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A Hostile model for network reliability analysis
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Abstract. In reliability analysis, the goal is to determine the probability of consistent
operation of a system. We introduce the Hostile model, where the system under study is a
network, and all the components may fail (both sites and links), except for a distinguished
subset of sites, called terminals. The Hostile model includes the Classical Reliability model
as a particular case. As a corollary, the exact reliability evaluation of a network in the
Hostile model belongs to the list of NP-hard computational problems.
Traditional methods for the classical reliability model such as Crude Monte Carlo, Impor-
tance Sampling and Recursive Variance Reduction are here adapted for the Hostile model.
The performance of these methods is finally discussed using real-life networks.
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1. Introduction

Historically, network design was mainly driven by service availability. A major
example is the public switched telephone network or PSTN, where the design is
focused on connectivity aspects and high availability. The progress of the World
Wide Web and digitalization produced a great impact in network design [2], where
both quality of service and robustness under failures are mandatory.
In classical reliability analysis, the goal is to communicate distinct network sites,
called terminals, and the only components under failures are the links between ter-
minals. These issues are studied mathematically using random graphs, and the
Gilbert model of independent link failures to capture its entire structure [3]. Arnie
Rosenthal fully characterized the computational complexity proving that the exact
reliability evaluation under the classical model is at least as hard as the Steiner Tree
Problem in undirected graphs [14]. Given that the Steiner Tree Problem belongs to
the Karp list of the NP-Complete problems [11], Rosenthal proved that the exact
reliability evaluation is thus NP-hard. The specific literature on reliability analysis
offers either exact exponential-time reliability methods or approximation methods.
Monte Carlo methods show the most promising results, at least under the classical
reliability model [8]. Even though Crude Monte Carlo provides a point-wise approx-
imation for elementary parameters of a system, its inaccuracy under highly robust
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systems had led to the development of alternative methods [15]. In this work, we
examine and modify two hypotheses of the classical model. The first one is that
sites may fail. In real-life, we can find relevant examples such as fibre-optic commu-
nication, or a military defence network, that are certainly vulnerable. The second
hypothesis is the use of Crude Monte Carlo as an approximation method for classical
reliability.
In this article, we study the reliability of a Hostile model, where non-terminal sites
may fail as well. Additionally, we study the reliability using three different statistical
methods for highly robust systems. We perform a fair comparison between Crude
Monte Carlo, Importance Sampling (IS) and Recursive Variance Reduction method
(RVR) for the reliability evaluation under the Hostile model. The reasons to choose
IS and RVR is that they present high performance under highly robust scenarios.
The first method, RVR, received a distinction (i.e., a paper award) for its originally
concept of network reliability [5]. On the other hand, the main concept of IS is
to modify the probabilities, in such a way that the probability of rare events is
increased. As a result, a zero-error is ideally produced. The concept is extended to
determine the probability of an arbitrary rare event. Here we extend the concept of
Important Sampling for our new model, to find the unreliability of a highly reliable
system (which is precisely a rare event). The document is organized in the following
manner. The Hostile model is presented in Section 2, as a particular case of a more
abstract setting, called Stochastic Binary Systems (SBS). Section 3 presents Crude
Monte Carlo, and its main weakness that promotes the development of alternative
methods. In Section 4, RVR and IS are introduced for the Hostile model, in strict
analogy with the classical model. Section 5 presents a fair comparison between the
three approximation methods considered in this paper. Concluding remarks and
trends for future work are covered in Section 6.

2. Hostile model

In this section the Hostile model is defined as a particular case of an SBS. We will
adopt the terminology from Michael Ball [1]. An SBS is a triad (S, φ, p), where
S = {s1, . . . , sr} is a ground set of components, φ : {0, 1}r → {0, 1} is a func-
tion called rule, or structure, that assigns 1 to every operational subset of S, or 0
otherwise, and p = (p1, . . . , pr) is a vector with the corresponding operational prob-
abilities of the components, called elementary reliabilities.

Consider a random vector X = (X1, . . . , Xr) with independent coordinates, where
each Xi is governed by a Bernoulli probability law with success P (Xi = 1) = pi.
The reliability R of an SBS is the probability that the random system is operational:

R = P (φ(X) = 1) = E(φ(X)) (1)

Observe that φ(X) is a binary random variable that describes whether the system
is operational or not. A stochastic binary system is monotonous if φ(S1) ≤ φ(S2)
and provided that S1 ⊆ S2. In other words, an operational system will be consistent
with respect to the repair of additional components. In a monotone SBS, a cutset
is a subset S′ ⊆ S such that the system fails when all the components from S′ fail.
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In order to simplify the understanding, we present a different SBS:

1. Classical model: we are given an undirected graph G = (V,E) terminal set
K ⊆ V and elementary reliabilities p : E → [0, 1]. The random graph G =
(V, E) has a corresponding random link-set E ⊆ E, governed by the probability
law p in the links. The classical reliability R(K,G, p) is the probability that
the terminal set K is connected in the random graph G.

2. Link-Sites model: it is precisely the previous model where p : E ∪ V → [0, 1],
and sites may fail as well in the random graph G = (V, E). When a site fails,
all the incident links fail as well.

3. Diameter-Constrained model: we consider the classical model with an addi-
tional constraint. The diameter-constrained reliability is the probability that
every pair of sites from the terminal set K is connected by a path with d links
or less. The positive integer d is called diameter.

4. Hostile model: a special case of the Link-Sites model, where p(v) = 1 for every
terminal site v ∈ K.

The classical model is monotonous, since the addition of links never disconnects the
terminals. A similar fact holds for the diameter-constrained model. Nevertheless,
the Link-Site model is not monotonous.
A remarkable difference between Link-Edge and Hostile models is precisely mono-
tonicity. The adjective hostile stands for the fact that failures are more aggressive
in the hostile model than the classical one.
Even though there is rich literature on the classical model, the Link-Sites model
has been previously considered as well. Jacques Carlier et. al. developed an exact
reliability evaluation method for both classical and link-sites models and exploiting
Rosenthal decomposition [6]. Other authors aim to maximize the reliability in the
link-site model, subject to a bounded budget [7]. The reader is invited to appreciate
a discussion on network reliability models in the book [10].

3. Crude Monte Carlo

Macroscopically, Crude Monte Carlo (CMC) is a noteworthy computational tool for
the simulation of complex systems. By means of strong laws from statistics, a point-
wise estimation of the fundamental parameters of a system is feasible [8]. Here we
describe CMC for the reliability estimation of an arbitrary SBS. Then, we show the
main weakness of CMC: it is not suitable for rare event simulation. This is called
the Central Problem from Rare Event simulation [15].

Let S = (S, φ, p) by an SBS. We are given an independent sample X1, . . . , XN , where
each random vector Xj = (X1

j , . . . , X
r
j ) describes the operational components, and

follows the probability law given by the vector p. The reliability estimation for the
CMC method is given by the following expression:

RCMC =
1

N

N∑
j=1

φ(Xj) (2)
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An important remark is that the estimator RMCC converges almost certainly to the
correct reliability R = E(φ(X)), as stated in the Strong Law of Large Numbers.
Moreover, the estimator RMCC is unbiased, since it is an average of identically dis-
tributed random variables. Therefore, its mean square error is precisely its variance.

Let us denote γ = 1−R the unreliability of the SBS. There is a trade-off between the
rarity of the probability γ and the sample size N required to keep the error under
control (below a fixed threshold). Consider the Limit Central Theorem to find a
speed of convergence. As a preamble, it is convenient to consider the concepts of
Relative Error (RE), Bounded Relative Error (BRE) and Vanishing Relative Error
(VRE):

Definition 1 (Relative Error). Given a risk level α, the relative error of an estima-
tor is the ratio between half the confidence interval at level α and γ. We will denote
RE(γ) to the relative error.

Definition 2 (Bounded Relative Error). An estimator satisfies Bounded Relative
Error (BRE) property if the Relative Error is bounded when γ tends to zero.
Mathematically:

lim
γ→0

RE(γ) = L, (3)

for some real number L.

Definition 3 (Vanishing Relative Error). An estimator satisfies the Vanishing Rel-
ative Error (VRE) property if the Relative Error vanishes when γ tends to zero.
Mathematically:

lim
γ→0

RE(γ) = 0. (4)

Clearly, VRE property is stronger than BRE; the converse is not true. In order to
understand the main problem of Rare Event simulation we should find the limit of
RE when γ tends to zero for CMC method. Let α be a fixed risk level (typically
10% or lower, in relation with the application). By means of the Central Limit
Theorem, the average of independent, identically distributed random variables with
finite mean can be approximated in distribution to a normal law, with finite mean γ
and variance σ̂2 = γ(1− γ)/N . The radius of the confidence interval is σ̂zα/2, being
zα/2 such that P (Z > zα/2) = zα/2 for a standard normal variable. Thus:

lim
γ→0

RECMC(γ) = lim
γ→0

√
γ
√

(1− γ)
√
Nγ

zα/2 = +∞. (5)

As a consequence, CMC does not satisfy even the most basic BRE property. This
is the main problem in the Rare Event simulation. The following section calls for
a study into promising alternatives to cope with this problem. One is called RVR,
and it is specifically suitable for the context of network reliability analysis. On the
other hand, Importance Sampling (IS) can be extended to general context of rare
event analysis.
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4. Alternative methods

4.1. Recursive Variance Reduction

This method has been originally proposed by Héctor Cancela and Mohammed El
Khadiri for the classical network reliability model [5]. The key idea is to find a
cutset C = {e1, . . . , et} ⊆ S, and consider mutually exhaustive disjoint events on
the state of the links that belong to that cutset. If the cutset does not occur, we
can consider the family of disjoint events, where Bi represents the event that link
ei is operational but links ej , j < i fail. If all links fail, the cutset occurs, and the
event is denoted by B0. We observe that the set {Bi}0≤i≤t is a family of mutually
exhaustive disjoint events. Consider the conditional unreliability Yi, for event Bi.
If V denotes the random variable that points the first element under operation and
qC denotes the probability of B0, then the following estimator Z:

Z = qC + (1− qC)

t∑
i=1

1{V=i}Yi. (6)

is unbiased for the unreliability. The random variable Z suggests a recursive method,
where smaller subsystems are considered step by step, fixing the state of some links.
The authors consider all links incident to a given site as a cutset. Remarkably, they
prove mathematically that the variance of the RVR method is never greater than
that of CMC; the equality holds for trivial networks. It is possible to find a cutset
efficiently in every monotone SBS; in particular under the Hostile model. The reader
is invited to consult the proof in [4]. As a consequence, the RVR method is suitable
for the Hostile model, and its mean square error is lower than CMC as well.

4.2. Importance Sampling

Importance Sampling is specifically developed to address the rare event simulation
problem. The key concept is a change of probability measure, in such a way that
the probability of the rare event is increased. A lower probability is assign to the
complementary event, and a sample on the new probability measure will succeed to
get trials of the rare event from the original measure. In the most general context of
measures, this change of measure is precisely Radon-Nikodim derivative with respect
to an absolutely continuous positive measure [9]. Let X be the random vector that
represents the network state, and let us denote P (x) = P (X = x) the original
probability measure. If φ denotes the structure that determines whether the system
is operational or not, then the new probability law is P̂ :

P̂ (x) = (1− φ(x))P (x)/γ (7)

We remark that the probability of operational configurations is null, and the rare
event has a unit probability under P̂ . A sample is considered under the new measure,
and an averaging takes place:

RIS = 1− 1

N

N∑
j=1

(1− φ(Xj))L(Xj), (8)



494 Daniel Lena, Franco Robledo and Pablo Romero

being L(xj) = P (x)/P̂ (x) whenever P̂ (x) > 0, or 0 otherwise. Observe that since
the rare event has unit probability, the new estimator has null variance. However,
the determination of the law P̂ requires a knowledge of γ, which is precisely our
goal. L’ Ecuyer et. al. developed the Importance Sampling method for the network
unreliability evaluation under the classical model, and considered a recursive formula
with approximate zero variance, called AZVIS (Approximate Zero Variance Impor-
tance Sampling). This method satisfies the VRE property when special cutsets are
considered [12]. The idea is to build a sequence of probability measures {Pn}n∈N
such that Pn converges to P̂ . We invite the reader to consult the original article for
further details [12].

5. Experimental analysis

In this section, we perform a fair comparison among the three methods previously
considered, i.e., CMC, RVR and IS. The main parameter that jointly considers
computational efficiency and accuracy is the efficiency gain:

ŴCMC
M

=
V̂CMC .tCMC

V̂M .tM
, (9)

where M here stands for RV R or IS. In order to highlight the performance of each
method we consider real-life instances, such as Arpanet and our National Telephony
transport network, ANTEL [13]. By historical reasons, we also include Dodecahe-
dron as well. We distinguish those nodes with the highest degree as terminal sites.
They represent roughly 40% of the possible sites. Figures 1, 2 and 3 present Dodeca-
hedron, ArpaNet and ANTEL, respectively. In order to get a highly robust network,
we consider a homogeneous system, where links present identical elementary relia-
bilities p ∈ {0.95, 0.97, 0.99}, and non-terminal sites have elementary reliabilities
u ∈ {0.95, 0.97, 0.99}. As a consequence, we get 9 instances per graph, and we use
N = 104 for the sampling size. Tables 1, 2 and 3 present the unreliability estimator
γ̂, variance estimator V̂ , CPU time and relative efficiency gain Ŵ with respect to
CMC for each method and pair (p, u).
The reader can appreciate from Tables 1, 2 and 3 that RVR is computationally more
efficient than IS in terms of CPU time. Nevertheless, the variance of IS is lower in
most scenarios, especially when the unreliability is a rare event. The RVR method
presents lower variance when the unreliability is higher than 10−4. There is a match
here with the original concept of IS, developed specifically for rare events only. We
can observe that IS outperforms RVR in terms of efficiency gain for most rare events
scenarios, particularly when the elementary unreliability becomes u = 0.99.

6. Conclusions

This paper has introduced the Hostile model, where both links and non-terminal
sites may fail independently. The model is a special case of a monotone stochastic
binary system. Since Crude Monte Carlo does not meet the Bounded Relative
Error property, it is not suitable for evaluating the reliability of highly reliable
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Dodecahedron

M p u N γ̂ V̂ t Ŵ
RVR 0.95 0.95 104 0.0090535 3.14E − 07 205.8 1.84

IS 0.95 0.95 104 0.0089496 1.22E − 07 2609 37.4
RVR 0.95 0.97 104 0.004785 1.07E − 07 306 2.48

IS 0.95 0.97 104 0.0047531 3.31E − 08 3550.1 0.69
RVR 0.95 0.99 104 0.0019989 2.19E − 08 358 5.41

IS 0.95 0.99 104 0.0020218 1.14E − 08 3854.2 0.96
RVR 0.97 0.95 104 0.0033151 1.04E − 07 189.5 2.7

IS 0.97 0.95 104 0.0032034 5.06E − 08 2201.4 0.48
RVR 0.97 0.97 104 0.0012524 2.54E − 08 197.2 5.19

IS 0.97 0.97 104 0.00183433 1.72E − 08 2754.9 0.54
RVR 0.97 0.99 104 0.00047489 2.30E − 10 321.1 151

IS 0.97 0.99 104 0.0006093 9.69E − 10 3965 2.9
RVR 0.99 0.95 104 0.00087277 2.95E − 10 137.8 465

IS 0.99 0.95 104 0.0009255 6.77E − 09 1556.8 1.78
RVR 0.99 0.97 104 0.00025812 9.55E − 10 166.2 71.5

IS 0.99 0.97 104 0.00026312 1.61E − 10 1851.9 38
RVR 0.99 0.99 104 5.00E-05 4.22E − 11 296.4 147

IS 0.99 0.99 104 3.49E-05 2.99E − 12 3049.9 201

Table 1: Performance of RVR, IS and efficiency gain w.r.t. CMC in Dodecahedron

ArpaNet

M p u N γ̂ V̂ t Ŵ
RVR 0.95 0.95 104 0.051351 1.68E − 06 245 2.29

IS 0.95 0.95 104 0.036738 1.60E − 06 761.1 0.75
RVR 0.95 0.97 104 0.044748 1.17E − 06 214.4 2.78

IS 0.95 0.97 104 0.040738 9.32E − 07 865.9 0.86
RVR 0.95 0.99 104 0.023175 3.67E − 07 197.1 6.47

IS 0.95 0.99 104 0.023244 5.98E − 07 839 0.93
RVR 0.97 0.95 104 0.023658 3.13E − 07 196.1 8.37

IS 0.97 0.95 104 0.022267 1.07E − 06 806.4 0.59
RVR 0.97 0.97 104 0.015214 4.51E − 07 240.3 3.04

IS 0.97 0.97 104 0.01694 3.73E − 07 752.8 1.17
RVR 0.97 0.99 104 0.0085 7.66E − 08 232.1 9.27

IS 0.97 0.99 104 0.0085685 4.28E − 08 865.2 4.45
RVR 0.99 0.95 104 0.0078039 6.60E − 08 244 9.55

IS 0.99 0.95 104 0.0086097 7.71E − 08 794.9 2.51
RVR 0.99 0.97 104 0.00349 2.37E − 08 210.5 16.3

IS 0.99 0.97 104 0.0041413 5.82E − 08 811.2 1.73
RVR 0.99 0.99 104 0.0011238 5.46E − 09 213.3 20.9

IS 0.99 0.99 104 0.0013126 1.06E − 09 813.7 28.2

Table 2: Performance of RVR, IS and efficiency gain w.r.t. CMC in ArpaNet
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ANTEL

M p u N γ̂ V̂ t Ŵ
RVR 0.95 0.95 104 0.41953 1.32E − 06 369.8 6.52

IS 0.95 0.95 104 0.40769 1.02E − 06 5713.9 0.29
RVR 0.95 0.97 104 0.31029 9.05E − 05 472 0.68

IS 0.95 0.97 104 0.31433 2.66E − 05 6193.1 0.73
RVR 0.95 0.99 104 0.22542 7.50E − 05 441 1.41

IS 0.95 0.99 104 0.21542 8.74E − 05 6499.5 0.36
RVR 0.97 0.95 104 0.29541 1.26E − 05 384.5 85.2

IS 0.97 0.95 104 0.30109 7.48E − 05 5724.3 0.60
RVR 0.97 0.97 104 0.19916 9.76E − 06 427.2 10.5

IS 0.97 0.97 104 0.22906 1.81E − 05 5245.2 0.20
RVR 0.97 0.99 104 0.10498 3.87E − 06 495.1 24.5

IS 0.97 0.99 104 0.08054 2.26E − 06 6352.7 0.49
RVR 0.99 0.95 104 0.14596 8.11E − 06 369.8 24

IS 0.99 0.95 104 0.16962 1.21E − 06 5670 2.85
RVR 0.99 0.97 104 0.07284 1.47E − 05 400.2 12.7

IS 0.99 0.97 104 0.066295 5.47E − 06 5688.3 1.18
RVR 0.99 0.99 104 0.022951 1.70E − 05 598.5 5.69

IS 0.99 0.99 104 0.015605 2.75E − 06 6074.5 2.30

Table 3: Performance of RVR, IS and efficiency gain w.r.t. CMC in ANTEL

systems, where unreliability is a rare event. As a consequence, we adapted two
alternative methods for this model, i.e., the Importance Sampling and Recursive
Variance Reduction methods. They are both competitive for rare event analysis. On
one hand, Importance Sampling has been shown to be more suitable for rare event
scenarios, when the elementary unreliability is reduced. On the other, Recursive
Variance Reduction is computationally more efficient.
In future work, our intention is to study non-monotone stochastic binary systems
(for instance, networks under arbitrary failures on the sites). Additionally, we would
like to adapt and/or design new methods with performance better than Crude Monte
Carlo in the non-monotone models as well.
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