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Ab-initio methods for computing stationary molecular states 
and radiationless transition probabilities between nonstationary 
states are discussed. The expansion methods, the molecular Hamil­
tonians, the adiabatic and dia-batic representations, and the sym­
metry properties are briefly discussed. As an example, nonadiabatic 
effects in the V-N spectrum of C2H4 and corresponding V-R, · 
radiationless transitions in C2H4 are investigated. 

1. INTRODUCTION 

Over the past few years, nonadiabatic effects in polyatomics and photo­
chemical implications of the breakdown of the Born-Oppenheimer appro­
ximation have been investigated through ab-initio methods. Within this fra­
mework, some major theoretical problems are: (1) definitions of rotovibronk 
molecular Hamiltonians well suited for the investigation of nonadiabatk 
couplings and of large-amplitude vibrations ; (2) expansiions of the stationary 
molecular states on rotovibronic bases, taking into account the correct rotation, 
parity, and perturbation symmetries ; (3) calculation of the electronic states. 
and matrix elements in the adiabatic and diabatic representations ; (4) calcula­
tion of the matrices of the molecular Hamiltonians and solution of the coupled 
or secular equations; (5) investigation of the radiative and nonradiative tran­
sition probabilities between stationary and nonstati:onary states. In this paper, 
I will briefly consider some of the previous problems and I will present some 
results of recent studies. 

2. MOLECULAR SCHRbDINGER EQUATION 

In a body-fixed frame the time-independent molecular Schrodinger 
equation is 

A 

[H (w , q, Q) - E ,,] I n (w, q, Q) ) = 0, (1} 

where w, q, and Q stand collectively for the rotational, electronic, and vibra­
tional coordinates, respectively. The stationary molecular states I n ) can be 
expanded on a complete and orthonormal basis of known rotoelectronic states1 

Ir; eK (w, q; Q) ) = Ir; (w) ) I eK (q ; Q) ) , where Ir; ) are rotational species and 
the electronic states I eK ) depend parametrically on Q, 

In ) = I re ) ( re I n >wq• (2)> 
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where I re ) is the row of the rota-electronic states and ( re I n ) wq is a column 
of vibrational functions of Q. Alternatively, we can use a complete and ortho­
normal basis of known rotovibronic states2 Ir; eK vi (w, q, Q) ) = Ir; eK (w , q; Q) ) 
! vi (Q) ), where I vi) are vibrational species, and write 

I n ) = j rev ) < rev I n ) wqQ· (3) 

From the Eqs. (1) and (2) we obtain the coupled equations 
A 

[(re !H l re ) 0,q-E,,l] (reJn)wq = 0, (4) 

A A A 

where the matrix operator Hre = (re IHI re )wq has elements H~?K',iK (Q) = 
A 

= ( r ;K, eK' IHI r ; eK )wq which act on the vibrational functions ( re In )wq, and 
A A 

1 is the unity matrix. By approximating m~K',iK = CJi';OK'KHrK,iK, Eq. (4) gives 
the usual Born-Oppenheimer approximation. From the Eqs. (1) and (3) we 
obtain the secular equation 

A 

[ ( rev I H I rev ) wqQ - En 1] ( rev I nwqQ = 0 (5) 

A A A 

where the matrix H rev = ( rev IHI rev )wqQ has elements Hr·'I~'f,iKj = 
A A 

= ( r;• eK' vr IHI r ; eK vi )wqQ = ( vr I H r'I{',iK J vi ) 0 . Eq. (5) may be simplified 
by using for each rota-electronic species I r; eK ) the vibrational eigenstates 

A A 

I v/K ) and eigenvalues E /K of the diagonal operators HrR:, iK· Thus, H rKJ', iKi = 
= on E /K and the comparison with the Born-Oppenheimer approximation is 
simpler. Of course, by using complete basis sets, Eqs. (1), (4) , and (5) are 
fully equivalent. 

A A 

Eqs. (4) and (5) show that the operators H~?I{',iK (Q) = ( r;• eK' IHI r; eK )•..iq 
play a central role in the theory. For their evaluation, we write the molecular 
Hamiltonian as 

A A A /\ 

H (w, q, Q) = Tr (w, q, Q) + T" (Q) + H°1 (q; Q), (6) 

A A "A 

where Tr and T v are the rotaUonal and vibrational Hamiltonians, and He! is 
the usual electronic Hamiltonian, including possibly the mass polarization 

A 

and spin-orbit corrections. H81 is always written in terms of the cartesian 
A A 

coordinates in the body-fixed frame, whereas the form of Tr + T v depends 
·crucially on the choice of the body-fixed frame and of the vibrational coordi­
nates (the rotational coordinates w are always the Euler angles relating the 
space-fixed and body-fixed frames). The usual choice of the Eckart conditions 
and of the normal coordinates yields the well-known Wilson-Decius-Cross 
rota-vibrational Hamiltonian3, which has been expressed in a final and elegant 
form by Watson for non-linear4 and linear5 molecules, and carefully discussed 
by Sutcliffe6• The Watson Hamiltonian is well suited for the study of the 
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roto-vibrational motion in the Born-Oppenheimer and small-vibration limits. 
When these approximations do not hold, as in photochemistry, the use of the 
Watson Hamiltonian leads to big difficulties•-0, and other definitions of the 
body-fixed frame and of the vibrational coordinates have been used~17• For 
example, for a triatomic ABC molecule, by defining Q = (r, R, (9.), where r 
is the BC distance, R is the distance from A to the BC centre of mass and f). 
is the angle between r and R, we obtain11 in atomic units 

('7) 

where µr-1 = mB-1 + mc-1, µR-1 = mA-1 + (mB + m ct1, µe-1 = µr- 1 r-2 + µR-1 R-2, 
and the volume element is d-r = dr dR sin g , d8. Alternatively, by defining 
Q = (Ri, R2, a), where R1 and R2 are the AB and BC distances, respectively, and 

A 

a is the BAC angle, we have17 

; . = lf2 [ µ1-1 ~ + µz-1 ~ + l/2 ( µ,,_-1 - 2 cos a ) ( o2 + cot a ~) + 
oR1

2 oRz2 mAR1R2 oa2 oa 

+1/2( o22 +cota~)(µ .. -1- 2cosa)] + 
oa oa mAR1R2 

+ mA-1 ( R1-1 _o_ + R2-1-
0
- ) (csin a~ + cos a), 

oR2 oR1 oa 
(8) 

where µ1-1 = mA-1 + mB-1, µ1-1 = mA-1 + mc-1, µ._-1 = µ1-1 R(2 + µz-1 R1-2, and d-r = 
A 

= dR1 dR2 sin a da. From Eqs. (7) and (8) it is clear that TV (r, R, e.) is simpler 
A 

than T v (Ri, R2, a). 

In general, the vibrational Hamiltonian is given by4,s,1s,19 

A 02 0 
Tv = ~ ~ fzxy (Q) -- + ~ fi" (Q) - + fo (Q), 

x y oxoy x ox 
(9) 

where x and y are two vibrational coordinates, f; are functions of Q and fo is 
A 

a correction of the nuclear potential energy. The rotational Hamiltonian T r is, 
in general, more complicated since it contains rotovibronic coupling terms11,17; 
by assuming, however, a rotationless molecule, as it is usually done 'in photo-

A A A A 

chemical processes, Tr will be simply omitted later on. From H = T v + Hel and 
Eq. (9) we obtain2o 

Hfi'K (Q) = < eK' [ H [ eK )q = 
~ o o 

~ ~ fz"Y (Q) [oK'K-- + gj('K (Q) - + 9J('K (Q) - + h"}fK (Q)] + 
x y oxoy oy ox 

o x + ~ ft CQl [oK'K - + g [('[( CQ>J + u K'K CQ), 
x ox 

(10) 
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with 

(11) 

by assuming a real electronic basis, and 

o2eK OQ 11,, ' oeK' oeK 
h'ff,K = ( eK' 1---)q =~ -(--I ---)q, , 

oxoy ox ox oy 
(12) 

A 

U K'K = ( eK' I H"' + fo I eK >q· (13) 

The functions g'f('K and hfl!K are the nonadiabatic vibronic coupling terms, 
and U K'K are the nonadiabatic electronic coupling terms. Eq. (11) shows that 
gx is a skew symmetric matrix with g1rn = 0. 

The electronic states I eK"!\. ) , which diagonalize the electronic Hamiltonian 
A 

He1, define the adiabatic representation in which U~'K = OK'K U KA are the 
usual adiabatic potential energies, 

A 

A 

ovnc 
Ax _ ( A I I A ) (U A U A) - 1 

g/('J( - eK' -- I eK q K - K' ' 
ox 

(14) 

where yne is the potential energy between nuclei and electrons, and the 

diagonal terms ~ L f2 xy h~Jl' are the adiabatic corrections of the potential 
x y 

energies U KA (g h = 0). The nondiagonal terms g~'!'K, g~'!/K , and h~'!'k (K' ¥- K) 
couple the electronic states I e~ ) and I eK,A ) through the x and y vibrations 
and give rise to the breakdown of the Born-Oppenheimer approximation. 

A 

Since a/ax and a2/ax ay commute with the electronic spin operator S, the 
coupled states must have the same spin symmetry and the vibronic couplings 
give rise to the internal conversion between the adiabatic electronic states 
I e~ ) and I eK,.ti. ) . In the (generalized) Born-Oppenheimer approximat-
ion g~'!'K ~ h ~'!'k = 0 for any K' ¥- K ; Eqs. (14) and (12) show, however, that 
this approximation breaks down whenever crossings or avoided crossings occur 
between the potential energies U KA and UK""-. 

The electronic states I e~ ) , which minimize the vibronic couplings 
I g~'!'I( I and I h~'!'Jt !, for K ' ¥- K, define the diabatic representations in which 
terms . U~'K. Since the adiabatic and diabatic bases are related by a unitary 
the nonadiabatic couplings occur mainly due to the nondiagonal electronic 
transformation, both being orthonormal, we have 

I en (q; Q) ) = I eA (q; Q)) C (Q), 

un = CtUAC, 

oc 
gDx =Ct (gAX C + -- }. 

ox 

oc oc 02c 
h 0

"" =Ct (hAxy c + g '" -- + g AY -- + ---). 
oy ox oxoy 

(15) 
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Eq. (15), and the conditions I gDx I, J hDxy I = minima, define in principle the 
diabatic states, although their actual calculation possess both conceptual and 
numerical difficulties. For example, Lichten2i defined physical diabatic states 
dominated by simple electronic configurations (ionic, covalent, valence, 
Rydberg, etc.) and Smith22 introduced strictly diabatic states which fulfill 
exactly the conditions gx = h xy = 0. Both definitions are incomplete: that of 
Lichten does not offer a firm method for the ab -initio calculation of diabatic 
species, and stricly diabatic states exist only for diatomics and do not exist 
for polyatomics23 • Although the task of definiing a general and useful diabatic 
representation is still an open problem, some authors24- 26 have recently pre­
sented new methods for overcoming the difficulties, one of which will be 
discussed later on. 

3. APPLICATION TO C, H , 

Since the usual point groups are not suitable for discussing the symmetry 
properties of molecular Hamiltonians and for classifying the rotovibronic states 
and operators, mainly for nonrigid molecules, Longuet-Higgins27 defined the 
molecular symmetry group whose elements are, among others, the permu­
tations of identical nuclei and the inversion of nuclei and electrons in the 
centre of mass. The Longuet-Higgins group is particularly suitable in solving 
the molecular Schrodinger equation, whenever nonadiabatic and large-vibrat­
ions effects are important, allowing an easy classification of states and opera-

A 

tors. Indeed, if a (q, Q) is an operator depending on the electronic and vibrat-
A 

ional coordinates (Hel, o!ox, o2/oxoy, d~pole moment, etc.), the matrix element 
A 

aK'K (Q) = ( eK' (q; Q) J a I eK (q; Q) )q belongs to the vibrational representation 
contained in I'= I'K' X I'" X I'K and it is zero if I' does not contain any 
vibrational representation. 

For example, Table I reports the symmetry species of some states and 
operators of C2H4 undergoing a pure torsional motion around the CC bond. 

TABLE I 

Symmetry Species of some States and Operators of C2H4 Undergoing Pure Torsion• 

G15<2> D2h D 2d I eK ) I bm (t") >" 

Ait A. Ai cos 2mt" 
A2u+ Biu A2 I e2A) 

B1/ A. B1 I el ) cos (2m+l)" 
B2/ Biu B2 I e2v ) 
Aiu- A u Ai sin (2m+l)" 
A2,- Bi, A2 I eiv ) 
B1u- A u B1 sin 2mt" 

B2,- B18 B 2 I eiA) 

• The diabatic representa1ion is defined by l = 0 and n = 1. 
" Torsional basis. 
• Z is the dipole-moment component along the CC bond. 

Operators• 

gi2\ Zo2 A 

cos w, Zo2 D 

z 
sin w, Zo1 D 

a/a"' h12\ Zo1\ 
U12°, h12 D 
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Since the full Longuet-Higg1ns group is too large (96 elements) , a simpler sub­

group G16<2l has been considered26,28,29 and it is suitable for Tv = - -1
- a2/a r 2, 

2 I , 
where r is the torsional angle, and is isomorphous with the double group 
of D4h. The correlations with the D21i and D2d point groups are also shown and 
the adiabatic electronic states are the I e0A ) ground species N (n2) and the 
excited singlet states I e1A ) and I e2A ) which are linear combinations of the 
V (nn*) and Ry (n 3py) configurations29 • Note that r is not a symmetry coordinate 
and that the nonadiabatic couplings between the ground state and the excited 
species are symmetry forbidden for a pure torsional motion. 

The diabatic representations of C2~ are defined26 by I eKD ) states with 
constant and minimal nonadiabatic vibronic coupling g~·K which has been 
obtained from the molecular symmetry properties. In a two-state problem 
the first of Eq. (15) reads 

Je1n ) = I e/ ) cos w + I e/) sin w 
(16) 

I e2n) = - I e/ ) sin w + j e/ ) cos w, 

where the mixing angle w depends on r and defines the transformati·on matrix 
C, and the third of Eq. (15) gives 

g12 n = g1/- d w/d-r:. (17) 

Eq. (17) has been integrated with the condition that g12D is a constant, different 
from zero in general. Since g 12A belongs to A 1t (Table I), we have 

and 

; i . I i 

g1/ (-r:) = a0 + ~ ~m cos 2 m-r: 
ln = l 

w (-r:) = w (0) + (a0 - g12n) + ~ (a2m/2m) sin 2 m-r:. 
' . ' I i ' i : '' [JI ;. ; I ;:l~ "'= 1 

(18) 

(19) 

A diabatic representation is defined by the constants w (0) and (a0 - g12D) 

which were obtained by requiring that cos w and sin w of Eq. (16) belong to 
torsional representations of G16<2>. Straightforward application of the group 
theory then shows26 that cos w and sin w belong to A1g+, B 1g+, A 1u-, or B 1u- if, and 
only if, w (0) = L n /2 and (a0 - g12D) =)n, where both L and n are integer num­
bers. The first condition defines the integration constant and the second one 
fixes the yalue of g 12D, since a0 = 0.778 a. u. is known from the best fit29 to the 
computed ab-initio values of g12A . This value of a0 and the condition (ao--g12D ) = 
= n imply that g12D must be different from zero and minimal (in absolute 
value) for n = 1. Therefore, by using L = 0 and n = 1, the species of cos w and 
sin w and of the diabatic states and operators are immediately obtained and 
are reported in Table I. 

The most relevant results of a nonadiabatic MRD-CI investigation of 
the V~N absorption spectrum of C2H4 undergoing a pure torsional motion26,29 

are reported in Figures 1, 2, and 3. Figure 1 shows that the adiabatic potential 
curves of the excited states undergo a sharply avoided crossing upon twisting, 
with a minimal energy splitting of 0.05 eV at r = 22°, while the diabatic 
curves cross near this point. Figure 2 shows that the nonadiabatic couplings 
in both representations are strongly peaked near the avoided crossing. In the 
diabatic representation U12D is by far the largest nonadiabatic term and the 
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Figure 1. V and R, states of C2H4. MRD-CI corrected potential curves U KK = 
= < eK I H•1 I eK )q - hKK/q I ,, (left) and transition dipole moments from the N state 
ZoK = < e0 I µ 2 I eK )q (right) in the adiabatic (full lines) and diabatic (dash ed lines, 

L = O and n = 1) representations. (from Ref. 26) 
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Figure 3. Central portion of the nonadiabatic and adiabatic absorption spectrum of 
C2H 4 from the degenerate ground states. Molecular levels (left): adiaba'1:ic E / and 
E;2 of the excited electronic states I eiA) and I e2A), and nonadiabatic E.,; the 
percentage of mixing of some adiabatic states is also shown. Primary spectrum 
(right): nonadiaba'1:ic and adiabatic dipolar intensities; the dashed and full lines in 
the adiabatic spectrum refer to the electronic states I e1A) and I e2A) respectively. 

(from Ref. 29) 

total nonadiabatic coupling is about four times larger than the corresponding 
coupling in the adiabatic representation26 • Finally, Figure 3 reports the adia­
batic and nonadiabatic spectra of the V-N transition of C2H4• The nonadiabatic 
spectrum has been computed in both representations by solving the secular 
equation with the potential curves, dipole moments, and nonadiabatic couplings 
of Figures 1 and 2, and the nonadiabatic results are equal in both represen­
tations, as expected. Figure 3 clearly shows the nonadiabatic effects in the 
central portion of the V-N spectrum of C2H4, both in the mixing of the 
adiabatic states and in the irregular and broad distribution of the stationary 
levels and absorption intensities. 

4. RADIATIONLESS TRANSITION PROBABILITY 

Let the molecule be in the nonstationary state I i ) at the initial time 
t = 0. The radiationless transiUon probability P ti (t) that the molecule is in 
the final state I f ) at the time t > 0 is30 

Pfi (t) = I ~ exp (- i w,,t) < f j n ) < n Ii ) 12 = 
n 

= ~ ! <f In) 12 I<iI n)12 + 2 ~ ~ [Re (<f In)< n Ii )< i In' ) ( n ' I f)) cos w,,,,' t + 
n n<W 

+ Im (( f I n ) ( n Ii ) < i I n' ) < n' I f )) sin w,,,,, t], (20) 
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where I n ) are the stationary nonadiabatic states discussed previously, 
w 11 = E,,/h, E 11 being the nonadiabatic energies, Re (x) and Im (x) are the real 
and imaginary parts of x, and w1111• = w 11 - w,,. . The probability P 1; (t) defines the 
radiationless time-evolution of the initial state Ii ) due to the transition to 
the final state I f ) and it is a function oscillating in time, sum of periodic 
functions each with period T111,- = 2 nlw,,11•. 

For the discussion of the radiationless transitions between two excited 
adiabatic electronic states I eKA ) and I eK,A ) , let us cons·ider the upper part 
of Figure 4 which shows the ground state I 0 ) , the adiabatic vibronic species 
I eKA v/( ) and I eK,A v/(' ) , and the stationary states In ) which were excited 
at t = 0 through absorption from the ground state. In th e dipolar appro­
ximation, the initial state is31 

Ii ) = ~ I n ) ( n Ii ) = ~ ~ n ) ( nf µa I 0 )/[~ I ( n' ! µ a! 0 ) 12]'/ ', (21) 
n n w 

where µa is the a-component of the dipole moment operator \I . From Eqs. 
(20) and (21), the probability that the molecule is in any state eKA v/ ) 
at t > 0 is 

-i(J)nt 

PKi (t) = ~ PKj, i (t) =~ I ~ e ( eKA v/ In)( n I µa I 0 ) l 21~ j( n ' I µa I 0 ) 12• (22) 
i 1 n n' 

At t = 0, Eq. (22) gives 

PKi (0) = ~ I ( eK Av/ I µa I 0 ) 1 21~ I ( n j µa I 0) 12 ::5 1, (23) 
j n 

K' 
le:, vi,} Jn} 1e: vf> 

' Jo> 

'· / ' 
0.8 ' 

~i 
\ ·,_ 

\ 
0 .6 \ 

\ 
\ 

0.4 

2 4 6 Sx 1Q-14 sec 

t 

Figur2 4. Upper part: simplified energy-level scheme for radiationless transitions. 
Lower part: curves (1), (2), and (3) show P2,, P 2,., and P , .. , .. for the V-R, system of 

C2H 4, where I i), ! i'), and I i "' ) are different initial state. 
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i.e. the molecule is in both electronic states, but mainly in that with greater 
transition dipole moments to the ground state. In the theory of radiationless 
transitions, one generally assumes32 that absorption from the ground state 
is allowed for the ! eKA v/' ) states and forbiden for I eK' v/C ) ; in this 
case P K; (0) = 1. This assumption is, however, not necessary when the statio­
nary Schrodinger equation has been solved. Whenever the nonadiabatic 
couplings are zero, i. e. when the adiabatic states are also stationary, it is easy 
to check from Eqs. (22) and (23) that P K; (t) =PK; (0) , i. e. no time-evolution 
of the initial state occurs, as expected. 

The lower part of Figure 4 shows the radiationless transition probabilities 
P1; (t) between some states of the V-Ry system of C2H4• Curves (1) and (2) 
show P 2; (t), of Eq. (22), to the second electronic state from two different initial 
states: the first Ii ) has ·been excited from both degenerate ground species 
A1g+ and B 1g+, and the second Ii' ) has been excited only fr.om the A 1g+ ground 
state. In both cases P 2; (0) = 0.994, i. e. the system is by far in the second 
electronic state at t = 0, according to its larger transition moments to the 
ground species (see Figure 3), but the following time-evolutions are cons1ide­
rably different. In fact, curve (1) shows that P 2i first decayes quickly and 
then has some broad oscillations around 0.65, and finally, at larger times, 
undergoes a second decay. Since the oscillations of P 2;' (curve (2)) are more 
evident, we note that interference effects between the two ground states 
quench the P 2i' oscillations and give the rather flat P 2; curve (1). This result 
is confirmed by the large and regular oscillations of curve (3) which shows 
P;"i'' (t), where Ii" ) is the vibronic state of ! e2A ) carrying the largest tran­
sition moment to I 0 ) . Therefore, in general, structureless time-evolutions 
may be due to interference effects between several involved states, while 
well-resolved curves may be ascribed to a limited number of interacting 
species. 

5. CONCLUSION 

We have reported in this paper on an example of the use of ab-initio 
methods in the investigation of nonadiabatic effects and of their photochemical 
implications. This is only a possible starting point and much more work 
is needed in this field. I summarize here only two maj-or points : (i) use of 
exact spinless Hamiltonians for triatomics and derivation of similar Hamil­
tonians for large molecules; (ii) improvement of the simple treatment of 
radiationless transitions by considering simultaneously both radiative and 
nonradiative processes. 
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SAZETAK 

Neadijabatski efekti i prijelazi bez zracenja 

Carlo Petrongolo 

Razma<trane su ab initio metode za proracune stacionarnih molekulskih stanja 
kao i za odredivanje vjerojatnosti prijelaza bez zracenja izmedu nestacionarnih 
stan ja. Odredeni su neadijabatski efekti u V-N spektru C2H 4 i odgovarajuci V-Ry 
orij elazi bez zracenj ao. 




