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The development and the use of generating function methods 
for several problems in Chemical Physics are reviewed. These ap­
plications include applications to NMR, nuclear spin statistics of 
rovibronic levels, isomerization reactions and NQR spectra of cry-. 
stals exhibiting phase transitions. The development of symmetry 
groups of non-rigid molecules as generalized wreath products and 
the related applications are outlined. 

1. INTRODUCTION 

One of the most important branches of discrete mathematics is combina­
torics ·or combinatorical mathematics. Unfortunately, as Berge1 stated, a satis­
factory definition of this area does not seem to exist in the literature even 
though one understands what it means. Berge defines combinatorics as a science 
which counts, enumerates, examines, and investigates the existence of »con­
figurations « with certain specified properties. A configuration is defined as a 
mapping of objects into a finite abstract set with a given structure. For 
example, a permutation of n objects is a one-to-one mapping of the objects of 
the set to the ordered set (1 , 2, ... , n) if there are n objects in the set under 
consideration. Combinatorics deals with finding the number of ways of ·ob­
taining configurations when they are obtainable. Combinatorics evolved by 
way of finding methods or algorithms for enumerating configurations (instead 
of executing the experiment with desired specifications by brute force) . One 
such method, which is the backbone of combinatorics, is the generating-function 
method discovered by Laplace (though conceived by Euler earlier) . For example, 
the binomial expansion (1 + x)n can be thought of as a generating function 
for ( ~ ) since the coefficient of x r in (1 + x)n is ( ~ ). Thus to obtain the number 
of ways of choosing r objects out of n objects, one looks at the coefficient of 
xr in (1 + x)n (instead of actually choosing these objects and finding how many 
such ways exist). The subject evolved to a considerable extent through the 
problems posed by other branches of science which ask for such counting 
techniques. For example, chemistry seems to have been a ground for the 
development of some most important combinatorial theorems. Cayley2- 5 in 
the year 1857 recognized the correspondence between enumerating the isomers 
of organic molecules of the formula CnH2n+2 and enumerating trees . P6lya6 in 
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1937 published his classical paper on what is now well known as P6lya's theorem 
which was anticipated by Redfield.7 This theorem essentially gives generating 
functions for the enumeration of configurations under group action in terms 
of what is known as the cycle index of a group. The cycle index of a group 
defined by P6lya is the same as the group-reduction function of a group 
defined by Redfield shown below 

if x 1b 1 x2b2 . • . is a representation of a typical permutation g E G having b1 

cycles of length 1, b2 cycles of length 2 etc. Let D and R be two finite sets 
and G be a group acting on D. Consider all functions from D to R denoted as 
RD. Let fi, f2 E RD be equivalent if there exists a g E G such that 

f 1 (d) = f 2 (gd), for every d E D . 

Functions that are equivalent belong to the same class. If one associates a 
weight w (r) with every r E R then P6lya proved that the generating function 
for equivalence classes of functions in RD, is 

F =Pc (xk-+ ~ w" (r)). 
r ER 

Redfield obtained the number of equivalence classes in terms of group­
reduction functions and in fact the above result of P6lya was implicit in an 
example given by Redfield for finding the number of ways of coloring the 
vertices of a cube such that no two colorings are obtainable by any rotation 
of the cube. However, Redfield did not rigorously prove the above result which 
was done by P6lya in 1937. A part of the paper of P6lya in fact deals with 
the enumeration of isomers and it appears ihat the problem of isomer enu­
meration was a motivation for this theorem. Subsequently, Harary,8 Read,9 

Robinson,10 Sheehan,11 Vvilliamson12-14 and several other mathematicians work­
ed on many ramifications of P6lya's theorem. 

The other intimately connected field of combinatorics is the theory of finite 
groups. Finite groups which characterize the algebra of the symmetry of 
discrete structures are known to be potentially useful in predicting many 
physical and chemical properties. One of the most important finite groups is 
the symmetric group whose inherent discrete structure is well known. For 
example, the conjugacy classes and the number of irreducible representations 
of the symmetric groups are given by the number of partitions of n if n is 
the number of objects that are permuted by the symmetric group under con­
sideration. The generating functions for these partitions have to be obtained 
along purely combinatorial lines. The dimension of each irreducible represent­
ation of symmetric groups is obtainable by the well-known Frame-Robinson­
-Thrall's combinatorial theorem.15 The characters of symmetric groups can be 
found through purely combinatorial principles.16 Difficulties in obtaining the 
character tables of the symmetry groups of non-rigid molecules have been 
recognized ever since th e work of Longuet-Higgins.17 The characters of the 
symmetry groups of non-rigid molecules can be obtained using combinatorial 
techniques. 
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Now let us briefly sketch some of the important chemical problems, a few 
of which were the motivations for new techniques in combinatorics, while 
the others could be solved using known methods. 

A classical example in chemical physics is the well-known Ising problem. 
The problem is to obtain the partition function (and hence the thermodynamic 
behavior) of a lattice of interacting ferro-magnets with nearest neighbor inter­
action. The problem is soluble for a one-dimensional lattice and Onsager solved 
the two-dimensional problem. Kasteleyn18 showed the correspondence between 
the Ising problem and a graphical problem known as the dimer covering 
problem on a »bath-room tile lattice. « The dimer covering problem asks for 
the number of ways of forming disjoint dimers on a lattice of points where a 
dimer is a set of two vertices connected by an edge. 

The dimer covering problem has another important application in the 
estimation of the resonance energy of aromatic hydrocarbons. It turns out. 
that the number of possible Kekule structures of a polycyclic aromatic hydro­
carbon is given by the number of disjoint dimers that can be formed with 
the molecular graph of the aromatic hydrocarbon. For an elementary review 
of this topic, see Herndon.19 Dimers on molecular graphs can be obtained by 
several combinatorial techniques such as pfaffians,20 Tecursive relations etc. 

The objective of this paper is to review the development and applications 
of this powerful combinatorial tool, namely, the generating function method. 
We review several applications of the generating function methods to non-rigid 
molecules, NMR, nuclear spin statistics, isomerisation reactions and NQR. 

In section 2 we review the formulation of symmetry groups of non-rigid 
molecules as generalized wreath product groups. In section 3 a generating 
function obtained from generalized character cycle indices is introduced. In 
section 4 applications of this method to nuclear spin statistics of rovibronic 
levels are reviewed. In section 5 we outline applications to NMR, section 6 
discusses applications to isomerization processes and in the last section applica­
tions to NQR spectra are discussed. 

2. SYMMETRY GROUPS OF NON-RIGID MOLECULES AS GENERALIZED WREATH 
PRODUCTS 

Formulation 

The present author21-24 showed that the symmetry groups of non-rigid 
molecules which contain several internal rotors can be expressed as generalized 
wreath •product groups. A summary of the recent developments of generalized 
wreath product groups and applications appears in the recent paper of Bala­
subramanian51 in the book by Serre and Maruani. (Also, see the article by 
Serre52 in this book.) We briefly review the theory .of generalized wreath product 
groups here with examples to make this self-contained. We start with an 
example of the non-rigid hydrazine molecule (N2H4). This molecule in its equi­
librium conformation contains only a two-fold axis of symmetry. This mole­
cule is non-rigid in that twisting and inversion operations interconvert all 
the 16 possible conformations into one another. Consider the permutational 
subgroup of this molecule. All the permutation operations of the non-rigid 
molecule can be generated by a group product of much simpler groups, known 
as wreath product. Let us model hydrazine by a particles-in-box model. Con­
sider each nitrogen atom as a box and the protons attached to that atom as: 
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Figure 1. Particle-in-box model for the permutation group of the non-rigid N2H4. 
'The permutation group of N2H4 is the wreath product of the groups of boxes (82) 

and particles (S2) . 

the two particles in the corresponding box (see Figure 1). Then twisting operat­
ion permutes the protons or the particles in each box. The two nitrogen atoms 
(and hence the protons attached to the nitrogen atoms) can be permuted by 
an operation preserving the rigid symmetry of the molecule. Consequently, 
we have two permutation groups namely, a permutation group G acting on 
t he boxes themselves and a permutation group H acting on particles in each 
box. H can be called a torsion group if the particles in each box are permuted 
by torsion. The symmetry group of the non-rigid molecule consists of per­
mutations of particles in each box (torsional permutations), the permutations 
of the boxes, which in turn induce permutations of particles in all boxes and 
inversion operations. All the operations of hydrazine generated by permutations 
of particles and the permutations of boxes are shown in Figure 1. The resulting 
operations span a group of order 8. These operations can be generated by 
knowing the operations in the group G and H. The group of all particles in all 
the boxes is the wreath product of the group G with the group H, denoted 
as G [H] . In this example, G and H are both 82, symmetric group of 2 objects 
·Containing 2! elements. Wreath product groups were first formulated by 
P6ly a.6 The order of G [H], I G [H] !, is given by 

IG [HJ I = I GI . I H 1 ' B I 
where I B I is the number of boxes in the particle-in-box model of a non-rigid 
molecule. The advantage of this group product is that the symmetry operations, 
conjugacy class structures, irreducible representations and several chemically. 
interesting generating functions of wreath product G [H] can just be obtained 
in terms of G and H. A formal definition of the wreath product groups will 
be given now. Let n: be a map from B to H. Let g be an element in G. Then 
G [HJ is the set of possible elements (g; n:). Products of two elements (g; n:) 
and (g' ; n:') is 
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(g; n) (g'; n ') = (gg' ; nng'), rrg' (i) = n' (g-1 i), i EB. 

Products of two maps n: and n:' are defined by 

nn' (i) = n (i) n' (i) , i E B. 

This can be illustrated with hydrazine. Let g be the identity (i. e., all the 
boxes are in their natural positions) and g' be a permutation of boxes denoted 
as (AB) . Let n: and n:' be the maps shown below: 

1t (1) = (12) 

1t (2) = (34) 

n' (1) = (1) (2) 

n' (2) = (34). 

Then (g; n) = (12) (34) and (g' ; n:') = (AB) (13) (24) (34) . Note that g' permutes 
boxes and, in turn, induces permutation of particles in all boxes. Product 
.of n: and n:' are shown below: 

nn' (1) = n (1) n' (1) = (12) 

nn' (2) = n (2) n' (2) = (3) (4) . 

'Since g is just the identity element n:g' is n:' itself. The product (g; n) (g'; n:') 
has the following representation: 

(g; n) (g'; n') = ((AB); nn') 

with n:n:' defined by the above definition. 
Define a group G' which is isomorphic to G as 

G' = { (g ; e') I g E G, e' (j) = 1H, j E B }, 

w here 1H is the identity of the group H . The group G [HJ is then isomorphic 
to 

(H1 X H 2 X ... X Hb) · G', b = I B I 
w here 

H; = {(e; n) I n (j) = 1H, j ,= i} 

with e bei:ng the identity of G. Note that H* = H1 X H2 X . .. X Hb is simply a 
b-fold direct product of b copies of the grup H. The group H* is known as 
the basis group of G [HJ. It can be shown that H* is an invariant subgroup 
·of G [HJ . Thus, the permutation representation of G [HJ = H*. G' is simply a 
semi-direct product of H* and G'. Altmann25 first noted that the symmetry 
groups of non-rigid molecules can be expressed as semidirect products. Serre26 

used Mackey's theorem for semi-direct products in the chemical contexts. 
Woodman27 •28 showed the use of semi-direct product groups in representing 
the NMR groups of non-rigid molecules. However, w reath product represen­
tation which is a special case of a semi-direct product representation is 
superior to semi-direct products in that several properties of G [HJ can be 
simply obtained if the corresponding properties of G and H are ·known. For 
example, conjugacy classes of Sn [HJ for any H (where Sn is the symmetric 
group of n objects) can be obtained from the conjugacy classes of Sn and H29. 

The irreducible representations of G [HJ can be obtained from the irreducible 
representations of G and H. The generating functions for several problems 
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concerning spectroscopy of non-rigid molecules can be obtained in terms of 
G and H. Kerber and co-workers29- 31 have made significant contributions to 
the representation theory of wreath product groups. We briefly review their 
methodology here. 

The irreducible representations of H * = H1 X Hz X ... X Hb are the outer 
tensor products 

where =II= denotes outer tensor product. The matrices of outer product are 
simply the Kronecker products of matrices contained in the outer product. 
In symbols, 

F * (e; n) = F 1 [n (1)] X F 2 [n (2)] X ... X Fb [n (b)] 

= f. [n (l)J · f. [n (2)J . . . f . [n (b)]. 
11k1 l 2k2 lbkb 

For each representation F* there is a group known as inertia group of F * 
which consists of elements in G [HJ that leave F* invariant. Symbolically, the 
inertia group G F• [HJ is 

G [HJ = { (g;n) I F* (g;n) - F• }. 
F• 

where 
F*<g;n) (e; n') = F* (g; nf1 (e; n') (g; n). 

The group GF• [HJ , by definition is isomorphic to H* · Gp'. The group GF' is. 
known as the inertia factor of F* and it is of the form 

G' = { (g; e') I F*(g;e') - F*}. 
F* 

Two representations F* and F*' are said to be equivalent if 

gF* = F *', 

where g acts on F* as 

g F* = g (F1 # F2 # ... # Ft) = F gl-1 # F g2-1 # ... # F gt-1 • 

To illustrate consider hydrazine for which the representations A1 =II= A2 and 
A2 =II= A1 are equivalent by the above rule. Let K be the set of inequivalent 
representations among the possible representations F* .If one knows the 
representation matrices of F* (e; n) one can obtain the representation matrices. 
of F * (g; n) by 

F* (g; n) = fi k [n (l)J fi k [n (2)J ... fi k [n (b)J . 
I gJ-1 2 g2-1 b g b-1 

F* (g; n) is simply a permutation of the columns of the matrix F * (e; re} 
induced by g-1• Each irreducible representation in the set K of inequivalent 
representations from the inertia group G p. [HJ induces a representation in 
G [HJ, which is irreducible. In symbols, the irreducible representations of 
G [HJ are given by 

r = (F* © F') t G [HJ 

where the arrow stands for an induced representation, F' is an irreducible 
representation in the inertia factor group GF* . 
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A 8 c 0 
Figure 2. Particle-in-box model for the generalized wreath product S2 [S3, S2] . This 

group is the NMR group of butane. 

Generalization of the wreath product groups to generalized wreath product 
groups is possible. The simplest non-trivial example of such a system is shown 
in Figure 2 in particle-in-box model. In Figure 2, let G = {(A) (B) (C) (D), 
(AD) (BC)} be a permutation group of boxes. Note that G does not permute 
boxes containing different number of particles. Equivalently, the cycle products 
of G can be divided into disjoints sets. If the cycle products of a group can 
be divided into more than one disjoint set it is known as an intransitive group. 
The cyclic group C5 of 5 objects is an example of a transitive group and the 
group G shown above is intransitive. The cycle products of G can be divided 
into the disjoi:nt sets Y1 ={A, D}, Yz = {B, C}. Alternatively G does not 
permute elements in different Y sets. Let Hi be the group acting on particles 
in the boxes belonging to the set Yi (with 1 ~ i ~ t). Let G be the •group 
acting on the boxes such that the boxes can be divided into disjuint sets 
Yi, Yz, ... , Yt. Then the group of all the particles in all the boxes is the gene-
ralized wreath product group G [Hi, Hz, ... , Ht] defined as 

G [H1, Hz, .. . , Ht] = { (g; .rr1, lrrz, . .. , .rrt)fg E G, .rri : Yi -7 HJ. 

The product of any two elements (g; ni, nz, . .. , nt) and (g' ; n1', ni' , ... , nt') is 

with 
itig (j) = iti (g-t j), j E Yi· 

The order of G [Hi, Hz, . . . , Ht] is given by 

I G [H1, H1,. .. , Ht] I = I G 11 H1 1
1 Y, 1 

I Hz 1 1 Y, 1 
• • • I Ht J 1 Y, 1 

• 

The representation theory of wreath product groups can be extended to 
generalized wreath groups as shown by the present author24• We now briefly 
review this here. Let I Yi I = mi. Then G [Hi, Hz, ... , H1] has the following 
permutation representations: 

G [H1, Hz, ... , H1] = (Hf' X H ~' X .. . X Hf' ) · G' 
where 

G' = { (g; e1, ez, ... e,) I ei (j) = tH1}, 

Hf11 = { (e; e1, ez, ... , .rri, ei+I' ... , e,) }. 

The irreducible representations of Hi' X H 2' X ... X Hf' are of the form 

F* =Ff'* =#= F22* =#= . . . =#=Ff" with Ff1
' = F11 =#= Fi2 =#= . .. =#= F imi . Let the 

inertia group of F* be GF• [Hi, H2, ••• , H1] and the corresponding inertia factor 
be G~ • . Let the inequivalent representations of the form F* constitute the 
set K. Then the irreducible representations of G [Hi, H2, . .. , H1] are 
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where F' is a representation of G ~. The tilde symbol has the same meaning 
as in the representation theory of wreath product groups. The F*'s are chosen 
from K. Consider the non-rigid triphenyl as an example. The symmetry 
group of this molecule is the generalized wreath product C2v [S2, 8 2). The cha­
racter table of this group was obtained in an earlier paper of the present 
author. 24 It is shown in Table I. 

3. GENERATING FUNCTION TECHNIQUES 

The method of generating functions is reviewed here with nuclear spin 
statistics as an example. Thus we first outline the definitions and preliminaries. 
applied to nuclear spin statistics. The importance of nuclear spin ~': atistics· 

in molecular spectroscopy is well known. The nuclear spin statistical y;eights. 
of the rotational levels provide the intensity patterns of rotational lines. 

3.1. Preliminaries 

Let D be the set of nuclei of the same kind and R be the set of possible· 
spin states of the nuclei in the set D. To illustrate, consider the nonrigid 
hydrazine molecule. D is the set of four hydrogen nuclei and R is · the set 
of two spin states. The nitrogen nuclei will be treated as a separate D set. 
We consider each kind of nuclei as a separate D set and obtain the spin 
species of each kind ·of nuclei separately. Then the overall nuclear spin species­
is obtained as a direct product of different kinds of nuclear spin species. The· 
symmetry group of the nonrigid hydrazine molecule is given by the wreath 
product C2v [C2]. In this example, the PI group is a direct product of P and I 
groups and thus the nuclear spin statistics can be treated either in P or in 
PI groups. The group C2v [C2] acts on the set D in that it permutes the nuclei 
in D. Consider the set F of maps from D to R. Image of each such map in 
F is a spin function. An example of such a map for hydrazine is shown below 

f 1 (1) = B, f 1 (2) = a, 

f 1 (3) = a, f 1 (4) = B. .. .. 
The PI group which acts on D also acts on F by the recipe shown below. 
h [f (i)] = f (h-1 i) for every i E D, h E G [Hi, H2, ••• Ht] . To illustrate, consider 
h as (1324) E C2v [C2]. Since h-1 = (1423), the action of, h on the map f1 is 
shown below: 

hf1 (3) = f 1 (h-1 3) = f 1 (1) = B, 
I I I ~ 

Consequently, (1324) acts on B a a B to produce the spin function B a B a. 
~--- ----

In order to account for the number of various possible spin states in a 
spin function let us introduce the concept of weight of an element r in the 
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set R. To each r E R assign a weight w (r), which is just a formal symbol 
used to differentiate the various spin states in the set R. For example, we 
may assign a weight a to the spin state a, and a weight B to the spin state B 
for the spin 1/2 problem. Then define the weigth of any function f E F as the 
products of the weights of the images of f. In symbols, the weight of f, W (f) 
is given by 

w Cf) = n co [f (d)J . 
de D 

The weight of the map f1 defined above is a 2 B2 since its image contains 
2 a 's and 2 'B's and the weight of a is a and that of B is B· 

3.2. Spin Projection Operators of Groups 

Let us denote the PI group (G [Hi, H2, • •• , H1]) of a nonrigid molecule 
simply by H. Let V be a vector space of dimension I R I, the number of 
elements in the set R. For example, V is a three-dimensional vector space 
for the spin 1 problem. Let Vd be the d-fold tensor product of d copies of 
the vector space V. Symbolically, · 

Vd = 0cteD V. 

Let ei, e2, ••. e I R I be a basis for the vector space V. Then to each f E F , we 
can assign an ef defined as follows : 

ef = ef(I) X ef(Z) X ... X e ff(d) · 

ef is a tensor in the space Vd. The set of tensors S = { ef : f E F} forms a basis 
for Vd. For any h EH, define an operator P (h) by its action one shown below: 

P (h) ef = ehf = ef (h-1 1) X e f (h-1 2) X · · · X e f (h-1 ct)· 

Thus P (h) is a permutation operator relative to the basis S, since it permutes 
the tensors in S by way of the action of h on f. Let h ~ x (h) be the character 
of an irreducible representation r in H. Williamson,12 in his general theorem 
for any group considered x to be the character of one dimensional representat­
ions. However, Merris32 generalized this result to irreducible representations 
of any dimension. Define an operator THX as follows: 

TH" = _l_ ~ % (h) P (h). 
IHI heH 

THx is easily shown to be an idempotent operator, i. e., (THX)2 = THX· Equi­
valently, THX is a projection operator in the space Vd. 

The projection operator THx projects all spin functions from D to R which 
transform according to the irreducible representation whose character is X· 
However, if one wishes to project spin functions according to their total spin 
quantum number then one needs to consider a subspace of Vd in which only 
functions having the same total m, spin quantum number are projected. For 
this purpose consider the subspace Vxd of Vd spanned by all the tensors that 
have the same weight x . That is, Vxd is spanned by the set Sx = { ef : W (f) = 
= x}. All the spin functions in the space Sx will have the same total m, 
spin quantum number. Let the restrictions of the operators THX and P (h) 
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to the subspace Vxd of Vd spanned by all the tensors that have the same 
weight x. This is, Vxd is spanned by the set Sx = {ef: W (f) = x}. All the spin 
functions in the space Sx will have the same total mz spin quantum number. 
Let the restr.ictions of the operator THx and P (h) to the subspace Vxd be THx' x 
and P x (h) , respectively. The operator THX' x is a spin projector of spin functions 
with the same weight x. For example, if we consider all spin functions of the 
type aBBB, BaBB etc., which have the same weight aB3 = x, then THx,x projects 
only those spin functions that have 3·B's and la. Define a weighted permutation 
operators Pw (h) and a weigh ted projector THX' W as follows: 

Pw (h) = EB x P x (h), 
x 

Tif w = EB x T if x' 
x 

where EB denotes a finite direct sum; x's vary over all the functions . In a 
matrix representation of Pw (h), trace of Pw (h), tr Pw (h) is 

tr P w (h) = ~ c• i W (f), 
f 

where the sum is taken over all f E F such that hf = f. To illustrate, if we 
consider the protons of hydrazine molecule with R = {a, ·B} and h = (12) then 

tr Pw (h) = a4 + 2a3 ~ + 2a2 ~2 + 2a ~3 + ~4. 

(This is because by the action of h = (12), aaaa, aaBa, aaaB, aa,BB, BBaa, 
BBaB, BB·Ba, and BBBB are left invariant. Hence tr P w (h) is the sum of the 
weights of the functions that are invariant under the action of h.) In this 
formulation WiUiamson and later Merris proved the following theorem: 

Theorem 1: 

Ti{ w ~ X (h) Pw (h) . 
IH I hEH 

1 

Thus, 

tr Tif w = - 1- ~ x (h) tr Pw (h) = - 1- ~ x (h) ~c" l W (f). 
I H I h EH I H I hEH f 

The implication of this theorem is that the weighted spin projection operator 
is the same as the projection operator with permutation operator replaced by 
the corresponding weighted permutation operator. Trace of the weighted spin 
projector is the generator of the irreducible representations contained in the 
set of spin functions and the nuclear spin species. 

3.3. Generalized Character Cycle Indices (GCCI) 

In this section we introduce group structures called generalized character 
cycle indices, hereafter abbreviated as GCCI, which are potentially useful in 
expressing Williamson's theorem in a form suitable for applications. We also 
obtain the GCCI's of generalized wreath products G [Hi, H2, •• ., Hi] , which are 
generators of nuclear spin species and nuclear spin statistical weights in terms 
of GCCI's of G, Hi, H2, ••• , and R t. Consequently, it is not necessary to know 
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the character table of the PI groups of nonrigid molecules in order to obtain 
the nuclear spin species. 

Define the generalized character cycle index (GCCI) of a group H, cor­
responding to the character Y.. of an irreducible representation r of H as 

PHX = _ l_ ~ X (h) X ~1 X ~2 
•• • X ~n, 

IHI h€H 

where x 1b1 x2b2 •. . Xnbn is a representation of a typical permutation h E H, which 
has b1 cycles of length 1, b2 ·cycles of length 2, etc. Equivalently, the cycle type 
of h E H is (bi, b2, ••• , bn). For example, the permutation (12) (34) of the PI 
group of hydrazine has the cycle representation x 2

2 since it has two cycles of 
length 2. Similarly the permutation (1324) of the same group has the cycle 
representation x4

1 (1 cycle -0f length 4) , etc. The GCCI which corresponds to 
character x is just the sum of the product of cycle representations of elements 
in H and the corresponding character. For example, the character of the A2 

representation of the P group of hydrazine and the corresponding GCCI are 
shown below: 

(12) (14) 
e (12) (34) (23) (1324) 

1 2 1 2 2 

Az 1 -1 1 -1 1 

pA2 = _ !.___ (x 1
4 - 2x1

2 x 2 - xz2 + 2x4) . C , [C2] 
8 

We proceed to obtain the GCCi's of generalized wreath product G [Hr, H2, 

... , H1] in terms of GCCI's of G, H 1 H2, ••• , and H 1• We need the concept of 
inertia group and inertia factor that we introduced in an earlier section for 
obtaining the GCCI's of G [Hr, H2, ••• , Hi] in terms of the GCCI's of G, Hr, H2, 

... , H 1• Let the inertia group of a representation F* =F1m1 =#= F2m2 =#= ... =II= 
=#= F1m,• be G F• [Hr, H2, ••• , Hi] and let Gp' be the corresponding inertia factor. 
By definition, GCCi of G~. corresponding to the character x, is 

p XG ' 
F * 

1 
II II x (g) : x ~.1i (g) 

IJ ' 
g€ G ' i 

F• 

where Cii (g) is the number of j cycles of g E G F• in the set Yi . The GCCI 
of G~. takes the above form because g permutes elements only within a set 
Yi. Hence x 1b1 x2b2 ••• x1b, can be written in the above form. Recall that Fim'* is 
the m i-fold 'Outer product of the same irreducible representation F;. Let h be 
the character of Fi. Define the GCCI, Z/'·k as 

= _ 1 _ ~ Ak (h) x ~' 
IH, I h €H 1 . 

Define Zi/k by the following substitution: 
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where the subscripts of the x variables are the products. If we denote an 
irreducible representation of G [Hi, H, ... , H t] by r = (#i F im1* ® F') t G [Hi, 
H2, • •• , Ht] then a GCCI of G [Hi, H2, ••• , Ht] which corresponds to the cha­
racter of r, denoted by pr (G [Hi, H2, ••• Rt]) is given by 

pr (G[Hi, Hz, .. ., Ht])= Pt' F•(xii-+ ztk ), 
If this j cycle in Yi is constituted by j copies of the representation whose cha­
racter is Ak· For all the irreducible representations, this result can be proved 
by a method similar to the one used by Williamson for wreath products. In 
particular, when r is an induced representation this result follows from a 
lemma of Foulkes33 which relates the GCCI of an induced representation to 
the GCCI of the inducing representation. The substitution outlined above is 
reminiscent ·of plethysms of S-functions (see, Read's ·pa:per34). The above result 
is illustrated with hydrazine in Ref. 39. See also Ref. 40 for the use of GCCI. 

3.4. Generators of Nuclear Spin Species 

We now show one of the uses of GCCI's. The GCCI's defined in Sec. 3.3 
are generators of nuclear spin species. Theorem 1 in Sec. 3.2 can be expressed 
in a convenient form in terms of the GCCI's. With a little algebraic manipulat­
ion it can be shown that Theorem 1 takes the following form: 

tr THx,W = PHX {xk-+ ~ [w (r) Jk}. 
r<R 

The coefficient of a typical term wib' w2h2 •• • in tr THY.' W gives the frequency 
of the irreducible representation r whose character is x in the set of spin 
functions with the same weight wib' w2h2 •••• For example, if we set X to be the 
character of A2 representation of the PI group of hydrazine, then the coefficient 
of n 2 W in the polynomial obtained by replacing every xk by ak + Bk in the 
corresponding GCCI gives the number of A2 representations in the set of spin 
functions that have 2a's and 2B's. 

We now illustrate the above procedure with hydrazine. All the GCCI's of 
the PI group of hydrazine were obtained in Ref. 39. The generating function 
(GF), for the Ai representation is given below. 

GFA1 = p~~[S,] (xk--'>- o.k + ~k) 

= _ 1_ [(o. + w + 2 (o. + ~)2 (o.2 + ~2) + 3 (o.2 + ~2)2 + 
8 

+ 2 (o.4 + ~4)] = o.4 + o.3~ + 2 a.2~2 + a.~3 + ~4. 
Thus, spin function containing all a's has one Ai representation, spin functions 
containing 3a's and lB have one Ai representation, spin functions containing 
2a's and 2B's contain 2A1 representations, and so on. The coefficient of a typical 
term aa1 Bb, in this generating function corresponds to the spin quantum 

1 
number mz = (ai - bi)/2 since a represents mz = - and B represents mz = 

2 
1 = - - - . Consequently, if one arragnes the spin species according to their m, 
2 

values as given by the above generating function, they separate into spin 
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multiplets with mz varying from -S to S. For example, from GFA1 one obtains 
5A1 and 1A1. 

Consider borontrimethyl [B (CH3h) as another example. This was con­
sidered by the present author39 in an earlier paper. The PI group of this mole­
cule is the wreath product D3h [C3] or D3[C3] AI, where the symbol A denotes 
a semi-direct product. This is an example of a molecule whose PI group is 
not a direct product of P and I groups. We first obtain the GCCI's of the P 
group (D3 [C3]) and then add the additional terms arising from the I group. 
The GCCI's of the group D3 and C3 are shown in Tables II and III, respectively. 

TABLE II 

The GCCI's of the Group D 3 

Irreducible representation 

Ai= [3] 
A2 = [l3] 
E = [2, 1] 

x13 + 2xa + 3x1x2 
x13 + 2xs - 3x1x2 
2x13 -2xa 

TABLE III 

The GCCI's of the Cyclic Group C3 

Irreducible representation 

At X13 + 2X3 

E { Y1 
Y2 { 

X13 -X3 
3 or 2x13 - 2xa 

Xt -X3 

The irreducible representation of D3 [C3), their GCCI's obtained using the GCCI's 
of D3 and C3 are shown in Table IV. When the inversion operations are included, 
the irreducible representations Ai, A 2, E i, and I7 double; the other GCCI's 
remain the same. The GCCI's of the PI group of B (CH3h are shown in Table V. 

We now obtain the nuclear spin species of 11B (12CD3h using these GCCI's, 
where D denotes the deuterium isotope of hydrogen. The total number of 
nuclear spin functions in this molecule is 4.39 = 78 732. One first finds the 
deuterium spin species and then multiplies the Boron spin species by a Clebsch­
-Gordan series. Denote the three nuclear spin states of D by A, µ, and v, which 
stand for spin states with nuclear spin = -1, 0, and 1, respectively. Then 
replace every Xk in the GCCI which corresponds to the irreducible represent­
ation r by f..k + µk + vk. Then one obtains the generating function for nuclear 
spin species, corresponding to r . To illustrate, given below is the expression 
obtained by replacing every Xk in the GCCI of the irreducible representation 
I3 of the PI group of B (CD3h by f..k + µk + vk 

GF1s = GCCI1a (xk ~ A.k + µk + vk) = (1 /324) [6 (A.+ µ + v)9 -

- 24 (A.3 + ~La + v3)3 + 18 (/, + fL + v)6 ()..a + ~La+ v3) + 18 (A. + µ + v)3 x (A.2 + fL2 + v2)3 + 

+ 36 (A.+ µ + v)3 (A.6 + µ6 + v6) - 18 (A.2 + fL2 + v2)3 (A.3 + ~La + v3) _ 

- 36 (1,3 + ~L3 + v3) (A.6 + ~L6 + v6)] = /,8µ + 2J..7fl2 + 3J..6µ3 + 4A.5~L4 + 4A.4~L5 + 3A.3µ6 + 
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+ 9A.2µ6v + 4),µ7v + µ8v + 2A.7v2 + 9A.6ftV2 + 20),5µ2v2 + 29A.~µ3v2 + 29A.3µ4v2 + 
+ 20A.2fl5v2 + 9A.tt6v2 + 2µ1v2 + 3A.Ov3 + 14A.5flV3 + 29A.4fl2v3 + 36A.3µ3v3 + 29A.2µ4v3 + 14),µ5v3 + 

+ 3ft6v3 + 4A.5v4 + 16A.4ftV4 + 29),3ft2v4 + 29),2ft3v4 + 161vft4v4 + 4ft5v4 + 4),4v5 + 

+ 3µ3v6 + 2),2y7 + 4)+tv7 + 2fL2v1 + A.vs + µvs. 

TABLE IV 

The GCCI's of D s [Cs] , the P Group of B (CHs)s 

Irreducible Representation 

(A1#A1#A1)il.[3]' 

= A1 

(A1#A1#A1 )il.[l3]' 
= Az 

(A1#A1#A1 )il.[2,1]' 

= 'E1 

{ h1lh1lh1) } i1[3]' 
(r2lh2lh2) 

= E3 

{ ~~;~;~;l1 ii[l3]' 
= E4 

d~;~;~; l} il[2 ,l]' 
= G 

(A11h11h1} ii[2]' 
A1 lh2lh2 

t 03 [ C3] I l 

{A11h1lh1} il[l2]' 
A1 lh21h2 

t 03[C3] = l 2. 

{A1#A11h1} il.[2]' 
A1#A11h2 

t 03 [ C3] 13 

{A1#A11h1} Q[l2.]' 
A1 #A1 lh2 

t 03 [ C3] 14 

p1lh1lh2} il[ 2]' 
Y2ih21h1 

t 03[C3] Is 

{y 1#yl#y2} il[l2 J' 
Y2ih21h1 

03 [ C3] t 

(A~lh11h2) 

t 03 [C3 ] 17 

15 

xi + 6xyx3 + 12xyx~ + 26xj + 36x9 + 9xrxl 
+ 1Bxrx6 + 1Bx1x3 + 36x 3x6 

x[ + 6xyx3 + 12xyx~ + 26xj + 36x9 
- 9xrx~ - 1Bxrx6 - 1Bxix3 - 36x3x6 

2x[ + 12xyx3 + 24xyxj - 2xj - 36x9 

2x[ - 6xyx3 + 6xyxj + 34xj + 18xyx~ 

- 18XfX5 - 18x3x1 + 18X3X5 - 36x9 

2xy - 6xyx3 + 6xyx~ + 34xj - lBxrxl 
+ 18xyx6 + 18x3x1 - 18x3x6 - 36x9 

6xr - 18xyx~ + 18xyxl - 18xyx6 + 12x~ 

+ 36x1x3 - 36x3x6 

6x[ - 18xyx~ - 18xyxl + 18xyx6 + 12x~ 

- 36x1x3 + 36x3x6 

6x[ + 1Bxrx3 + 18xyxl + 36xyx6 - 24x~ 

- 1Bx1x3 - 36x3x6 

6xr + 1Bxyx3 - 18xyx~ - 36xyx6 - 24xj 
~ 18xlx3 + 36x3x6 

6xy - 18xyx3 + 18xyx~ + 18xyxl - 18xyx6 
- 6xj - 1Bx1x3 + 18x3x6 

6xy - 18xyx3 + 18xyx~ - 18xyxl + 18xyx6 

- 6x~ + 1Bx1x3 - 18x3x6 

6x[ - 18xyx~ + 12xj 
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TABLE V 

The GCCI's of the PI Group of B (CHsh 

324 ~ 

xi + 26xj + 6xyx3 + 12xyx~ + 36x9 + 36xyxi + 18xyx6 
+ 1Bxix3 + 90x3x6 + 27x 1 x:;_ + 54x 1 x2 x6 

xi + 26xj + 6xyx3 + 12xyx~ + 36x9 - 36xyxi - 18xyx6 
- lBxi x3 - 90x3 x6 + 27 x1 xi + 54x1 x2 x6 

xi + 26x§ + 6xtx3 + 12xyx~ + 36x9 - 18xyxl + 18xyx6 
+ 1Bx1 x3 - 18x3 x6 - 27x1 x~ - 54x 1 x2 x6 

xi + 26x§ + 6xf x3 + 12xyx~ + 36x9 + 18xyxl - 18xyx6 
-18x~ x3 + 18x3 x6 - 27x1 x~ - 54x1 x2 x6 

2xr - 2x§ + 12xyx3 + 24xyx~ - 36x9 + 54xyxi - 54x3x6 

2xi - 2xl + 12xyx3 + 24xyx~ - 36x9 - 54xyxi + 54x3x6 

2xi + 34x~ - 6xyx3 + 6XfX~ - 36x9 + 18XfXi - 18XfX6 
- lBxi x3 + 18x3 x6 

2xi + 34xl - 6xyx3 + 6Xf X~ - 36x9 - 18xyxi + 18XfX6 
+ lBxi x3 - 18x3 x6 

4xi - 40x§ - 12xy x3 + 12xy x~ + 36x9 

6xi + 12xl - 18xyx~ + 18xyxi - 18xyx6 + 36xix3 - 36x3x6 

6xr + 12xj - 18xyx~ - 18xyxi + 18xyx6 - 36xix3 + 36x 3x6 

6xi - 24xj + 1Bxyx3 + 18xyxl + 36xyx6 - 1Bxlx3 - 36x 3x9 

6xi - 24x§ + 18xf x3 - 18xyxi - 36xyx6 + 1Bxix3 + 3x3x6 

6xr - 6x§ - 1Bxyx3 + 18xfx~ + 18xyxi - 18xyx6 - 1Bxlx6 
+ 18x3 x6 

6xr - 6xl _ - 1Bxyx3 + lBxyx~ - lBxrxl + 18xyx6 + 1Bxlx3 
- 18X3 X6 

6xi + 12x§ - 18xyx~ .+ 54x1 xi - 54x1 x2 x6 

The coefficient of a typical term /,a, µa2 va• in the GFr gives the number of 
irreducible representations r in the set of nuclear spin functions containing 
a1A states, a2µ states, and a3v states. Thus, this coefficient corresponds to the 
number of spin functions transforming as r with the spin quantum number 
mz equal to a3 - a1. If one groups the symmetry species as generated by GFr, 
they separate into multiplets with their m, varying from -S to S. For example, 
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TABLE VII 

Nonrigid Deuterium Spin Species of B (CD3)s 

Spin species 

3A1(6) ' SA1(2)' 7Ai(8 ) ' 9A1(3) ' llA1(4), l3A1(2)' lSA1(2 )' 19A1(1) 

3 A1 ( 2) , 5 A2 ( 1), 7 A2 ( 2), 9 A2 ( 1) • 11 A2 ( 1 ) 

l A3 ( 3) ' s A3 ( 3) , 7 A3 (1 ) ' 9 A3 ( 2) , l 3 A3 (1 ) 

lA.,(3), 3A.,(l) , SA.,(4) , 7A.,(3) , 9A4 (4), llA4 (1), 13A4 (2) 

1E1(1), 3E1(7), SE1(8), 7E1(9), 9E1(7), ll E1(6) , l3E1(3 ), lSE1(2) , 
l 7E1 (1) 

l Ez ( 2 ) , 3 Ez ( 2) , s Ez ( 4 ) , 7 Ez ( 3 l , 9 Ez ( 3 l ' 11 Ez ( l ·) ' l 3 Ez ( 1 ) 

1E3(2), 3 E3(4), SE3(4) , 7E3(5 ) ' 9E3(3)' ll E3( l ) ' 13E3(l) 

1 E4 ( 2) , 3 E4 ( 3) , s E4 ( 3) , 7 E4 ( 3) , 9 E4 (1 ) 

l G( 2) , 3 G( 7) , s G( 9) , 7 G( 6) , 9 G( 4) , 11 G( 2) 

1J 1 (4), 3J 1 (12), SJ 1 (14), 7I i(l 4 ) , 9J 1 (9), 11] 1 (6) ' 13] l ( 2) ' 

1J 2 (5 ), 3I2 ( 10), sr 2 (13), 7 12 ( 11 ) , 9I 2 (8) , 11 lz (3) ' n12(2) 

lJ3(4)' 317( 13) ' 513(17)' 7 13(15)' 913(12)' 
15 13(2) , l 13(1) 

11I3 (8) , 1313 ( 4) ' 

114(4)' 314(11)' 514( 15 )' 714(14)' 914(11) ' 1114 (7) ' 1314 ( 3) ' 

115(4)' 314(11) , srs\13) ' 715(11)' s15(7)' 1115(3) ' 13 Is ( l) 

116 (4) , 3 16 (10), s16 (12), 116 (9), s1 6 (s), l1J 6 ( 2) 

1J7-(2) , 317( 14) , 517(12) , 7 17 (15) , 917(8) , 1117(6), 1317(2) ' 

1Ia(7), 3Ja(8) ' s1a( l5 ) , 71a(lO), s1a(9)' i1Ja(3) ' 13Ia(2) 

1S J 1(1) 

151 4( 1) 

151 7 (1 ) 

when we group the coefficients in the generating function corresponding I3 

in accordance to their mz values, we obtain 1713 (1) , 1513 (2) , 1313 (4) , 1113 (8) , 913 (12) , 
713 (15) , 513 (17), 313 (13) , and 113 (4) as the nuclear spin species. The numbers in the 
parentheses indicate the frequency of the corresponding spin species. In this 
manner all the nuclear spin species can be found from the generating functions. 
Generating functions thus obtained for the D species of B (CD3h are shown 
in Table VI. In that table the various terms appearing in the generating 
functions are shown in the first row. The coefficients in the generating funct­
ions for all the irreducible representations are shown in the subsequent rows. 
The nuclear spin species thus obtained from these generating functions are 

shown in Table VII. Since the nuclear spin of 11B is2-and this nucleus is the 
2 

center of the molecule, the nuclear spin species of 11B is 4A1• The overall nuclear 
spin species of this molecule is the direct product of the boron and th e deuterium 
spin species. 
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4. THE STATISTICAL WEIGHTS OF ROVIBRONIC LEVELS FROM GENERATING 
FUNCTIONS 

The nuclear spin statistical weights of the rovibronic levels of nonrigid 
molecules can also be obtained from the GCCI's . If one is interested in the 
statistical weirghts of rovibronic levels instead of the possible nuclear spin. 
species, it is possible to obtain them directly from GCCI's . Evidently, the number 
of times an irreducible representation r occurs in r spin, the reducible repre­
sentation of all nuclear spin functions, is given by the sum of the coefficients 
of all the terms in the corresponding nuclear spin generating function. For· 
example, the number of A1 representations in the set of deuterium spin funct­
ions of B (CD3) 3 is the sum of the coefficients in the row corresponding to A1 

in Table VI which is 230. The sum of the coefficients in any generating function 
is obtained by setting all the weights to unity in the generating function. This: 
amounts to replacing every Xk i:n pHx by ~ reR [w (r)]k = IR i, since w (r) = 1 
for all r e R. Thus the number of times the irreducible representation r whose· 
character is x appears in ppin is given by 

N (r) = PHX (xk~ jR ! ). 

We now illustrate this with B (CD3)3. The GCCI's of this molecule are in 
Table V. The number of 11 representations in r N'in is obtained by replacing 
every xk in PG11 by 3 since the number of possible nuclear spin states of D is 
3. Consequently, 

N (11) = _l_ (6.39 + 12.33 -18.33.32 + 18.33.33 -18.33.3 + 36.33.3 - 36.3.3) = 396. 
324 

In this manner one obtains 

r~in = 230A1 + 45A2 + 56A3 + 120A4 +340E1 + 100E2 + 120E3 + 56E4 + 168G + 

+ 39611 + 30812 + 52813 + 44014 + 28815 + 22416 + 38817 + 31618. 

We arrive at the same result by adding the multiplicity times the frequency 
of deuterium spin species in Table VII. Since 11B nuclear spin functions span 
the representation 4Ai, the overall spin species rspin , is given by 

rspin = r ~in ® r :in = 920A1 + 180A2 + 224A3 + 480A4 + 1360E1 + 400E2 + 480E3 + 

+ 224E4 + 672G + 158411 + 123212 + 211213 + 176014 + 115215 + 896!6 + 155217 + 126418• 

The nuclear spin statistical weight of a rovibronic level transforming as: 
r rve representation is obtarined by stipulating that p ve ® r spin should contain 
rint, where rint is the symmetry species of the total internal wave function. 
By Pauli exclusion principle rmt must be antisymmetric with respect to per­
mutations alone for Fermions. For Bosons rint must be symmetric with respect 
to permutations alone. There is no restriction placed on inversion operations. 
Since deuterium nuclei are Bosons rmt can be A1 or A3. This way one obtains. 
the nuclear spin statistical weights of all the rovibronic levels and they are 
shown below in parenthesis: 

A1 (1144), A2 (660), A3 (1144), A4 (660), E 1 (1760), E2 (1760), E3 (960), E4 (448), 

G (1344), 11 (3168), 12 (2464), 13 (4224), 14 (3520), ! 5 (2304), ! 6 (1792), 17 (2816), ! 8 (2816). 



1544 K . BALASUBRAMANIAN 

5. APPLICATIONS TO NMR SPECTROSCOPY 

The apphcations of group theory to simplify:ing NMR spin Hamiltonian 
go back to McConnell, McLean, and Reilly36 and Wilson37• Soon after the 
development of symmetry groups of non--rigi:d molecules by Longuet-Higgins, 
Woodman72 ,28 showed that NMR groups of these molecules can be expres•sed 
as semi-direct· product groups. Flurry and co-workers38 developed the unitary 
group treatment for the NMR problem. The present author35 showed that the 
NMR group of any molecule can be obtained by a diagrammatic technique in 
which the NMR spin Hamiltonian is represented by an interaction diagram 
known as NMR graph. 

The NMR spin Hamiltonian can be defined as 

.HNMR = ~ vi Izi + ~ ~ Jii Ii · Ii" 
i i<j 

where Vi is the chemical shift of the ith nucleus and Jii is the coupling constant 
between the nuclei i and j. The NMR group is defined as the set of permutat­
ions of nuclei that leave the NMR spin Hamiltonian invariant. In symbols, a 
permutation of the nuclei is in the NMR group if the correspondtng permutation 
ma·trix P satisfies 

'The present author35 showed that a diagrammatic representation of HNMR can 
be obtained by representing nuclei as vertices and edges by the coupling con­
stants. Such a diagram is shown in Figure 3 for B (CH3) 3 where the center is 
the 11B nucleus. The NMR graph in Figure 3 can be expressed as a composition 
of the graphs Q and T shown in Figure 4. The graph in Figure 3 can be obtained 
by replacing every vertex of Q in Figure 4 by a copy of T. In particle-in-box 
analogy vertices in Q are the boxes and the vertices in T are the particles in 
boxes. The group S3 preserves the couplings restricted to Q and T. Consequently, 

Figure 3. NMR graph of B(CH3)a. The B and C nuclei are assumed to be 11B and 12C. 

Figure 4. The NMR graph in Figure 3 expressed as a composition of Q and T in 
this figure. The graph in Figure 3 is obtainable by replacing every open vertex 

of Q by a copy of T. 
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the NMR group of B (CH3h is the wreath product 83 [83]. Figure 2 shows the 
particle-in-box picture for the NMR group of butane which is the generalized 
wreath product 82 [83, 82]. 

The use of GCCI's for the NMR problem was recently demonstrated by the 
author41 ,42 • We review this here. In Table VIII we give all the GCCI's of the 
NMR group of the butane molecule. Note that GCCI's of the representation 
pairs (E3, E4), (G2, G3), (G10, G1) are the same. Hence, Table VIII lists only the 
unique GCCI's. When one replaces the appropriate nuclear spin weights in 
the NMR GCCI's one obtains the generators of nuclear spin species. To illustrate, 
if one needs to obtain the proton NMR species of the non-rigid butane molecule 
then one replaces every Xk in the GCCI's by ak +Bk· Consider the GCCI of G1 

representation in Table VIII. To obtain the proton spin multiplets of the non­
-rigid butane corresponding to G1 we replace every xk by ak + Bk in the GCCI 
of G1. This results in 

G.F.G1 = -1- [4 (a+ B)10 + 20 (a+ B)8 (a2 + B2) + 28 (a+ B) 6 • 

288 

. (a2 + B2)2 + 12 (a + B)4 (a2 + B2)3 + 4 (a + Bl1 (a3 + B3) -

- 4 (a + B)5 (a2 + B2) (a3 + B3) - 20 (a + B)a (a2 + B2)2 (a3 + B3) -

- 12 (a + B) (a2 + B2)3 (a3 + B3) - 8 (a + B)4 (a3 + B3)2 -

-16 (a+ B)2 (a2 + B2) (a3 + B3)2 _ 8 (a2 + B2)2 (a3 + B3)2]. 

The above expression upon simplification yields 

G.F.G1 = a9B + 4asB2 + 9a7B3 + 14a6B4 + 16a5B5 + 14a4B6 + 9a3B7 + 4a2BS + aB9 

Thus there is 1G1 representation in the set of spin functions 'that have 9 a's 
and lB, 4G1's in the set of spin functions containing Ba's and 2Ws, 9G1's in 
7a's and 3Ws, etc. The coefficient of an, Bn• generates number of times G1 occurs 
in the set of spin functions containing n1a's and n2Ws. Note that the term an1 Bn, 
corresponds to the total 2 component spin quantum number Mp = (n1 - n2)/2 
so that if the coefficients in G. F.'s are sorted in accordance to their Mp values 
one obtains the proton NMR G1 species as 

1G 1 (2), 3G 1 (5), 5G1 (5), 7G1 (3), 9G1 (1) . 

The numbers 1in parentheses give the number of G1 multiplets of the appropriate 
multiplicity. This can be briefly summarized in Table IX where we give all 
the proton NMR multiplets of non-rigid butane obtained using the NMR gene­
rators described in 'this section. Note that one needs to construct the spin species 
and spin functions in this representation for butane if one is interested in a 
dynamic high resolution NMR spectrum as a function of temperature. This i.s 
because the composite particle representation breaks down at lower tempe­
ratures since methyl protons become inequivalent, and thus appropriate cor­
relation of spin species is not possible. Such a correlation can be easily obtained 
in the total representation as shown by the author in an earlier paper35 where 
he called the resulting diagram a coalescence diagram. 

If one needs to obtain the deuterium NMR spin species of butane all that 
one needs to do is to replace every Xk in the NMR generators in Table VIII 
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by J..k + µk + vk, where A., µ and v are the weights corresponding to mf = -1, 
-0, 1, respectively of the D nucleus. One can then easily sort the coefficients 
in the generating function in accordance to their total MF values and the spin 
multiplets can be generated. Powerful operator methods and related generating 
function methods have been developed for the NMR problem. The readers are 
referred to the present author's recent papers.41•42 The method of generating 
functions using GCCI's has also been computerized.4a,44 

TABLE IX 

Proton NMR Species of Butane. Numbers are the Frequencies of that Spin Species 

r2s+i 1 3 5 7 9 11 

Ai 0 5 3 4 1 1 
A2 3 2 5 2 2 0 
As 0 1 0 1 0 0 
A4 1 0 1 0 0 0 
As 0 0 0 0 0 0 
As 0 0 0 0 0 0 
A1 0 0 0 0 0 0 
As 0 0 0 0 0 0 
Ei 1 3 3 2 1 0 
E2 0 0 0 0 0 0 
Ea 0 0 0 0 0 0 
E4 0 0 0 0 0 0 
Es 0 0 0 0 0 0 
Ea 0 0 0 0 0 0 
Gi 2 5 5 3 1 0 
G2 1 2 2 1 0 0 
Ga 1 2 2 1 0 0 
G4 0 1 1 0 0 0 
Gs 0 3 1 1 0 0 
Gs 2 1 2 0 0 0 
G1 0 1 0 0 0 0 
Gs 1 0 0 0 0 0 
G9 0 0 0 0 0 0 
Gio 0 0 0 0 0 0 
G11 0 0 0 0 0 0 
Gi2 0 0 0 0 0 0 
K1 1 2 1 0 0 0 

6. APPLICATIONS TO THE ENUMERATION OF ISOMERIZATION REACTIONS 

In this section we review the use of GCCI's for enumerating isomerization 
reactions, a problem of current interest in dynamic stereochemistry. This is 
·essentially a review of the results contained in Ref. 45. The readers are also 
referred to references 46 and 47 in this connection. The GCCI's are used here 
to construct the isomerization graphs. 

We start with the trigonal bipyramidal compounds which exhibit large 
amplitude nonrigid motions by way of the pseudorotation proposed by Berry. 
'The rotational subgroup of this nonrigid molecule is the group S5. The cha­
racter table of the rotational subgroup of the nonrigid trigonal bipyramid 
molecule is shown in Table X. Table XI contains all the GCCI's of this molecule. 
Consider the H1 representation of this molecule. We consider the case of 
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TABLE X 

Character Table of S5, the Rotational Subgroup of the Nonrigid Trigonal 
Bipyramidal Phosphorous Compounds 

E (12) (123) (1234) (12)(34) (12)(345) (12345} 

1 10 20 30 15 20 24 
1 1 1 1 1 1 1 
1 -1 1 -1 1 -1 1 
4 2 1 0 0 -1 -1 
4 -2 1 0 0 1 - 1 
5 1 -1 -1 1 1 0 
5 -1 -1 1 1 -1 0 
6 0 0 0 -2 0 1 

TABLE XI 

GCCI's of the Group in Table X . 120 PGx are Shown 

X15 X13X2 X12X3 X1X4 X1X22 X2X3 X5 

1 10 20 30 15 20 24 
1 -10 20 -30 15 -20 24 
4 20 20 0 0 -20 -24 
4 -20 20 0 0 20 -24-
5 10 -20 -30 15 20 0 
5 -10 -20 30 15 -20 0 
6 0 0 0 -30 0 24 

three different substituents with the weights a, b , and c. The GCCI and the­
GFH1 are shown below: 

GCCI"1 = _ l _ (5x1
5 + 10x1

3x 2 - 20x1
2x3 - 30x1x 4 + 15x1x z2 + 20x2x3), 

120 

= _ l _ [5 (a + b + c) 5 + 10 (a + b + c) 3 (a2 + b2 + c2) -

120 

- 20 (a + b + c)2 (a3 + b3 + c3) - 30 (a + b + c) (a4 + b4 + c4) + 
+ 15 (a + b + c) (a2 + b2 + c2

)
2 + 20 (a2 + b2 + c2

) (a3 + b3 + c3
)] = 

Thus there is one H 1 representation in the set of structures with the formula 
PChBr2, 2H1 representations in the set of structures with the formula PCizBr2I, 
etc. The GCCI corresponding to the totally symmetric representation enumerates. 
the isomers since this GCCI is just the ordinary cycle index used by several 
authors for enumerating isomers. Table XII shows the generating functions: 
for three substituents with the weights a, b, and c. The first row in Table XII 
shows the various terms appearing in the generating function . All the sub­
sequent rows give the coefficients of the corresponding terms in the generating 
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TABLE XII 

Generating Functions for Nonrigid Phosphorotis Compounds with at most Three 
Substituents 

c:J •. •. 
"' :a :0 c:J :a c:J ·u c:J c:J ., 

"' "' .0 1i c:J .0 :0 c:J .0 :a c:J c:J c:J c:J ., 
1.i "' C: °its Oi :0 ~ °its Oi 1i °its Oi :0 Oi .0 :a c:J 't> C1l C1l C1l C1l C1l C1l .0 

Ai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gi 0 1 1 1 1 0 1 2 2 2 1 1 2 2 1 1 2 1 1 1 01 
G2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
H1 0 0 1 1 0 0 0 1 2 1 0 1 2 2 1 1 1 1 0 0 0 
H2 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 

functions corresponding to the irreducible representations for which they stand. 
Consider a particular molecule with the formula Px2y2z. The enumerators cor­
responding to this formula are the coefficients of a2b2c in the various generating 
functions. The coefficient of a2b~c in the totally symmetric representation A1 

gives the number of isomers which is just 1 in this case. Thirty equivalent 
functions representing this isomer span the representation Ai+ 2G1 + 2H1 + 
+ H2 + I. This is obtained by collecting the coefficient of a2b2c in the generating 
function of each irreducible representation. For example, the coefficient of 
a2b2c in G1 is 2; in H1 it is 2, in H2 it is 1 and in I it is 1. Thus we arrive at the 
above result. Isomerization reactions are obtained when one finds the set of 
representations spanned by the same 30 structures in the rotational subgroup 
of the rigid molecule (D3). This is easily done by correlating the species Ai, Gi, 
Hi, H2 and I to the species of the group D3• These 30 maps span the represent­
ation 6A1 + 4A2 + lOE in D3• Note that these sets of maps contain 6A1 repre­
sentations in D3 when they contained only one Ai in 85• Since the number 
0f A1 representations gives the number of isomers we arrive at the conclusion 
that the single isomer of the nonrigid molecule Px2y2z splits into six isomers 
when the molecule becomes rigid. Conversely, the six isomers of the riigid 
molecule are transformed into one another by pseudorotation. This is repre­
sented by the reaction graph in Figure 5. A reaction graph has an edge between 
two vertices i and j if the rigid isomers i and j are transformable by a rotation 
in the nonrig1d molecular group. Consequently, the reaction graph contains 
components that are always complete. Hence once we know the number of 
vertices in the reaction graph, the number of components and the number of 
vertices in each component, the reaction graph is immediately constructed. 

I 

5~2 
5~3 

4 

Figure 5. Isomerization reaction graph of the non-rigid molecule Px2y2z2 • 
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7. APPLICATIONS TO NQR SPECTRA OF CRYSTALS 

NQR spectroscopy of crystals employs a quadrupolar nucleus as a probe 
to detect and estimate electric field gradients in crystals.4s-49 The electric field 
gradient is very sensitive to the environment. A problem in interpreting com­
plex NQR spectra of crystals is to theoretically obtain these NQR spectral 
patterns which should include the number of NQR lines and their intensity 
ratios in a given crystalline environment. NQR frequency is quite sensitive to 
minute differences in electric field gradients and thus this method is very 
useful in investigating crystals exhibiting phase transition. At the critical 
temperature the symmetry of the crystal usually changes. This is in turn 
reflected in their NQR spectra. It would be valuable to have an easy theoretical 
method to obtain NQR spectral patterns so that given the symmetry of the 
·unit cell of the crystal under consideration, one can predict the NQR spectral 
patterns. Conversely, this method would be of immense use in assigning the 
symmetries of the various phases. This method was recently developed by the 
present author.so 

In this section we review the use of GCCI for NQR. Let G be the point 
group corresponding to the space group of the crystal. Let D be the set of 
nuclei. Then each operation g € G can be considered as a permutation or 
permutation-inversion operation on D. Let R be a set containing just 2 elements 
·denoted by a 1 and a2. Let fi be a map from D to R defined as follows 

fi (di)= a1 if i >6 j, di ED 

= a2 if i = j. 

Two maps fi and fi (i ,e j) are equivalent if there is a g € G such that 

fi (gd) = fj (d) for every dED. 

'The above relation divides the set F of all maps from D to R into equivalence 
-classes. It can be easily seen that the equivalence classes of F are the equi­
valence classes of nuclei. This is because if fi and fi are equivalent then the 
nuclei di and di are also equivalent. With each r € R let us associate a weight 
w (r). For example, with a 1 associate a weight a 1 and with a2 associate a 
weight a2• Define the weight of any f € F as in the introduction of this review. 
-The weight of any map t is a f- 1 a 2 if N is the number of nuclei in D. P6lya's 
theorem gives a generating function for the equivalence classes of maps by the 
following substitution in the cycle index. 

G. F. =Pc [xk~ ~ w (r))k]. 
reR 

'The coefficient of a f-1 a 2 (N being the total number of nuclei) gives the number 
of equivalence classes of nuclei under the action of G. 

This can be illustrated with the example of fluorine NQR spectrum of 
antifluorite crystals with 0 11 symmetry. If one replaces every xk in the cycle 
index of P o. by a 1k + a2k, one obtains 

G.F.o = _ 1_ [(a1 + az)G + 8 (a13 + az3)2 + 9 (a1 + az)2 (a12 + az2)2 + 
h 48 

+ 6 (a1 + az) 2 (a14 + az4) + 7 (a12 + az2)3 + 8 (a1G + az6) + 
+ 3 (a1 + a2)

4 (az2 + a2
2) + 6 (a1

2 + az2) (a1
4 + az4)] 
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The coefficient of a 1
5a 2 in the above expression is 1 indicating that all the 

nuclei are equivalent under the Oh symmetry. Consider the same crystal with 
distortions. Consider the same 6 nuclei in C4h and C; subgroups of the Oh group. 
The cycle indices for C4h and Ci are 

The corresponding generating functions are 

G.F. c = _ 1_ [(0.1 + uz)G + 2 (a.1 + uz)2 (0.14 + uz4)+ 
4b 8 

+ (0.1 + Uz)2 (a.12 + Uz)2 + (0.1 + U.z)4 (a.12 + a/) + (u.12 + a/)3] 

G.F.c = ___!_ [(u1 + uz)2 + (u.12 + a/)3]. 
l 2 

The coefficient of a 1
5 a 2 in these generating functions are 2 and 3, indicating , 

2 and 3 equivalence classes under the action of C4h and Ci symmetries. Thus a 
single fluorine NQR Hne of an antifluorite crystal splits into two lines for a 
distorted crystal with C4h symmetry and three lines for a crystal with Ci 
symmetry. 
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SAZETAK 

Neke primjene teorije grupa u kemijskoj fizici 

Krishnan Balasubramanian 

Dan je revijski prikaz razvoja i primjene metode generirajucih funkcija na 
neke probleme kemijske fizike. Razmatrana je primjena u NMR, na NQR-spektrima 
kristala s faznim pretvorbama, kao i na problemima rovibronskih razina te izome­
rizacijskih reakcija. Posebna pa:lnja posvecena je simetriji molekula koje nisu krute. 




