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The Fermi hole is a direct consequence of the exclusion 
principle for electronic wavefunctions of atoms, molecules, and 
solid state structures. The shape of the Fermi hole is determined 
by a function which is parametrically dependent on the position 
of a probe electron. The natural representation of this function is · 
determined by a set of Fermi hole na1ural orbitals and their 
occupation numbers. The Fermi hole for a wavefunction consisting 
of a single Slater determinant is given by the square of a Fermi 
orbital. The sensitivity of a Fermi orbital to the position of the 
probe electron is given by the Fermi hole mobility function. A set 
of Fermi orbitals can be used to transform a set of canonical 
SCF molecular orbitals into loca-lized orbitals. 

I. INTRODUCTION 

The properties of the Fermi hole were first studied more than 50 years ago 
in the context of solid state physics.1•2 This work was concerned with the 
properties of a free electron gas as a model for the conduction electrons in a 
metal. Subsequent consideration of the properties of the Fermi hole in atomic 
and molecular physics and solid state physics has played an important part in 
the development of the local exchange potential which is essential to the 
Hartree-Fock-Slater self-consistent field theory and the Xa approximation.3-7 

The local exchange potential also plays an important role in local density 
functional theories.s-10 

The properties of the Fermi hole in the electronic wavefunctions of atoms 
and molecules have been studied in several laboratories.11- 18 Most of these 
studies have been limited to atoms, molecules, or clusters of hydrogen atoms. 
Although Fermi correlation has been cited in qualitative descriptions of the 
electronic structure of molecules,19 there has been very little quantitative 
information about the Fermi hole of molecules. One exception has been the 
work of Cooper and Pounder, who have tabulated various numerical quantities 
associated with correlation holes in certain small molecules.17•18 Until recently,20 

however, no pictures of the Fermi hole in an electronic wavefunction of a 
stable polyatomic molecule had ever been published. 

This article summarizes the recent progress in establishing the properties 
of the Fermi hole in the electronic wavefunctions of molecules. 21- 23 Although 
this article is principally concerned with the properties of the Fermi hole, some 
properties of the Coulomb hole24- 29 are also considered. Following qualitative 
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descriptions of the Fermi hole and the Coulomb hole, there is a discussion of 
the natural representations of the F ermi and Coulomb holes. Next, the sensi­
tivity of the Fermi hole to the position of the probe electron is described in 
terms of the Fermi hole mobility function. Finally, the transformation of 
canonical SCF molecular orbitals to localized molecular orbitals based on the 
Fermi hole is presented. 

2. DEFINITION OF THE FERMI HOLE AND THE COULOMB HOLE 

The influence of an electron with spin t at position r2 on the probability 

of finding an electron with spin s at position r 1 is given by the s-t correlation 
hole 

(1) 

where {}s (r1) is the s~spin electronic density function, and {}st (ri, r 2) is the two­
-electron density function for electron 1 having spin s and electron 2 having 
spin t.30- 37 In addition, one may define the composite correlation hole as 

(2) 

which describes the influence of an electron at r2 on the probability of finding 

an electron at r 1 irrespective of their spins. 

The correlation holes L1"p and L1p" having s=t are entirely the results of 
the coulombic repulsion between pairs of electrons. Consequently, it is ap­
propriate to identify these functions with the Coulomb hole in the N electron 
wavefunction rp, The correlation holes ..1"" and L1 p~ may each represent a 
combination of both Fermi correlation and coulombic interaction, and it is 
not necessarily possible to separate these two effects.13 ,35 

In the case of a singlet electronic state, or other electronic state with 
Ms = 0, the distribution of electrons with a spin is identical to that of electrons 
with fJ spin. That is, e" = (}~ · Likewise, the two electron density functions and 
the corresponding correlation holes are invariant with respect to reversal of 
both spins. In this case the composite correlation hole is simply the sum of 
the like-spin and unlike-spin correlation holes, 

(3) 

This function, like ..1"'"'' represents a mixture of Fermi correlation and Coulombic 
interactions. 

In the case of any wavefunction composed of a single Slater determinant 

the unlike-spin correlation holes L1"'p and L1p"' vanish for all values of r 1 and r 2• 

In these cases the like-spin correlation holes are entirely due to Fermi cor ­
relation, and they may be regarded as the definitions of the Fermi hole for 
wavefunctions composed of a single determinant. This condition applies to, 
but is not limited to, closed shell SCF wavefunctions. In the case of a closed 
shell SCF wavefunction the composite correlation hole ..1 is identical to the 
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Figure 1. Figure 2. 

Figure 1. A Fermi hole for a double zeta SCF wavefunction for the methanol 
molecule. The positions of a methyl proton (upper right), the carbon nucleus (left 
of center), the oxygen nucleus (right of center), and the hydroxyl proton (lower 
right) are each indicated by ( + ). The probe electron is located on the methyl proton. 
The contour lines indicated electronic densities of 0.005, 0.01 0.02, 0.04, 0.08, 0.16, 

0.32, and 0.64 electrons per cubic bohr. 
Figure 2. This is the same as Figure 1 except that the probe electron is located 

midway between the carbon and oxygen nuclei. 

like-spin correlation hole L1"'" and may used as the definition of the Fermi 
hole for a closed shell SCF wavefunction. 

Figures 1, 2, and 3 indicate the shape of the Fermi hole for three positions 
of the probe electron in the methanol molecule. These figures are based on 
a closed shell SCF wavefunction determined by a double-zeta basis set.38•39 

The geometry was taken from the tabulation of Snyder and Basch.40 The 

probe electron (r2) is located on one of the methyl protons in Figure 1, midway 
between the carbon and oxygen nuclei in Figure 2, and on the hydroxyl proton 
in Figure 3. When the probe electron is located on or near the carbon or 
oxygen nucleus the Fermi hole is much smaller and nearly spherical, centered 
ori the nucleus and not on the probe electron. 

+ 

Figure 3. This is the same as Figure 1 except thm the probe electron is located on 
the hydroxyl proton. 
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3. THE SIZE OF THE FERMI HOL E AND THE COULOMB HOLE 

The unlike-spin correlation holes Lla.~ and Ll ~a. do not vanish for most exact 
wavefunctions and approximate correlated wavefunctions. When these functions 

..... 
are integrated over all values of the first electron (r1) , these functions yield 
a vanishing result for all wavefunctions. Consequently, any regions of r1 where 

Ll a.~ is positive must be balanced by regions of r 1 where Lla.~ is negative. As 

defined above, one should expect Ll a.~ to be positive when r1 is close to r2, and 

negative when r 1 is far from r 2. As such, the effect of Coulomb correlation is 
to push the fJ electrons away from the a electrons; This diminishes the pro­
bability of finding an a electron near a fJ electron, while preserving the number 
of a electrons. 

Upon integration over all values of ri, the like-spin correlation holes LlM 
and Ll ~~ and the composite correlation hole L1 each yield a result of unity. Thus, 
instead of simply pushing the other electrons away, as is found for the unlike­
-spin correlation holes, these functions appear to represent the complete an­
nihilation of one electron's worth of density. This 'lost' density represents 

the contribution from the electron at r 2• 

In the case of a single determinant wavefunction the like-spin correlation 
holes and the composite correlation hole are positive semi-definite functions 

of r 1. In these cases these functions may be identified entirely with the cor­
responding Fermi holes. The maximum value attained by each of these funct­
ions at any point is limited by the total density of a given spin. These condi­
tions, plus the fact that these functions must yield unity when integrated over 

all values of r 1, limit the minimum spatial extent which may be realized by a 
Fermi hole . 

Like the Fermi hole, a localized molecular orbital41 must yield one electron's 
worth of density when integrated over all space. In addition, the maximum 
density represented by a localized molecular orbital is limited to the total 
density for each spin. Consequently, the localized molecular orbitals determined 
by an SCF wavefunction provide good estim ates of the minimal spatial extent 
which may be expected of a Fermi hole. A localized orbital associated with 
a chemical bond usually spans the space between two or more nuclei. As a 
result, it may be necessary for a Fermi hole to encompass two or more atoms 

when the probe electron (rz) is located in the region of a chemical bond. This 
is demonstrated in Figures 1 to 3, each of which shows a Fermi hole spanning 
two atoms. The Fermi hole is small compared to the distance between atoms 
only when the probe electron is located in a region of high density associated 
with innershell atomic orbitals. 

The Fermi hole takes on an especially simple form for a singlet state of 
a two electron wavefunction, such as the ground electronic states of the h elium 
atom and the hydrogen molecule. The two electron density functions {} a.a. and 
e~~ for these wavefunctions vanish because there is only one electron of each 
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spin. If the position of this electron is specified, the probability of finding 
another one anywhere else is zero. In this case, 

(4} 

which is independent of r2• This condition applies to correlated wavefunctions. 
as well as to the closed shell SCF wavefunctions for these states. Therefore, 
in contrast to a free electron gas,1•2 the Fermi hole for an isolated pair of 
electrons does not follow the probe electron. Instead, the Fermi hole for an 
isolated pair of electrons remains fixed with respect to the nuclei (or the 
external potential) and does not depend on the location of the probe electron. 

4. NATURAL REPRESENTATION OF CORRELATION HOLES 

The natural representation of the s-t correlation hole is given by21 

~ --+ 
LI (r · r ) = ~ n <•.•1 (r ) I g <•. '1 (r · r ) j2 

s,t 1' 2 " ,l 2 µ l' 2 · (5) 

Likewise, the natural representation of the composite correlation hole is given 
by21 

(6) 

The functions g µ<s, t) and gµ are the correlation hole natural orbitals, and the 
quantities n µ<s,t ) and nµ are the corresponding correlation hole natural orbital 
occupation numbers. 

Values of the correlation hole natural orbital occupation numbers nµ<a,ftl, 
n ,«a,ai, and nµ for the water molecule are shown in Table I. These values were 
determined by a multiconfigurational wavefunction based on a double-zeta 
basis set of atomic orbitals.21 This wavefunction includes 850/o of the correlation 
energy obtainable within this double-zeta basis set. The values shown in 
Table I were determined with the probe electron located on one of the protons. 

TABLE I 

Correlati on Hole Natural Orbital Occupation Numbers. These Results Were 
Determined by a Correlated Wavefunction for the Water Molecule, with the 

Probe Electron Located on one of the Protons 

na,{i (H) na,a (H) n{H) 

0.12302 0.98861 1.01512 
0.04273 0.01482 0.04883 
0.02514 0.01188 0.03996 
0.01930 0.00752 0.02654 
0.00045 0.00592 0.00224 
0.00023 0.00045 0.00044 

-0.01904 -0.00383 -0.00885 
-0.02534 -0.01085 -0.03553 
-0.04335 -0.01461 --0.03996 
- 0.12309 --0.04879 

The occupation numbers for the like-spin correlation holes and the com­
posite correlation hole sum to unity, and those for the unlike-spin correlation 
holes sum to zero. In the case of a closed shell SCF wavefunction, the occupa-
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tion numbers for the unlike-spin correlation holes all vanish, and the occupation 
numbers of the like-spin correlation holes and the composite correlation hole 
all vanish except for one which equals unity. In this case, the natural repre­
sentation of the Fermi hole is the absolute square of the Fermi orbita120- 23 

LI (r1 ; r 2) = If (r1; r 2) J
2• 

The Fermi orbital is given by 

(7) 

(8) 

where the orbitals g; (r) are either the canonical SCF molecular orbitals or 
any set related to the canonical SCF molecular orbitals by a unitary trans-

formation. The Fermi orbital f (r1; r 2) is a function of r 1 which is parametrically 

dependent upon the position of a probe electron located at r2. 

The magnitudes of the correlation hole natural orbital occupation numbers 
for correlated wavefunctions provide a local measure of the importance of 
electron correlation in the wavefunction. In the case of an isolated pair of 
electrons the Fermi hole is equal to half of the total density {Eq. 4), in which 
case the Fermi hole natural orbital occupation numbers must equal half of 
the mdin:ary natural orbital occupations numbers, independently of the position 
of the probe electron. 

5. THE FERMI HOLE MOBILITY FUNCTION 

In an isotropic free electron gas the Fermi hole and the Coulomb hole 
follow the probe electron. That is, the shapes of these functions are constants 
with respect to the position of the probe electron. As the probe electron 
moves with respect to a fixed origin, the correlation holes move with it. In 
an isolated electron pair, however, the Fermi hole remains fixed with respect 
to the external potential (nuclear coordinates), and does not follow the motion 
of the probe electron. In the electronic wavefunction of a molecule, the Fermi 
hole exhibit an intermediate form of behavior.20-2s 

Molecules are found to possess regions where the Fermi hole is insensitive 
to the position of the probe electron. As the probe electron passes through 
one of these regions, the Fermi hole remains nearly stationary with respect 
to the nuclei. These regions are separated by regions where the Fermi hole 
is very sensitive to the position of the probe electron. As the probe electron 
passes through one of these regions, the Fermi hole changes rapidly from one 
stable form to another. This behavior has been demonstrated in a movie42 

which presents the shape of the Fermi hole in the water molecule as a function 
of the position of the probe electron. This movie was produced by photo­
graphing contour maps of the Fermi holes determined by approximately 90 
positions of the probe electron in a minimal basis SCF wavefunction for the 
water molecule. 

The sensitivity of the Fermi hole to the position of the probe electron in 
a closed shell SCF wavefunction is measured by the Fermi hole mobility 
function, 22 

F (r) = Fx (r) +FY (r) + Fz (r) (9) 
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Figure 4. The Fermi hole mobility function for a double zeta SCF wavefunction for 
methanol. The contour levels indicate values of 0.1, 0.2, 0.4, 1.0, 2.0, 4.0, and 8.0 
atomic units (bohr-2). A methyl proton (upper left), the carbon nucleus (left of center), 
1.he oxygen nucleus (right of center), and the hydroxyl proton (lower right) are each 

indicated by a ( +) mark. 

where 

FvCr)=+""" [gi ogi -gi ogi]2 
(! ~i>j 0v 0v 

(10) 

for v = x, y, and z. This may be compared to 

F 0 ([!) = (3 rr./ 4) (Q/2)213 (11) 

which provides an estimate of the Fermi hole mobility function in a uniform 
density electron gas.22 

The Fermi hole mobility function F (r) for methanol is shown in Figure 4. 

The difference between F (r) and F 0 (Q) is shown in Figure 5. These figures are 

Figure 5. The difference between the Fermi hole mobility function and the Fermi 
hole mobility of a free electron gas with the same density. The solid lines indicate 
the same values defined in Figure 4. The broken lines indicate values of -0.1, 

-0.2, -0.4, and -1.0 atomic units (bohr-2). 
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based on the same wavefunction used to determine Figures 1 to 3. Contour 

maps of F (r) and F (r)- F0 (e) for formaldehyde and ethane are shown in 

Figures 3, 4, 7, and 8 of Ref. 22 . Contour maps of F (r) - F0 (e) for a cyclic 
enone C4Hi02 are shown in Figures 7 and 8 of Ref. 23. These figures show 

that F (r) approaches a minimum at the position of each nucleus and F (r) is 
less than F0 (e) in regions surrounding each of the nuclei. 

In addition to the regions surrounding the nuclei, F (r) is found to be less 
than Fo (e) in a region between the carbon and oxygen nuclei and in a region 
near the 'Oxygen atom. The first of these may be identified with the C-0 
bond, while the latter is associated with the oxygen atom lone pair orbitals. 
When the probe electron is located in any of these regions the Fermi hole is 
relatively insensitive to the position of the probe electron and the shape of 
the Fermi hole resembles a conventional innershell orbital, lone pair orbital, 
or bonding molecular orbital. This is demonstrated by Figures 1, 2, and 3, 
which show Fermi holes associated with a C-H bond, a C-0 bond, and an 
0-H bond, respectively. 

The dependence of the shape and position of the Fermi hole on the position 
of the probe electron is entirely the result of interactions between pairs of 
electrons. If an electronic wavefunction could be described by isolated pairs 
of electrons, each occupying one of a set of nonoverlapping regions, then the 
Fermi hole mobility function would vanish everywhere, except at the bound­
aries between the regions. If the value of the Fermi hole mobility function is 
much less than F0 (e) in a certain region, then that region must be occupied 
by a relatively isolated pair of electrons. These regions are closely related to 

the loges proposed by Daudel43- 45 • Regions where F (r) > F0 (e) resemble the 
boundaries between loges. 

The relations between loges and the Fermi hole have been discussed by 
Bader and Stephens, who noted that the extent to which electrons may be 
localized in space is determined solely by the properties of the Fermi hole.14 

Indeed, when the probe electron is located in a region where F (r) is less than 
F0 (e), the Fermi orbital is found to resemble a localized orbital determined by 
conventional methods.41,4a-54 Consequently, as is shown ·in the next section, the 
Fermi hole provides a simple and efficient method for transforming a set of 
canonical SCF molecular orbitals into a set of localized molecular orbitals. 

The physical significance of the Fermi hole mobility function may be 
further illustrated by considering the case of two helium atoms labelled A 
and B and separated by a large distance along the x axis. Near nucleus A the 
Fermi hole mobility funcHon is roughly proportional to (JB! (JA, where (JA and QB 

are the density functions for each atom in the absence of the other. This ratio 
is extremely small because QB is much less than QA near nucleus A. 

At the midpoint of the line segment joining the two nuclei (JA = (JB and the 
Fermi hole mobility function has the value F = - ci, where c1 is the orbital 
energy for the helium atom ls orbital. Consequently, the value of the Fermi 
hole mobility function at this position is equal ' to the height of the energy 
barrier which must be crossed in order for an electron to jump from one 
nucleus to the other. 
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6. LOCALIZED ORBITALS BASED ON THE FERMI HOLE 

It has long been known that it is possible to transform the canonical SCF 
molecular orbitals of a molecule into a set of localized molecular orbitals by 
means of a unitary transformation. Each of these orbitals may usually be 
associated with a chemical bond, a lone pair atomic orbital, or an ii.nnershell 
atomic orbital. A number of methods for performing this transformation have 
been developed.41•46- 54 These methods depend on iterative sequences of unitary 
transformations based on appropriate combinations of integrals over the tran­
sformed molecular orbitals. These calculations may require a substantial com­
putational effort beyond that required to calculate the canonical SCF molecular 
orbitals. In addition, these ·iterative m ethods converge very slowly for many 
molecules. 

When the probe electron is located in a region where F (r) is less than 
F0 (9) the Fermi orbital is found to resemble a localized orbital determined by 
conventional methods.41 •46-54 Consequently, Equation 8 provides a direct rela-

tionship between a set of canonical SCF orbitals g; (r) and a localized orbital 

f ; (r) = f (r; r i ), where r; is a point in a region where F (ri) < F0 (e (r;)). In 
order to transform a set of N canonical SCF orbitals into a set of N localized 

orbitals it is necessary to select N points r;, j = 1 to N, each of which is located 

in a region where F (ri) < F0 (e (1)). Ideally, each of these points should corre­

spond to a minimum of F (r) or F (r) - F 0 (9) . This condition, however, is not 
critical, because the Fermi hole is relatively insensitive to the position of the 
probe electron when the probe electron is located in one of these regions. 

A set of N Fermi orbitals determined by equation 3 is not generally ortho­
normal. Each member of this set, however, is usually very similar to one 
member of an orthonormal set of conventional localized orbitals. Consequently, 
the overlap between a pair of Fermi orbitals is usually very small and a set 
of N Fermi orbitals may easily be converted into an orthonormal set of loca­
lized orbitals by means of the method of symmetric orthogonalization.53•55 The 
resulting unitary transformation is given by 

U = (T T'f1/2 T , (12) 

where 

(13) 

The transformation of a set of canonical SCF orbitals to a set of localized 
·orbitals based on equations 12 and 13 has recently been demonstrated for each 
of three molecules.56 The first example, a cyclic conjugated enone, represents 
a simple case where conventional methods are not expected to have any 
special difficulties. The second example, methylacetylene, is a molecule for 
which conventional methods have serious convergence problems.57 The third 
example, boron trifluoride, is a pathological case for the orbital centroid cri­
terion, with a number of local maxima and saddle points in the criterion of 
localization. 

In each case the first step in the application of this method is the selection 
of the set of N points. This set always includes the locations of all of the 



1292 W. L. LUKEN 

nuclei in the molecule. For atoms other than hydrogen the resulting Fermi 
orbitals are similar to innershell localized orbitals. When the probe electron 
is located on a hydrogen atom the Fermi orbital is similar to an R-H bond 
orbital. 

Additional points for the probe electron may usually be determined on 
the basis of the molecular geometry. The midpoint between two bonded atoms 
(other than hydrogen) tends to yield a Fermi orbital resembling a single bond. 
Multiple bo:ids may be represented by two or three points }ooated roughly one 
to two bohr from a point midway between the multiply bonded atoms, along 
lines perpendicular to a line joining the nuclei. Likewise, lone pair orbitals 
may be determined by points located roughly one bohr from the nucleus of 
an atom which is expected to possess 1one pair orbitals. 

In order to transform the eleven canonical SCF molecular orbitals of 
methylacetylene into a set of localized orbitals based on the Fermi hole, it is 
necessary to select four points in addition to the locations of the nuclei. One 
of these represents the C-C single bond, and three points are needed for 
the triple bond. The four C-H bonds are represented by points located on 
the protons. Transformation of the 22 SCF orbitals of the furenone, C4H40 2, 

requires twelve paints in addition to the ten nuclei. Boron trifluoride reqwires 
twelve points in addition to the locations of its four nuclei. 

In each case the localized molecular orbitals determined by the Fermi hole 
were found to be very close to those determined by the orbital centroid 
criterion. For the furenone molecule, for example, each of the localized orbitals 
determined by the Fermi hole method was found to have an overlap of 0.994 
to 0.999 with one of the localized orbitals determined by the orbital centroid 
criterion. The remaining (off-diagonal) overlap integrals between these two 
sets of localized orbitals were found to have a root mean square (RMS) value 
of 0.011734. Likewise, the RMS off-diagonal overlap between the localized 
orbitals determdned by the Fermi hole and those determined by the orbital 
centroid criterion for methylacetylene was found to be 0.012874. 

7. CONCLUSIONS 

The effects of the Pauli exclusion principle and electronic repulsion on the 
electronic wavefunctions of atoms molecules and solid state structures may 
be represented by the Fermi hole, the Coulomb hole, and composite correlation 
holes. Each of these may be described as a function of one electron which is 
parametrically dependent on the location of a second electron. This second 
electron is called the probe electron. 

Each of the correlation holes possesses a natural representation determined 
by a set of correlation hole natural orbitals and their occupation numbers, 
each of which depends on the position of the probe electron. In the case of a 
wavefunction composed of a single Slater determinant the natural represen­
tation of the Fermi hole reduces to the squQre of a single orbital called a 
Fermi orbital. 

Each molecule possesses regions in which the Fermi hole is relatively 
insensitive to the position of the probe electron. These regions are separated 
by regions in which the F ermi hole is more sensitive to the position of the 
probe electron. When the probe elect ron is located in a region where t:he Fermi 
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hole is insensitive to the position of the probe electron, the Fermi hole resembles 
a localized molecular orbital. 

The properties of the Fermi hole may be used to transform canonical 
SCF molecular orbitals into a set of localized SCF molecular orbitals. Except 
for the symmetric orthogonalization, this method requires no integrals and 
no iterative transformations. The localized orbitals obtained from this method 
a re very similar to the localized orbitals determined by the orbital centroid 
criterion. 
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SAZETAK 

Svojstva Fermijeve supljine u molekulama 

William L. Luken 

Fermijeve 3upljine u atomima, molekulama i cvrstom stanju posljedica su 
1'aulijeva principa iskljucenja. Oblik Fermijeve supljine odreden je funkcijom koja 
ovisi o polozzju probnog elektrona. Najjednostavniji opis te funkcije dobiva se s po­
moeu prirodnih orbitala Ferrnijeve supljine i njihovih zaposjednuca. Ako je valna 
funkcija oblika Slaterove determinante, onda je Fermijeva 3upljina dana kvadratom 
Fermijeve orbitale. S pomocu Fermijevih orbitala, kcmonske SCF molekularne orbi­
tale mogu se transformirati u lokalizirane orbitale koje su vrlo slicne orbitalama 
dobivenim primjenom Boysova kriterija. Detaljno su razmotrene Fermijeve supljine 
u metanolu. 




