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Abstract:
The aim of this study was to look at differences in countermovement jump (CMJ) performance and 

selected kinetic parameters in athletes of different training backgrounds and to examine the relationships 
between these parameters. The subjects were 14 endurance athletes, 12 sprinters, and 13 fire-fighter aspirants 
(controls); each performed two CMJ on a force plate. The best jump of two attempts was selected and the 
following parameters were calculated: CMJ height (h), peak power (PP), normalized vertical stiffness (Kvert), 
rate of force development (RFD), peak RFD (pRFD) during concentric phase, and the ratio between pRFD 
and the time of its occurrence (iRFD). Sprinters exhibited greater h, PP, Kvert and RFD values than the other 
groups. A strong correlation was revealed between PP and h, and between pRFD and Kvert in all groups. 
The magnitude of correlations improved with iRFD when compared to pRFD (.5-.6 vs. .7-.9). There were 
strong correlations (r>.7) between PP, Kvert, and both pRFD and iRFD only for the endurance athletes group. 
From these results, it would be recommended to record different RFD calculations during CMJ evaluations, 
including the new RFD index (iRFD), in athletes of different training backgrounds.

Key words: explosiveness, stretch-shortening cycle, impulse

Introduction
Countermovement jump (CMJ) is the most 

common test for the evaluation of lower limb ex-
plosiveness and neuromuscular fatigue (Boullosa, 
Tuimil, Alegre, Iglesias, & Lusquiños, 2011; Gath-
ercole, Sporer, Stellingwerff, & Sleivert, 2015; 
Young, Cormack, & Crichton, 2011)which yielded 
several kinematic and kinetic variables describing 
leg muscle function. A 40 m sprint was also con-
ducted to assess acceleration (10 m time. Its high 
validity for the evaluation of athletes from different 
sports is linked to its simplicity and reproducibil-
ity (Markovic, Dizdar, Jukic, & Cardinale, 2004) 
while expressing, in a simple movement, an indi-
vidual’s capacity for fast force production during 
a single stretch-shortening cycle (Bosco & Komi, 
1979; Bosco, Komi, & Ito, 1981; Bosco, Viitasa-
lo, Komi, & Luhtanen, 1982). Jump height is obvi-
ously the most important performance parameter 
as it represents the final outcome. However, other 

important kinetic and kinematic parameters can 
be evaluated when a force plate is available (Boul-
losa, et al., 2011; Cormie, McBride, & McCaulley, 
2009; Jiménez-Reyes, et al., 2017)force-, and ve-
locity-time curves of the countermovement jump 
(CMJ. In this regard, recent studies have identified 
the necessity of looking for new alternative varia-
bles versus traditional ones for CMJ analyses dur-
ing both acute and chronic adaptations (Gathercole, 
et al., 2015; Gathercole, Sporer, Stellingwerff, & 
Sleivert, 2015)but the test with optimal validity re-
mains to be established. The current investigation 
examined the suitability of vertical jump (counter-
movement jump [CMJ], squat jump [SJ], drop jump 
[DJ]. Different mechanical strategies used by ath-
letes in different conditions (e.g., fatigued vs. non-
fatigued; after a training period), and the noise-
to-signal ratio in every specific condition, are the 
main factors behind this necessity. Therefore, while 
jump height represents the reference value for per-
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formance analysis, other kinetic parameters should 
also be considered for a complete analysis of the 
acute and chronic adaptations of athletes.

Rate of force development (RFD) refers to the 
slope in a force-time curve, although a variety of 
calculation methods have been described in litera-
ture (e.g, peak values, force gradients between spe-
cific time points, absolute vs. normalized values) 
(Maffiuletti, et al., 2016). Previously, RFD has been 
extensively studied in dynamic and isometric con-
ditions, confirming that it is affected by a number 
of neural and structural factors (Earp, et al., 2011; 
Maffiuletti, et al., 2016)the relationships between 
muscle and tendon structure to performance are 
highly dependent on the speed and intensity of the 
movement. The purpose of this study was to deter-
mine if muscle and tendon structure is associated 
with the rate of force development (RFD. Interest-
ingly, some of these previous studies have report-
ed some relationships between different RFD in-
dices in isometric conditions with various dynam-
ic performances (Maffiuletti, et al., 2016). In con-
trast, to the best of our knowledge, only two studies 
(Laffaye, Wagner, & Tombleson, 2014; McLellan, 
Lovell, & Gass, 2011) have reported a correlation 
between RFD during CMJ and jump height, con-
firming the expected influence of RFD during im-
pulse on the CMJ height. However, another study 
(Ugrinowitsch, Tricoli, Rodacki, Batista, & Ricard, 
2007) did not find this relationship with the evalua-
tion of individuals of different training backgrounds 
(i.e., power athletes vs. bodybuilders vs. physically 
active subjects). Methodological differences such as 
the selection of kinetic variables and their calcula-
tions (Gathercole, et al., 2015; Maffiuletti, et al., 
2016), and differences between populations could 
account for this divergence in literature. For in-
stance, the study of McLellan et al. (2011) with rec-
reational sportsmen used peak and average RFD 
values, whereas the study of Ugrinowitsch et al. 
(2007) used the slope of the ground reaction force 
(i.e., average RFD). Thus, comparison of different 
RFD calculations could help for better identifying 
differences in jumping performance between ath-
letes of different training backgrounds.

Therefore, the aim of this study was to exam-
ine differences in the selected kinetic parameters-
including different calculations of RFD, between 
athletes of different training backgrounds and to 
look for correlations between these parameters that 
would explain jumping mechanics and subsequent 
CMJ performance.

Methods

Participants
Fourteen male endurance athletes (eight endur-

ance runners and six triathletes), 12 male sprinters, 
and 13 male fire-fighter aspirants (controls) volun-

teered for the participation on this study. All the 
athletes trained specifically for their activity dur-
ing at least one year, more than four days a week, 
and were familiarized with CMJ performance. They 
were advised to avoid strenuous physical activity 
72 hours before evaluation. All of them provided 
informed written consent. The study was approved 
by the local Ethics Committee.

Procedures
On the day of evaluation, the athletes ran 10 

min at a submaximal pace and thereafter performed 
2-3 CMJs on the force plate, with the rest pauses 
of at least 15 s, as a part of the warm-up. Two min-
utes after the warm-up, the participants performed 
two maximum attempts (> 15 s of rest) on a force 
plate (Quattro Jump, Kistler, Switzerland) that re-
corded vertical forces with a sampling rate of 500 
Hz. Before each jump, participants were instruct-
ed to stand up straight and still on the center of the 
force plate with their hands on the hips. The ath-
letes were encouraged to jump “as high as possible”. 
The best jump was selected for further analyses. 
The mechanical parameters of the best jump were 
obtained with the corresponding software or calcu-
lated from the raw data in a custom-made Excel® 
spreadsheet: jump height (h) that was determined 
from the difference between the maximum height of 
the center of mass (apex) and the last contact of the 
toe on the ground during the take-off; peak power 
(PP) during the push-off phase (W·kg-1); normal-
ized vertical stiffness (Kvert) (N·m-1·kg-1) (Kvert = 
Fmax·∆Y-1; where Fmax is peak vertical force minus 
body weight, and ∆Y is the maximum vertical dis-
placement of the center of mass) (Lake, Lauder, 
Smith, & Shorter, 2012; Linthorne, 2001; McMahon 
& Cheng, 1990; Morin, Dalleau, Kyröläinen, Jean-
nin, & Belli, 2005)(2; average normalized rate of 
force development (RFD) was calculated between 
the minimum force recorded and Fmax (N·kg-1·s-1); 
peak rate of force development (pRFD) during the 
concentric phase was calculated as the highest in-
crement between two consecutive force recordings 
during the concentric phase (N·ms-1); and iRFD 
(pRFD/tRFD; where tRFD is the time [ms] taken 
to achieve pRFD during the concentric phase). The 
typical location of pRFD in a force-time recording 
is showed in Figure 1.

Statistical analyses
To check the normality of distribution of vari-

ables and the homogeneity of variances, Kolmog-
orov-Smirnov and Levene’s tests were performed. 
Statistical descriptives are shown as means (SD). 
A one-way ANOVA with the Tukey’s post-hoc test 
was performed to look for differences in kinetics 
parameters between the groups. Pearson product-
moment correlation coefficient (r) was employed for 



Boullosa, D. et al.: THE INFLUENCE OF TRAINING BACKGROUND...

3

Kinesiology 50(2018) Suppl.1:xxx-xxx

the analysis of the relationships among the selected 
parameters. Statistical significance was set at p<.05.

Results
Mean values (± SD) of the mechanical param-

eters recorded during the best jumping attempt in 
all groups are shown on Table 1. There were the sig-
nificant differences between sprinters and the other 
two groups in h, PP, Kvert and RFD (see Table 1).

Discussion and conclusions
The main finding of the current study was that 

the relationships between the selected kinetic pa-
rameters during CMJ could be dependent on the 
training background of athletes and independent 
of jump performance. More specifically, different 
RFD indices may provide different information 
about jumping mechanics in every group of ath-
letes, with the new iRFD ratio being related to verti-

Figure 1. Simultaneous recording of kinetic and kinematic parameters during the countermovement jump. Note. peak RFD = peak 
rate of force development during the concentric phase.

Table 1. Kinetic parameters during countermovement jump in all groups

Variables
Mean ± SD

Endurance (n=14) Controls (n=13) Sprinters (n=12)

h (cm) 32.33±4.15 34.93±3.89 42.72±5.97*#

Peak power (W/kg) 50.91±7.02 52.24±5.16 63.79±7.87*#

Kvert (N/m/kg) 52.54±23.73 50.78±14.23 70.69±18.51*@

RFD (N/kg/s) 64.41±29.29 63.9±22.19 121.06±35.13*#

pRFD (N/ms) 4.04±3.12 3.96±3.83 1.71±1.72

tRFD (ms) 63.57±74.41 60.00±82.82 51.83±58.95

iRFD (N/ms2) 0.29±0.42 0.57±0.77 0.20±0.35

Note. h = jump height; Kvert = normalized vertical stiffness; RFD = rate of force development (RFD); pRFD = peak rate of force 
development during concentric action; tRFD = time to peak concentric rate of force development; iRFD = pRFD/tRFD. * Significantly 
different (p<.01) from Endurance. # Significantly different from Controls (p<.01). @ Significantly different (<0.05) from Controls.

The relationships between different kinetic pa-
rameters for every group are shown in Table 2. The 
significant correlations were revealed between h 
and PP, and between Kvert, pRFD and iRFD in all 
groups. Of note, the correlations between iRFD and 
Kvert were systematically stronger than the corre-
lations between pRFD and Kvert in all groups. In 
contrast, RFD was only correlated to h in endurance 
athletes and sprinters but not in controls. 

cal stiffness in all groups. These findings reinforce 
the necessity of evaluating not only jump height, 
but also jumping mechanics from force-time (F-t) 
curves for a better characterization of acute and 
chronic adaptations of athletes of different train-
ing backgrounds. 

The only correlations observed in the three 
groups were between h and PP, and between Kvert 
and concentric RFD indices (i.e., pRFD and iRFD). 



Boullosa, D. et al.: THE INFLUENCE OF TRAINING BACKGROUND...

4

Kinesiology 50(2018) Suppl.1:xxx-xxx

The relationship between h and PP was expected 
and is in agreement with previous literature (Corm-
ie, et al., 2009; Dowling & Vamos, 1993)but the 
best three-predictor model, not including maximum 
power, could only explain 66.2% of the height vari-
ance. A high maximum force (> 2 body weights. As 
the combination of force and velocity at the end of 
the impulse strongly determines jump height, with 
vertical velocity at take-off being directly related 
to jump height (Cormie, et al., 2009; Linthorne, 
2001)(2. However, the relationships between Kvert 
and both pRFD and iRFD as calculated in the cur-
rent study are novel and have not been previous-
ly reported in literature. Moreover, an interesting 
finding was that the correlations between Kvert 
and iRFD (from 0.721 to 0.920) were systemati-
cally greater than between Kvert and pRFD (from 
0.566 to 0.690). That is, strength of the relation-
ships of peak concentric RFD with vertical stiff-
ness was greater when considering both their val-
ues along with the time of its occurrence. In other 
words, those individuals producing a higher verti-
cal stiffness at the end of the eccentric phase were 
able to produce higher and earlier RFD values dur-
ing the concentric phase. These findings are novel 
and interesting and would be providing evidence 
of an elastic energy transfer between eccentric and 
concentric phases that warrants further investiga-
tion. Furthermore, these correlations were always 
greater in the endurance athletes group (see Table 
2), which were the only group that exhibited a re-
lationship between Kvert and PP, thus reinforcing 
the energy transfer hypothesis between eccentric 
and concentric actions.

Previous studies have reported a relationship 
between different RFD calculations and unloaded 
jump performance on a force plate, thus suggest-

ing that rapid force production is a prerequisite for 
higher jumps (Laffaye, et al., 2014; McLellan, et al., 
2011). However, it should be pointed out that these 
previous calculations were related to force produc-
tion rates recorded during the eccentric phase of 
the countermovement as the greater force incre-
ments are typically observed during this phase (Flo-
ría, Gómez-Landero, Suárez-Arrones, & Harrison, 
2016; Sole, Mizuguchi, Sato, Moir, & Stone, 2017). 
Moreover, these previous studies (Laffaye, et al., 
2014; McLellan, et al., 2011) used the Vertec ap-
paratus and therefore the countermovement jump 
was performed with arm swing. This is an impor-
tant difference from our study, as our sample per-
formed the CMJ without arm swing. Thus, in our 
study, only endurance and sprint athletes exhib-
ited a relationship between a classic RFD calcula-
tion and jump performance, whereas the control 
group did not. This is a novel and interesting find-
ing as RFD levels did not differ between endur-
ance athletes and controls (see Table 1). Therefore, 
divergence with previous literature regarding the 
possible influence of RFD on jump height could 
be explained not only by differences in RFD cal-
culations but also by differences on CMJ evalua-
tions and training background of athletes. In this 
regard, apart from obvious differences in training 
methods between athletes and controls, it would 
be also suggested the possible influence of mus-
cle fiber type on these results with endurance ath-
letes probably presenting the type I phenotype and 
sprinters the type II phenotype. Of note, a previ-
ous study of Marques et al. (2015) also described a 
strong relationship between h and maximum RFD 
during the concentric phase; however in this study 
the athletes performed a loaded jump (17 kg of the 
bar of a Smith machine) and the F-t curve was es-

Table 2. Correlations among kinetic parameters in all groups

Variables - 
GROUPS Peak power Kvert pRFD iRFD RFD

ENDURANCE
h 0.785 ** 0.350 0.214 0.289 0.549 *

Peak power 0.786 ** 0.553 * 0.714 ** 0.609 *

Kvert 0.690 ** 0.920 ** 0.634 *

CONTROLS
h 0.812 ** 0.008 -0.209 -0.423 0.259

Peak power 0.498 0.258 0.081 0.177

Kvert 0.566 * 0.740 ** 0.328

SPRINTERS
h 0.823 ** 0.049 -0.186 -0.130 0.770 **

Peak power 0.378 0.240 0.134 0.705 **

Kvert 0.667 * 0.721 ** 0.257

Note. h = jump height; Kvert = normalized vertical stiffness; RFD = rate of force development (RFD); pRFD = peak rate of force 
development during concentric action; tpRFD = time to peak concentric rate of force development; iRFD = pRFD/tRFD. * p<.05; ** p<.01.
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timated from a linear transducer. Further studies 
are needed to clarify the influence of these factors 
on the relationship between RFD and CMJ capac-
ity under different conditions. 

To the best of our knowledge, there are only two 
studies comparing the influence of training back-
ground on unloaded CMJ performance on a force 
plate (Laffaye, et al., 2014; Ugrinowitsch, et al., 
2007). Previously, Ugrinowitch et al. (2007) found 
that RFD did not influence CMJ height when com-
paring power athletes vs. bodybuilders vs. phys-
ically active subjects. In contrast, these authors 
found that 1RM in leg press was highly correlated 
to jump height in both power athletes and body-
builders (Ugrinowitsch, et al., 2007). More recently, 
Laffaye et al. (2014) examined the influence of sex 
and sport on CMJ kinetics and showed higher jumps 
for outdoor sporting athletes. In this previous study, 
the kinetic variables that better predicted jump per-
formance were eccentric RFD and concentric force 
(Laffaye, et al., 2014). As previously commented, 
differences between studies could be due to meth-
odological differences as CMJ execution technique 
(e.g., with or without arm swing) and RFD calcula-
tions (e.g., average vs. peak values). However, other 
important differences that could influence our re-
sults should not be disregarded. For instance, Earp 
et al. (2011)the relationships between muscle and 
tendon structure to performance are highly depend-
ent on the speed and intensity of the movement. The 
purpose of this study was to determine if muscle 
and tendon structure is associated with the rate of 
force development (RFD showed that Achilles ten-
don and lateral gastrocnemius lengths were predic-
tors of RFD during earlier CMJs therefore linking 
long-term adaptations of muscle-tendon complex 
with fast force production during stretch-shorten-
ing activities. In our study, it would be expected 
that sprinters, endurance runners and controls had 
very different muscle and tendon structures. In this 
regard, endurance runners and sprinters exhibited 
significant differences in kinetic parameters that 
could be partially due to structural differences (see 
Table 1). However, endurance runners and controls 
did not exhibit significant differences in jumping 
capacity or kinetic parameters. In contrast, as pre-
viously commented, there were important differ-
ences in the matrix of correlations (see Table 2) for 
every group. These differences may be suggesting 
the possible influence of such structural character-
istics (Earp, et al., 2011) the relationships between 
muscle and tendon structure to performance are 
highly dependent on the speed and intensity of the 
movement. The purpose of this study was to deter-
mine if muscle and tendon structure is associated 
with the rate of force development (RFD, different 
jumping strategies (Laffaye, et al., 2014), or a com-
bination of both. Further studies should elaborate 
on these differences for a better understanding of 

the long-term adaptations that influence jumping 
mechanics.

The current study presents a number of limita-
tions that should be acknowledged. Firstly, this is a 
cross-sectional study, therefore some of the differ-
ences identified between the groups could be due 
to athlete selection and not to chronic adaptations. 
This consideration is remarkable given the modest 
reliability previously reported for different RFD 
calculations (McLellan, et al., 2011; Moir, Garcia, 
& Dwyer, 2009; Nibali, Tombleson, Brady, & Wag-
ner, 2015). Secondly, the current study only evalu-
ated male athletes, therefore our results cannot be 
extrapolated to females (Laffaye, et al., 2014). Fi-
nally, the athletes of our study only used jumping 
for training or evaluations and not during competi-
tions. This is an important consideration as differ-
ences between athletes could be debt to different 
jumping strategies as a consequence of their com-
petitive demands (Laffaye, et al., 2014). Therefore, 
further studies should differentiate between ath-
letes who jump or not during their competitive ac-
tivities. In this regard, the study of jumping profiles 
along with peak values of kinetic parameters could 
be also recommended (Cormie, et al., 2009)force-, 
and velocity-time curves of the countermovement 
jump (CMJ. Moreover, following a recent study 
(Jiménez-Reyes, Pareja-Blanco, Rodríguez-Ro-
sell, Marques, & González-Badillo, 2016)mean and 
maximal power (Pmean, Pmax, the use of a force 
plate synchronized with a linear transducer could 
be also recommended for a more precise assessment 
of jumping kinetics and kinematics.

These findings provide important practical ap-
plications, which include the selection of appropri-
ate jump protocols and kinetic parameters as the 
same jump height could be achieved with different 
jumping strategies. More specifically, it seems that 
all RFD calculations used in the current study could 
help for a better understanding of neuromuscular 
characteristics of athletes of different training back-
grounds. However, as previously commented, more 
chronic studies are needed for identifying which 
parameters are more appropriate in each popula-
tion when identifying the noise-to-signal ratio in 
every case.

The current results support the notion that dif-
ferent training backgrounds could influence jump-
ing kinetics despite similar jumping performances. 
The new index, iRFD, should be considered along 
with other RFD measures when evaluating CMJ 
kinetics in different samples, and more specifically 
in endurance athletes. Further studies should elab-
orate on the relative influence of muscle–tendon 
characteristics and sport demands on the kinetics 
of CMJ under different conditions (loaded vs. un-
loaded) with different vertical jump protocols (with 
or without arm swing).
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