, in 2014, the BCC mean efficiency score was 0.961347, 
indicating that on average the airports have a 3.87% BCC-inefficiency (3.87 = (1 
– 0.961347) * 100). To operate efficiently, the first phase requires that the airports 
remove technical inefficiency using management techniques in order to decrease 
all three inputs by 3.87% and maintain the original output amounts (based on 
the previously mentioned radial reduction of inputs by the ratio 𝜃∗). Total assets 
represent the greatest input excess, with an average required decrease of 19.09%. 
The percentage difference indicates that overall efficiency cannot be accomplished 
by solely eliminating technical inefficiency. Therefore, after decreasing all three 
inputs radially, and to avoid further losses and inefficiency in relation to the 
benchmarks, in the second phase the airports should remove the mix inefficiency 
through further input reduction. The different percentages of improvements 
required for eliminating inefficiency mean that, when considering total assets, the 
mix inefficiency is more pronounced than technical inefficiency for the majority 
of inefficient airports in a particular year. At the same time, when it comes to 
personnel costs, the situation is reversed. It is also evident that total expenditures, 
as the third input, cause no mix inefficiency, while total revenue, as the only out-
put, do not cause any inefficiency. 
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Proposed input and output improvements per airport (%) 
Year 2009 2010 2011 2012 2013 2014 Mean 
Inputs Personnel 

costs -12.85 -12.54 -13.80 -14.24 -12.18 -4.24 -11.64 

Total 
expenditure
s 

-6.66 -7.84 -9.02 -9.84 -15.85 -3.87 -8.85 

Total assets -16.92 -23.29 -25.82 -26.81 -23.94 -19.09 -22.65 
Output Total 

revenue 0.43 0.00 0.00 0.00 0.62 0.00 0.18 

Proposed input and output improvements per inefficient airport (%) 
Year 2009 2010 2011 2012 2013 2014 Mean 
Inputs Personnel 

costs -22.49 -17.56 -19.32 -19.93 -14.21 -9.88 -17.46 

Total 
expenditure
s 

-11.65 -10.98 -12.63 -13.78 -18.49 -9.02 -13.27 

Total assets -29.61 -32.61 -36.15 -37.53 -27.94 -44.54 -33.97 
Output Total 

revenue 0.76 0.00 0.00 0.00 0.73 0.00 0.26 

Table 3: Inefficiency sources and average amounts in the BCC model 
 
Apparently, a total asset is the indicator that, without exception, most signify-
cantly affects efficiency during the entire period. The focus of management should 
be to manage assets more appropriately, although it requires taking into account 
that the airports are a capital intensive, highly regulated industry that has 
significant assets requiring the fulfilment of regulations. Notably, selecting the 
model orientation, on average, has a greater influence on the inputs than on the 
output. 
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Table 4: Scale efficiency scores 

 
The causes of relative inefficiency of Croatian airports can be local or global. The 
scale inefficiencies have to be assessed in order to resolve this dilemma, which in 
the case of input-oriented models are also input-oriented. They are shown in Table 

(R
T

S)
 

A
irp

or
t 

Y
ea

r 
M

ea
n 

M
in

im
um

 
20

09
 

20
10

 
20

11
 

20
12

 
20

13
 

20
14

 
Za

gr
eb

 
0.

84
12

99
 

(D
R

S)
 

0.
94

88
81

 
(I

R
S)

 
0.

98
16

66
 

(D
R

S)
 

0.
97

70
95

 
(D

R
S)

 
0.

99
87

93
 

(D
R

S)
 

1 (C
R

S)
 

0.
95

57
48

 
0.

99
87

93
 

D
ub

ro
vn

ik
 

0.
99

15
24

 
(I

R
S)

 
0.

99
74

69
 

(I
R

S)
 

0.
99

94
63

 
(I

R
S)

 
0.

99
68

01
 

(I
R

S)
 

0.
99

80
06

 
(D

R
S)

 
0.

97
66

47
 

(D
R

S)
 

0.
99

31
37

 
0.

99
15

24
 

Sp
lit

 
0.

97
12

44
 

(D
R

S)
 

0.
99

36
29

 
(I

R
S)

 
1 (C

R
S)

 
1 (C

R
S)

 
0.

99
57

86
 

(I
R

S)
 

1 (C
R

S)
 

0.
99

34
28

 
0.

99
57

86
 

Pu
la

 
0.

98
19

25
 

(I
R

S)
 

1 (C
R

S)
 

1 (C
R

S)
 

0.
86

17
45

 
(I

R
S)

 
0.

76
32

53
 

(I
R

S)
 

0.
76

96
38

 
(I

R
S)

 
0.

89
66

41
 

0.
83

09
43

 

Za
da

r 
0.

86
19

69
 

(I
R

S)
 

0.
85

77
55

 
(I

R
S)

 
0.

87
35

45
 

(I
R

S)
 

0.
94

03
60

 
(I

R
S)

 
0.

94
72

60
 

(I
R

S)
 

0.
85

44
19

 
(I

R
S)

 
0.

88
97

27
 

0.
86

19
69

 

R
ije

ka
 

0.
82

41
38

 
(C

R
S)

 
0.

94
97

56
 

(D
R

S)
 

0.
95

41
96

 
(C

R
S)

 
0.

93
39

89
 

(C
R

S)
 

0.
90

43
20

 
(I

R
S)

 
0.

92
77

80
 

(I
R

S)
 

0.
91

83
67

 
0.

82
41

38
 

O
sij

ek
 

0.
97

04
18

 
(D

R
S)

 
0.

90
71

84
 

(D
R

S)
 

0.
95

05
92

 
(I

R
S)

 
0.

98
24

08
 

(I
R

S)
 

0.
83

20
23

 
(D

R
S)

 
0.

99
13

22
 

(I
R

S)
 

0.
93

75
82

 
0.

95
05

92
 

M
ea

n 
0.

95
09

14
 

0.
96

64
01

 
0.

95
61

30
 

0.
91

72
59

 
0.

92
99

64
 

0.
95

09
14

 
0.

94
04

99
 

 

M
in

im
um

 
0.

93
55

74
 

0.
95

05
92

 
0.

98
24

08
 

0.
93

60
79

 
0.

89
42

56
 

0.
93

55
74

 
 

 

 



                     An empirical analysis of airport efficiency: the Croatian case                  485 

4 for all 42 entities. The types of returns to scale were also identified. They can 
be found in the same table. 
When comparing the empirical results presented in Tables 1 and 4, a wide 
diversity of calculated efficiencies among the airports is noticed. The mean values 
of overall technical, pure technical and scale efficiency are approximately 0.87, 
0.92 and 0.94, respectively. This indicates on average similar shares of pure 
technical and scale inefficiency in the overall inefficiency of Croatian airports. 
These shares differ significantly from one airport to another. Two opposite exam-
ples are briefly presented to illustrate the problem. The first example is Zadar 
which has higher pure technical scores rather than scale scores during the entire 
investigated period. This difference is most significant in the second and final 
year, meaning that the overall inefficiency of this airport is largely due to scale 
inefficiency. The airport in Zadar exhibits increasing returns to scale, i.e. it 
operates under a suboptimal scale. In order to reach the optimal scale, Zadar 
needs to expand its operations. On the other hand, in the case of Dubrovnik, the 
impact of scale efficiency on overall efficiency is negligible compared to the impact 
of pure technical efficiency, also during the entire period of investigation. In order 
to eliminate the pure technical efficiency, airport management should adopt best 
practices implemented at efficient airports. Finally, both mentioned airports 
produce outcomes less than optimally required (best practice) from given reso-
urces. All of the above-mentioned points to the necessity of a more detailed 
investigation of the causes behind the results and the obligation of implementing 
appropriate measures for improving airport efficiency. This particularly includes 
analyzing expenditures and productivity of assets and employees. 
 
4. Concluding remarks 
 
An evaluation of relative efficiency of Croatian airports was conducted based on 
the reciprocal performance comparison of the seven major Croatian airports, 
according to CCR and BCC window analysis. In analysis, the same set of three 
input and one output variables were used for the six-year period. The research 
results suggest that pure technical and scale inefficiency for Croatian airports, on 
average, contribute about the same to the overall inefficiency. Split Airport was 
found to be one airport that had the highest average efficiency over the observed 
period and can be used as a benchmark for other airports. Research has shown 
that there are possibilities of increasing efficiency levels in Croatian airports. The 
average overall technical inefficiency can be reduced by 13%, if operating at 
optimal scales and eliminating pure technical inefficiencies. A total asset is the 
key input variable that most significantly affects efficiency during the entire 
period, hence efforts by management should be taken to improve its usage and 
particularly maximize the output i.e. revenues. 
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The most important implications either for subsequent revision of already made 
disadvantageous decisions or for completely new managerial decisions can be 
drawn from the objectives identified by the appropriate DEA model. More preci-
sely, management at each airport is provided with exact information on the ineffi-
ciency sources and amounts of their contribution to inefficiency, as well as to 
whether inefficiency causes are of local or global nature. In this way, decisions can 
be more easily directed to ensure that desired objectives are achieved. 
Future research in this field could rely on a longer period of analysis as well as 
including airports of similar size and operating in similar economic surroundings. 
This could broaden the conclusions drawn in this research and expand insights 
into improving airport efficiency. 
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