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We have obtained valence bond waivefunctions for the neutral, 
positive ion, and lower excited states of second row AH2 molecules. 
A number of simple rules emerge which govern the nuclear geo­
metry and bond-orbital directions. These are explained in terms · 
of valence bond orbital characteristics as well as an analysis of 
energy components. 

I. INTRODUCTION 

It is a depressing commentary on our understanding of structural chemi­
stry that a satisfactory explanation of the ·origin of equilibrium bond angles 
has still not been presented. There is no doubt that using modern theoretical 
methods and computational power, one can reproduce experimental geometries 
accurately at least for small molecules. But the goal of extracting a simple 
model which successfully connects theory with experiment remains elusive. 

A number of models have been proposed. They are comprehensively 
discussed in the recent review article by Nakatsuji and Koga.1 Although each 
of them is successful on some grounds none is completely satisfactory. The 
valence shell electron pair repulsion (VSEPR) theory,2 for example, provides 
an intuitive rationalization of much experimental data. Yet it turns out, upon 
quantitative investigation,3•4 that the basic assumptions of the model are 
invalid. Exactly the same statements can be made about the Walsh correlation 
diagram.5•6 In fact, Nakatsuji and Koga1 summarize evidence indicating that 
all of the energetic models for molecular shape which have been suggested 
thus far suffer from a like deficiency. 

On the other hand, the Hellman-Feynmann force models developed by 
Nakatsuji and coworkers1 and by Deb, et al.7 are also open to some criticism. 
It is true that the electrostatic force may be written as a simple classical 
expression involving the (single particle) electron density. But this expression 
is valid only for »floating« wavefunctions,8 otherwise large errors ensue9 due 
to the terms that are omitted. Moreover, in general the computed electrostatic 
force (unlike the energy) is extremely sensitive10 to small errors in the density 
function. The latter does depend on the non-classical character of the wave­
function and on the precise effect of the two-electron interaction as well. 
In analyzing the electrostatic force such considerations are ignored. A parti­
tioning of the force expression is made which depends upon a particular choice 
of basis set, namely atomic orbitals centered on the respective nuclei. This 
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seems rather arbitrary especially in view of the floating orbital requirement 
mentioned above. Although some intuition does exist with regard to the 
separate contributions it is, as yet, not well developed. Finally, the net force 
is a delicate balance of several competing terms. 

We conclude that there is a clear need for a model of molecular geometry 
based on quantitatively verifiable energetic concepts. This paper represents 
a step toward that objective. 

Since the Hartree-Fock (HF) approximation generally yields good equili­
brium geometries, most proposed interpretations rely on the HF wavefunction. 
In that event molecular orbital properties play a central role. For instance, 
the well-known Walsh's rules5 depend upon the orbital energies which are 
quantities associated specifically with canonical molecular orbitals. However, 
the canonical orbitals themselves are delocalized and can not serve as a basis 
for any analysis based on the chemically appeali:ng concepts of localized bonds, 
Jone pairs, and inner shells. A transformation from canonical to localized 
molecular orbitals can be made. However, the choice of transformation coeffi­
cients is ambiguous ; this choice must utilize criteria that lie outside the 
Hartree-Fock approximation and are not based on the va.riation principle. 
Localization is, normally, carried out11 in a way that preserves orthonormality. 
As a result the orbitals are not as strongly localized as they could be. Further­
more, the original canonical orbitals are obtained without any localization 
criterion being operative. Thus, even though the Hartree-Fock method con­
stitutes a model that predicts geometries quite accurately, we consider it to 
be unsatisfactory because it does not provide an »explanation« of its results 
in terms of the bonds, lone pairs and inner shells and the interactions between 
them. We suggest that it is more appropriate to use a valence-bond (VB) 
wavefunction to seek an equally accurate model which does offer the hope 
of an explanation in terms of the interactions that are intuitively meaningful 
to chemists. 

There are several different forms that have been utilized for the VB 
wavefunction. We believe it is important both to retain the orbital concept 
and to determine the best possible orbitals according to the variation condition 
subject to as few constraints as possible. These criteria lead to a generalization 
of the Heitler-London-Wang12 treatment which allows for the atomic orbitals 
to be modified by scaling, addition of partial ionic character, etc. in response 
to the molecular environment. The best possible VB orbitals13 in the sense 
of the variation principle are the ones that we seek. These orbitals turn out 
to be localized because that is an effective way to relieve electron repulsion.14 

The first computationally practical procedure for extending the VB orbital 
treatment to many electrons was formulated by Hunt, Hay, and Goddard. 15 

They applied a strong orthogonality constraint between different VB pairs 
to simplify the calculations. Later Chipman, Kirtman and Palke16 developed 
a convenient method which eliminates this constraint and thereby provides 
optimum localization. Their wavefunction yields the best possible orbitals17 

for the analysis of molecular geometry using localized orbital concepts. 
In order tn investigate the factors gnverning molecular geometry we have 

carried out a series of valence-bond calculations on first row AH2 molecules . 
These are the simplest molecules that have variable shape, ·as measured by 
the internuclear angle, and it seemed to us that they must be understood before 
proceeding further. In earlier work18 on ;H20 (as well as NH3, CH4, and H2S) 
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we discovered an interesting phenomenon called orbital stasis, namely that 
the direction of the bonding orbitals on the central atom remains approxi­
mately fixed as the nuclei bend away from equilibri'um even for large angle 
distortion. Thus, our attention was directed toward the problem of the inter­
orbital as well as the internuclear angle. There are clearly some factors that 
affect the former but not the latter. The question also arises as to what is the 
interplay between the two and whether the difference at equilibrium is 
»accidentally« small or not. 

One way of probing electronic structure is to vary a particular feature so 
as to see what effect it has on the properties of interest. In the case of AH2 

molecules it is particularly convenient to alter the configuration of the lone 
pair orbitals. For most species that can be accomplished by considering ele­
ctronic states ·of different symmetry. For the closed shell molecules, orbital 
symmetry may be artificially enforced and the results compared with an 
unconstrained calculation. Additional informahon is available by examining 
the positive ions as well as the neutral species since this causes the remaining 
orbitals to contract. Finally, the imposition of a partial double occupancy 
restriction on the a lone pairs eliminates the in-out splitting which, then, 
leads to a major change tn hybridization that can be revealing. The interpre­
tations offered in this paper are based on computations of the lone pair driven 
electronic structure variations just described. 

F rom our computations, some simple rules governing the geometry and 
orbital directions have emerged. For example, the equilibrium internuclear 
angle turns out to depend solely ·on the number of in-plane (a) }one pair 
electrons. The details of the corresponding a-orbital density are irrelevant 
although the molecular charge is not. A set of rules for the geometry and 
orbital directions of AH2 molecules is given in Sec. III followed by an analysis 
in terms of orbital characteristics and energy co:nponents. The various com­
putational methods that we have used to obtain and to interpret our valence 
bond wavefunctions are discussed in the following section. 

II. COMPUTATIONAL METHODS 

As discussed in the Introduction the best orbitals to serve as a basis for 
interpreting molecular properties should be determined from the most general 
independent particle wavefunction possible. Nonessential constraints such as 
the imposition of orthogonality or truncation of the basis should be avoided 
so as to exclude artificial effects. To this end, we have obtained fully optimized 
valence-bond wavefunctions by the OTT016 method which is summarized below. 

Each pair of electrons in the (perfect-pairing) VB wavefunction is described 
by two orbitals ({Ja and qJb multiplied by a spin function (a(J - fJa) to give the 
usual singlet coupling, or (a(J + (Ja ) for the triplet coupled pair in the triplet 
states that were considered. The total wavefunction is an antisymmetrized 
product of these VB pairs. Inner shell pairs were not doubly occupied, so the 
only orthogonality amongst the VB orbitals is that due to symmetry, i.e. 
between a and n orbitals as, for example, in the 3B1 state of CH2• 

The orbitals were expanded in the double zeta basis sets of Slater funct­
ions optimized by Huzinaga and Arnau19 augmented by a set of 3d functions 
on the central atom. Exponents were taken from Huzinaga and Arnau's19 

compilations, or from our previous work20, or else they were optimized. Cal­
culations using basis sets of this quality typically give equilibrium geometries 
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in excellent agreement with experimental results. All angular variations for 
the neutral species were carried out with the bond distance fixed at the expe­
rimental value. For the ions we used the experimental ground state bond length 
of the corresponding neutral. Equilibrium internuclear angles are not critically 
sensitive to the bond length. 

The expansion coefficients of the VB orbitals were optimized by a two step 
procedure called OTT016• First, the orbitals of a particular pair are optimized 
in the potential created when all remaining pairs are described by their 
doubly-occupied primary natural orbital. Then the mixing of the former two 
orbitals w ith every other split pair is individually optimized, again in the 
doubly-occupied sea of the remaining pairs. An iterative cycle consists of one 
loop through all the pairs using the updated varues of the orbital coefficients. 
In earlier woTk we have found that the OTTO method yields orbitals that 
differ insignificantly from the exact VB result in cases where such a compa­
rison is feasible. In a few instances, it was necessary to damp the mixing of 
different pairs in order to facilitate convergence. Finally, the energy was 
computed using a perturbation expansion described previously16. 

A quantity of particular interest in these studies is the· direction of the 
bonding hybrid orbitals on the central atom. Each bonding hybrid is composed 
almost entirely of s and p AO's on the central atom, so its direction is deter­
mined by the relative contributions of the two p,,. (in plane) components. In a 
double zeta basis set, the orbital direction can be a function of the distance 
from the central atom nucleus. The direction given by the high exponent bases 
(l;2P ranges from 2.2 for B to 3.7 for 0) is always within 10° of the diffuse 
functions, so the variation of direction with radius is small. The contribution 
of the high exponent 2p functions is typically (in the neutral molecules) about 
one-third that of the more diffuse 2p functions, and the region (near 1/l; a. u .) 
described by the high exponent functions is close to the nucleus. Since it is 
the more diffuse 2p's that describe the bonding region and since they are the 
more heavily weighted functions in each of the VB orbitals, we have tabulated 
their directions, as those of the bondrng hybrid. The arguments and conclusions 
would be the same if we had used a weighted average instead. Hybridization 
coefficients for the bonding and nonbonding orbitals were obtained by slight 
modification of a procedure21 that has been presented previously. 

Some of the arguments that we make are based on an analysis of the 
electron population of the various atomic orbitals in the basis set. Because 
these AO's are non-orthogonal, the definition of the population is not unique. 
We follow here a formulation based on the first-order density matrix devised 
by Jug22 which is a genemlization (with slight modification) of an original 
treatment due to Chirgwin and Coulson.23 In this formulation the populations 
are those of the symmetrically orthogonalized AO's. For sake of comparison, 
a Mulliken24 type of analysis was also tried using natural orbitals weighted 
by their occupancies instead of molecular orbitals. The orbital populations 
obtained were almost exactly the same for the two different procedures. 

III. DISCUSSION 

For non-linear AH2 molecules the overall VB wavefunction has either 
.4.1 or B1 symmetry. In the B 1 states there is one singly occupied pure :n orbital, 
and any remaining nonbonded orbitals are purely a. The singlet A 1 states 
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contain two nonbonding a electrons ; the corresponding a orbitals can and do 
hybridize with the n's to form mixtures of the form ( ! a ) + c ! n ) and I a ) -
- c I n ) ) where c is a hybridization coefficient. Restricting these nonbonding 
orbitals to have pure a symmetry (c = 0) raises the molecular energy by only 
about 10 kcal/mol. The 1A1 calculations were done with and without such sym­
metry constraints. In fact, as described below, it turns ,out to be convenient to 
use the results obtained for pure a and n ·orbitals to generate a zeroth-order 
model, and then to consider a-n mixing as an additional factor in cases where 
it is operative. Since symmetry plays a key role, this model contains an element 
in common with Walsh's rules5• It also contains an element of VSEPR theory2 

i.n the sense that lone pair electrons determine the nuclear geometry. On the 
other hand, our treatment is more quantitative than either of these approaches, 
and the results are explicable in terms of detailed characteristics and energy 
components as seen below . .. 
A. Geometry and Orbital Direction Rules 

We have discovered a set of geometry and orbital direction rules that 
govern the nuclear and interorbital bond angles in second row AH2 molecules. 
Table I shows that the computed equilibrium internuclear angle depends only c 

on the number of a nonbonding electrons and on the molecular charge. The 
characteristic equilibrium internuclear angle for the neutrals that contain two 

TABLE I 

Calcuiated Angles 

Non-bonding Equlibrium Bond-orbital System orbitals internuclear angle angle 

BH2 a lnO 126° 125° 
CH2 triplet a1n 1 128° 139° 
NH2 a1n2 135° 133° 
CH2 singlet a2no 102° 101° 

hybrid lone pair 

CH2 singlet a2no 103° 122° 
a lone pair 

NH2 a2n1 102° 121° 

H20 hybrid lone pairs 0 2.n2 103° 100° 

H20 a, n lone pairs 0 2.n2 103° 120° 

H20 a doubly occupied a2n 2 102° 88° 
lone pair 

CH2+ a t.n o 138° 141° 
NH2+ triplet alnl 138° 141° 
H20+ a1n2 180° 180° 
NH2+ singlet a2no 107° 103° 

hybrid lone pair 
H20+ a2n1 110° 125° 
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a nonbonding electrons is 102° (the ground states of H20 and NH2 and the 
lowest singlet state of CH2) . Cases with only one a nonbonding electron have 
internuclear angles close to 127°. The positive molecular ions display an ana­
logous pattern; a2 ions have internuclear angles of 108° as compared to 138° 
for a1 ions. The deviation from constancy in all of the above cases is exceed­
ingly small except for the a1n 2 configuration (excited states of NH2 and H20 +) 
which will be discussed further in the n ext sub-section. 

The ions fall into two series nbtained by removing either a n or a a 
electron from the appropriate neutral. Regardless of the electronic configurat­
ion, the removal of a n nonbonding electron leads to about the same increase 
in equilibrium internuclear angle. For the four cases contained in the table 
(including ionization from the a1n 2 excited state of NH2) , the angle increase 
is 6° ± 2°. Frozen orbital calculations show that this shift is totally insensitive 
to relaxation of the a core. Ionization of a a nonbonding electron leads to 
an angle increase of 40° ± 5°, and the shift in these cases does depend upon 
relaxation of the remaining orbitals. 

a- n hybridization causes considerable charge redistribution in the indi­
vidual VB orbitals, but the electron population of the various symmetrically 
orthogonalized AO's is only slightly altered. It is not surprising then that 
the equilibrium internuclear angles are unaffected as well. 

The equilibrium bond-orbital angle is also determi:ned by the number of 
a nonbonding electrons, but the s-p hybridization of the nonbonding and, 
hence the bonding orbitals is important as well. For a2 configurations the angle 
is essentially 120° no matter how many n electrons there are. 

Usually at equilibrium, the bond-orbital angle will be close to the inter­
nuclear angle. This generalization breaks down, however, when either orbital 
symmetry or double occupancy constraints are applied. Even without such 
constraints the bonds turn out to be strongly bent in a significant number 
of instances. 

Again we find that the bonding orbitals remain nearly fixed in direction 
as the internuclear angle is varied. Orbital stasis is a much better approxi­
mation than complete orbital following. 

B . Analysis in Terms of Orbital Characteristics and Energy Components 

The fact that, for a given charge, the equilibrium internuclear angle depends 
only upon the number of nonbonded a electrons is remarkable considering 
the concomitant variation in the wavefunction as measured by the electron 
populations reported in Table II. An explanation for the difference between 
the a1 and a2 series can be made in terms of energy components. The total 
energy is a sum of zero-, one-, and two-electron contributions with the first 
of these V (0) being the nuclear-nuclear repulsion. V (0) has a minimum at the 
linear configurati0J1 whereas the one-electron component goes through a 
maximum at a large angle with the result that the sum nf the two is nearly 
linear over a wide angular range near equilibrium. This division points to 
electron-electron repulsion V (2) as the origin of the energy minimum at a 
b ent geometry. Indeed, the two-electron component does show such a minimum 
which occurs at angles greater than 134° for the a1 series and less than 114° 
for a2 electronic configurations. The position of the V (2) minimum however 
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TABLE II 

AH2 Population Analyses 

System 
Electron population• 

H 2s 2s' 2Px 2px' 2pz 2pz' 

BH2 11:n;O 0.82 0.42 0.88 0.78 0.31 0.69 0.23 

CH2 triplet a1n 1 0.76 0.54 0.85 0.82 0.32 0.67 0.25 

NH2 0 1:i2 0.75 0.89 0.55 0.82 0.35 0.65 0.25 

CH2 singlet a2n° 0.79 0.65 0.99 0.83 0.31 1.10 0.40 
hybrid lone pair 

CH2 singlet a2n° 0.79 0.67 1.01 0.83 0.31 1.13 0.42 
a lone pair 

NH2 a2n1 0.78 0.67 0.97 0.84 0.35 1.12 0.43 

H20 o2n2 0.65 0.89 0.86 0.90 0.42 1.10 0.51 
hybrid lone pairs 

H20 o2n2 0.62 0.88 0.88 0.91 0.44 1.11 0.52 
a, n lone pairs 

H20 a2n2 0.63 0.89 0.86 0.91 0.43 1.11 0.51 
a doubly occupied 

lone pair 
CH2+ a1:n;O 0.67 0.47 0.98 0.82 0.41 0.64 0.31 

NH2+ triplet a 1n 1 0.63 0.52 0.92 0.88 0.45 0.63 0.31 

H20+ 0 1.n2 0.18 0.85 1.18 0.44 0.65 0.35 

NH2+ singlet a2n° 0.64 0.59 1.02 0.90 0.45 1.10 0.52 
hybrid lone pair 

H20+ a2n1 0.50 0.84 0.93 0.93 0.55 1.10 0.63 

• In each case the prime refers to the tight basis function. 

varies considerably within each series. Thus, the constant equilibrium inter­
nuclear angle cannot be explained on the basis of electron repulsions alone -· 
a conclusron which is consistent with our previous study of the VSEPR model. 

In the course of the energy component analysis just described, we dis­
covered that the ratio of the two-electron energy to the sum of zero- and 
one-electron energies is astonishingly constant at a value25 close to -1/3 (or 
equivalently V (2)/E = - 1/2) for the entire set. of molecules consrdered here. 
As a matter of comparison, we also tested the Politzer-Ruedenberg26 relation 
[V (0) - V (2)]/E = 1/3 which turns out to have a standard deviation nearly an 
order of magnitude larger. Our ratio depends very slightly (,.., ± 0.00001 per 
degree) on the internuclear angle, but it is indeed this small variation which 
causes the minimum in V (2) not to coincide with the minimum in E. 

The two a1n 2 molecular states (excited states of NH2 and H20 + display the 
worst fit to the geometry rules we have presented. These excited states are 
exceptional in other ways as well. They are the only ones we've considered 
that have the same multiplicity as the ground state. If symmetry restrictions 
are not applied, the wavefunctions jump to the more stable a2n 1 configuration. 
In our calculations, in order to understand this problem and to facilitate con-
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vergence, we insisted that each of the orbitals be either pure a or pure n 
although the correct A1 symmetry can be achieved under milder conditions. 
Indeed one would expect the :n2 pair to hybridize as it does in H20, but we 
were unable to obtain convergence for hybridized orbitals in the a1:n2 case. 
It is possible that the more stringent symmetry restriction has a significant 
effect on the equilibrium angle. CI calculations27 (as well as experiment28 

for NH2) yield bond angles substantially larger (NH2 = 143°, H20 + = 180°) than 
we've obtained. One should notice, however, that the potential energy curves 
are rather shallow for both molecules. Hence the exact position of equilibrium 
may not be very meaningful. At any rate, it is clear that we do not yet under­
stand the factors that determine the equilibrium internuclear angle in the 
a1:n2 excited state. 

As far as the ions are concerned, it seems reasonable that the increment 
in the equilibrium internuclear angle should be less for the :n than a ionization 
because the bonds are a. From the population analysis of Table II, we see 
that n ionization is accompanied by a rearrangement of electronic charge 
whereby the hydrogen atoms and the more diffuse orbitals on the central 
atom lose while the tighter orbitals on the central atom gain. But that rear­
rangement has essentially no effect on the equilibrium internuclear angle. 
For when we remove the n electron with the a orbitals frozen, the resulting 
equilibrium angle is the same as for the reoptimized orbitals. This means that 
the :n electron is responsible for a substantial bending force in the plane of 
the molecule! In CH2, the shift in the angular minimum is due solely to one­
-electron energy terms, but that is not true for all the molecules. 

An analogous treatment of the ions obtained by removing a a electron 
reveals that, in this case, the electronic rearrangement is important. Of the 
two a-type nonbonding orbitals in the neutral, one is primarily 2s whi.le the 
other has considerable p-character. The orbital that remains in the ion fits 
the latter description implying that the ionized electron is predominantly 2s. 
On the other hand, our population analysis of the entire wavefunction shows 
that loss of 2p, character (z is the molecular symmetry axis) is the major net 
effect of a ionization. Hence, there is a substantial redistribution between 2s 
and 2p, in the bonding orbitals which leads to a large increase in the equili­
brium internuclear angle. 

The equilibrium interorbital angle, in contrast with the internuclear angle, 
is sensitive to details of the electron distribution particularly the s-p hybrid­
ization. An excellent example is furnished by the set of H20 calculations where 
the s-p hybridization is driven by intrapair repulsion between the a non­
bonding electrons. If the nonbonding orbitals are constrained to be a and n , 
the equilibrium interorbital angle is 120° which is characteristic of a2 con­
figurations. As noted earlier, one of the two a-type nonbonding orbitals is 
primarily 2s while the other has considerable p-character, resulting in an in/out 
localization which reduces the intrapair repulsion. If the a orbital is forced to 
be doubly occupied, then its hybridization becomes similar to that member 
of the split pair which is primarily 2s. Consequently, the central atom bond 
orbitals are primarily 2p, which leads to the angle between them being about 
90° as we have found. 
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The above argument implies that 2s orbitals are more advantageous for 
relieving nonbonded intrapair electron repulsion than 2p~. One piece of evi­
dence confirming such an interpretation is the set of hybridizations found for 
the molecules having one a nonbonding electron. For that series there is, of 
course, no intrapair repulsion and the a nonbonded orbital does turn out to 
contain considerably more P~ character than the doubly-occupied orbital of 
H20 as would be expected from our model. 

In order to analyze the effect of a-n hybridization in H20, consider first 
the ·case of CH2 (1Ai). An examination of orbital coefficients for the latter mo­
lecule reveals that hybridization occurs through transfer of charge from both 
s and Pz (z is the molecular symmetry axis) to p .. ; the magnitude of the hybrid­
ization coefficient is ! c [ ,...., 0.3. We speculate that intra-pair electron repulsion 
is relieved by the up/down localization and, hence, less s character is required. 
At any rate, a-n hybridization leaves a partial »hole« in the Pz space which 
is filled by the bonding orbitals. Consequently, the interorbital angle decreases 
by about 20°. On the basis of inter-pair repulsion arguments one might come 
to the opposite conclusion since a-n hybridization would be expected to reduce 
lone pair-bond repulsion in the molecular plane. In H20 the hybridization of 
the nonbonding n orbitals must also be taken into account. This occurs through 
charge transfer from p .. to s but not Pz· The above argument, therefore, remains 
just as valid for H20 as for CH2, and we do find about the same increase in 
interobrital angle. 

It should be noted that the charge redistribution between the individual 
VB orbitals which accompanies a-n hybridization does not significantly affect 
the AO populations of the entire wavefunctron as seen in Table II (cf. the three 
calculations for H20 and the two calculations for CH2 (1A1)). That explains why 
the equilibrium internuclear angles are unchanged as well. As a result, the 
latter can be predicted from the simpler symmetry constrained a-n model. 

As observed in the section on geometry rules, several of our molecules , 
including the ground states of NH2, H20 +, and CH2, have strongly bent (> 10°) 
bonds at equiliibrium. This phenomenon is clearly not limited to »strained« 
systems. It can also be induced by applying symmetry constraints so that 
a-n hybridization cannot take place (cf. singlet CH2 and H20). Once the 
equilibrium interorbital angle is determined, however, it remains insensitive 
to subsequent changes in the internuclear angle. The bond orbitals followed 
the nuclei to a greater degree in CH2+ than any other case. As the internuclear 
angle was varied for this molecule over a range of 30° about equilibrium, the 
interobrital angle varied by 12°. Most of the other molecules displayed about 
half as much orbital following. Thus, the orbital stasis model gives a reasonable 
approximation to the true situation. 

Although we have made substantial progress towards an understanding 
of the geometry rules based on energy considerations, a number of lacunae 
remain. For example, what is the origin of the ratio rule V (2)/ [E-V (2)] = 
= constant, and how does one explain the slight, but important, deviation from 
constancy as a function of internuclear angle? What are the explicit factors 
responsible for the in-plane bending force due to a n orbital? And so forth. 
Further investigation is underway to shed light on these questions and, ulti­
mately, to extend the treatment to other molecules. 
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SAZETAK 

0 faktorima koji odreduju geometrijske rasporede jezgri molekula AH2 smjerove 
lokaliziranih veznih orbitala 

Bernard Kirtman i William E. Palke 

Izracunane su valne funkcije za troatomske molekule AH2 s pomocu metode 
valentne veze, pri cemu centralni atom A pripada drugoj periodi sustava elemenata. 
Izvedena su jednostavnao pravila koja odreduju strukturni raspored atoma kao i smje­
rove lokaliziranih orbitala kemijskih veza. Ta pravila mogu se objasniti karakteri­
sticnim svojstvima lokaliziranih orbitala. Rezultati an<rlize potkrijepljeni su razma­
tranjem kompor,enata ukupne energije molekula. 




