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Rayleigh - Schrodinger perturbation expansion is applied to 
the system where the unperturbed Hamiltonian Ho is chosen to be 
an alternant operator, while the perturbation J.. V is chosen to be 
an antialternant operator. A configuration interaction space X .. 
generated by n electrons moving over 2n orthonormalised orbitals 
is considered. This space splits into two mutually complementary 
subspaces x: and x.- containing alternant-like states. These states 
have characteristic properteis of the eigenstates associated with 
neutral alternant hydrocarbon systems. If the eigenstate «P E X., 
of the unperturbed Hamiltonian Ho is nondegenerate, then it is 
alternant-like, i. e. either «P E X,,+ or «P E x.-, and without loss of 
generality one can assume «P = cp+ E X,.+. In this case the eigenstate 
'I' (A) of the total Hamiltonian H = Ho + J.. V , as expanded in the 
power series of the expansion parameter J., is of the form 'I' (A) = 
= cp+ + }. 'l'1- + J..2 'l'2+ + J..3 'l'3- + ... , where corrections to all orders 
are alternant-like states. In addition, all even corrections are con­
tained in the space X,.+, while all odd corrections are contained in 
the space x .. -. The corresponding eigenvalue E {J..) is an even func­
tion of the expansion parameter J, , Also, the expectation value of 
each alternant operator is an even function of J.. , while the expec­
tation value of each antialternant operator is an odd function of 
J... In particular, these results are applied to the matrix elements 
of one- and two-particle density matrices, and a simple example 
illustrating these properties is given. 

1. INTRODUCTION 

Perturbation expansion is a very powerful scheme in the treatment of 
various quantum chemical problems. The Hamiltonian H of the system is 
usually written as a sum of two parts, the unperturbed Hamiltonian H o, and 
the perturbation A. V, where A. is a parameter 

H = H 0 + J.. V (l} 

All the properties of a system, Hke eigenvalues, expectation values of different 
operators etc. are then expanded in the power series of the parameter A.. In 
principle, the splitting (1) is arbitrary. However, the unperturbed Hamiltonian 
H0 is usually chosen in such a way that it can be easily diagonalised, while 
the perturbation A. V is required to be »small« in order to obtain fast con­
vergence. 

This paper deals with a special kind of perturbation expansion where the 
unperturbed Hamiltonian is chosen to be an »alternant« operator, while the 
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perturbation is chosen to .be an »antialternant« operator. The . definition and 
properties of alternant and antialternant operators can be found ·in the 
preceding paper1, as well as in Refs. 2 and 3. We follow throughout this paper 
the notation and conventions of Ref. 1. 

The notion of these operators and related spaces is obtained within the 
wider scope of the molecular orbital resonance theory (MORT) approach, 
which is discussed elsewhere.2- 4 However, for the purpose of this paper, a 
few points should be emphasized : firstly, each symmetric operator can be 
written as a sum of an alternant and an antialternant operator, and there 
is a simple algorithm to obtain this splitting.1•2 . Secondly, if the configuration 
interaction (Cl) space X n generated by n electrons moving over 2n ortho­
normalised orbitals Xi is considered, then the eigenstates of an alternant ope­
rator are »alternant-like« in the sense that they have all the characteristic 
properties of the eigenstates of neutral alternant hydrocarbon (AH) systems.1- 3 

In particular, they have uniform charge density distribution over all orbitals 
x;, vanishing bond orders . between orbitals of the same parity etc.1- 3 _ It can 
be shown that the space X ,, can be split into two mutually orthogonal sub­
spaces X n+ and X n- such that each state 'I' ='I'+ E X n+ as well as each state 
'I' = 'I'- E X n- is alternant-like.1- 3 Hence polarised states, which have arbitrary 
charge density distribution and arbitrary bond orders, necessarily have non­
vanishing components in both subspaces X ,t and X n -. This suggests that it 
should be much easier to diagonalise the Hamiltonian Ho having alternant-like 
eigenstates, than to diagonalise the complete Hamiltonian H of the system. 
One can further show that the antialternant perturbation is usually »Srf!all«. 
at least when the ground state is considered.5 In conclusion, the splitting of 
an arbitrary symmetric Hamiltonian into its alternant and antialternant part 
is easy to perform and promises to y ield a rather rapid convergence. This is 
already quite a good reason to try to perform such an expansion. There are 
however some additional rather interesting properties of this -expansion, and 
these properties are the subject of this paper. 

The most important result is "the expansion theorem derived in the second 
section. This theorem states essentially the following: if the eigenstate 1>0 E Xn 
of the unperturbed Hamiltonian is nondegenerate, then this eigenstate, as well 
as corrections to all orders in }. ('Pi. '1'2, 'I'" etc.) in the expansion 'I' (..1.) = 
= <I>o + J. '1'1 + ,F '¥2 + .. ., are alternant-like. In· addition, provided that <I>o E Xn+ 
(which can be assumed without loss of generality) , all even corrections '¥2, '¥4, 

-etc. are also contained in the space X,i' , while all odd corrections 'P1i '¥3, •• • etc. 
are contained in the space X n-· From this theorem three simple corollaries 
are derived : the corresponding eigenvalue E (},) is an even function of 1 (corol­
lary 1), the expectation value of each alternant operator is an even function 
of }, (corollary 2), and finally, the expectation value of each antialternant 
operator is an odd function of X (corollary 3). In the third section these corol­
laries are used in order to derive some relations satisfied by matrix elements 
of one- and two-particle density matrices. For example, it is shown that the 
off-diagonal matrix element y;1 (}, ) of a one-particle density matrix "'( is an 
even function of A if vertices {i) and (j) are of the opposite parity, and an odd 
function of ..1. otherwise. Concerning diagonal matrix elements Yii (..1.) , it is shown 
that the expression [y; ; (Jc) - 1/2] is an odd function of ..1. etc. Finally, in the 
fourth section a simple example illustrating the above properties of the anti­
alternant perturbation is given. 
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2. THE EXPANSION THEOREM 

In the standard time-independent perturbation theory6,7 Hamiltonian H 
is usually written in the form (1) where Ho is an unperturbed Hamiltonian, V 
is a perturbation, and 2 is a real parameter. If <Po is a nondegenerated eigen­
state of the unperturbed Hamiltonian Ho 

(2) 

then there is a unique eigenstate '¥ = '¥ (},) of the Hamiltonian H which is 
a continuous funcUon of 2 and which for }, = 0 coincides with <I>o 

H 'If (J.) = E (.i.) 'If (.i.) 

'If (0) = !1>0 

the norm of this state being normalised with the condition 

( 'If I Wo ) = 1 

(3) 

(3a) 

If the perturbation 2 V ~s »Small«, one can expand E (2) and '¥ (2) in the power 
series of 2 

E (.i.) = Eo + J. e1 + ;.2 e2 + ;.a e3 + .. . 
'If (.i.) = !l>o + J. '¥1 + ;.2w2 + ;.aw3 + .. . 

and the condition (3a) is equivalent to 

( '¥1 I Wo ) = ( '¥2 I Wo ) = · · · = ( 'If k I Wo ) = · · · = 0 

Energies ck are given by 

(4a) 

(4b) 

(3b) 

(5) 

while vectors wk can be expanded in terms of the eigenstates <I?; of the un­
perturbed Hamiltonian H0 

where 

and6•7 

'Ilk=}; (!i>;l'I'k)i!l>;) 
i=l=O 

( W; I W1 ) = ( W; IV I !1>0 )/[E0 - E;] 

( 'P; I Wk > = [ ( w; I V - e1 I W k-1 > - e2 ( !l>; ! W k-2 > -
- ••• - ck ( W; I !1>0 )]/[E0 - E;], 

(6a) 

(6b) 

(6c) 

This is a standard procedure of the Rayleigh-Schrodinger perturbation theory. 
Assume now that the Hamiltonian is partitioned in the following way 

(la) 

where the unperturbed Hamiltonian H0 =Hai is an alternant operator, while 
the perturbation 2 V = }. Hnal is an antialternant operator. Since the eigenstate 
<Po of the unperturbed Hamiltonian is assumed nondegenerate, it follows from 
the splitting theorem that it is alternant-like.1>

2 Without loss of generality one 
can assume '1>0 € Xn+, and to stress this fact we write '1>0 = cJ'.>0+. We will now 
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show that under these assumptions 'I'k € X n+ implies 'I'k+I € X n- and 'l'k € X n­
implies 'l'k+ t € X n+· In other words, we will derive 

Theorem 1 (the Expansion Theorem) 

Let H = H a1 + Jc H nal be the symmetric Hamiltonian operator constructed 
out of 2n creation and 2n annihilation operators 'Y}t and 'Y);, respectively. Assume 
that the unperturbed Hamiltonian Har 1s an alternant operator, and that the 
perturbation Hnal is an antialternant operator. Further let <I>o be a nondegene­
rate n-par1Jicle eigenstate of the u nperturbed Hamiltonian Hai, and let '¥ (Jc) 
be the eigenstate of H continuous in }, and coinciding with <Po for Jc = 0. Then 
the state <I>o is alternant-like, i.e. either cllo = cllo-r € X n+ or cllo = <.Po- € X n-, and 
without loss of generality one can assume <I>o = cll0+. The expansion of the 
eigenstate '¥ (Jc) .in the power series of the parameter Jc is then 

(7) 

where 'Jfk+ € X n+ and 'I'k- € X n-· In other words, corrections to all orders in 
the expansion parameter }, ('I'i. '¥2, '¥3, etc.) are alternant-like. In addition, all 
even corrections are contained in the ·space X n+, while all odd corrections are 
contained in the complementary space Xn-· . 

Simultaneously with the above theorem we will also derive the following 

Corollary 1 

The eigenvalue E (Jc) of the Hamiltonian H corresponding to the eigenstate 
'¥ (Jc) is an even function of Jc 

E (J,.) = Eo + ;,2 ez + ).4 e4 + 1.s e6 + ... (8) 

i.e. all odd corrections ei, c3, etc. in the expansion (4a) vanish. 

In order to prove this theorem and the corollary we will first show that 
they are true up to the first order in the expansion parameter Jc, i. e we will 
first show that e1 = 0 and '¥1 = '¥1- € X n-· 

According to the relation (5) e1 = ( cll0+ I HnaI I cllo+ ) . Since the perturbation 
Hnal is an anbalternant operator, the splitting theorem implies c1 = 0. Further, 
according to this theorem all eigenstates <l>; of the unperturbed Hamiltonian 
Ha1 can be chosen to be alternant-like, i . e. either <l>; € X n+ or ell; € X n-· From 
the relations (6b) it now follows 

(9) 

whenever <l>; € X n+· The state '¥1 has no component in the space X n+, and 
hence '¥1 = '¥1- € X n-· This proves the expansion theorem and the corollary 1 
up to the first order i n the expansion parameter Jc. 

Assume now that this theorem and the corollary are true up to some 
k-th (k;;?: 1) order in the expansion parameter Jc, i.e. assume that for each 
i <. k 

a) c; = 0 and '¥; = '¥( € X n- if i is odd and 

b) '¥; = '¥;+ € X n+ if i is even 

We will show that under this assumption the above theorem and cornllary are 
true up to the (k + 1)-th order in the expansion parameter Jc as well. 
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Consider first the case of even k. According to the above assumption 
'¥ k = '¥ k+ E X ,,+. Since Hn~l is an antialternant nperator the relation (5) and 
the splitting theorem imply 

ek+I = <<Po+ J Hnal J 1Pk+) = 0 

where k + 1 is now odd. Further, one has 

( <Pi! 1I'k+ t ) = [( <I>i J Hnal J 1Pk+ ) -e2 < <I> iJ 1Pi -1 ) ­

- <:4 ( <I>i J 1Pk°-3 ) - · · · - ek ( <I>d 1I'n ]/ [Eo-EiJ 

(10) 

(11) 

If now <I>i E Xn+ one obtains ( <I>i J Wk+l ) = 0 since by the splitting theorem 
( <I>i I Hnal I Wk+) = 0, while all overlaps ( <l>; \ '¥ 1;_ 1) ... ( <l>; J '¥1- ) vanish. The 
state 'I'k+ l has no component in the space X ,,+, and hence 'I'k-r l = '¥ k+l E Xn-· 
The case nf odd k can be treated in a similar way. Thus, if the above assumption 
is true for some k ~ 1, then it is also true for k + 1. But we have shown that 
it is true for k = 1, and hence it is true for each k. This completes the proof. 

The above theorem and corollary are derived under the assumption that 
the unperturbed eigenstate <I>o is nondegenerate. For the ground state this is 
usually the case. However, it should be noted that this condition can be also 
somewhat relaxed. Namely, the unperturbed eigenstate <I>o EX,,+ can be allowed 
to be degenerate, provided all the eigenstates of Hat with the same eigenvalue 
as <I>o are also contained in the space X / .5 In other words, if the unperturbed 
eigenstate is contained in one complementary space, then no other eigenstate 
corresponding to the same eigenvalue is allowed to be contained in the other 
complementary space. 

The expansion theorem and corollary 1 have been derived here simultane­
ously. However, it is proper to consider relation (8) as a corollary since it is 
really a consequence of the expansion theorem. Namely, once this theorem is 
assumed, corollary 1 can be obtained by simply inserting the expansion (7) in 
the expression E (2) = ( '¥ (2) J H J W (},) )/ ( '¥(A} I W (J..) ) and using the splitting 
theorem. In a similar manner the following corollaries can be derived 

Corollary 2 
A A 

The expectation value ( Oa1 )i. = ( '¥ (2) I Oa1 J W (2) )/ ( '¥ (2) J W (}_) ) of an 

alternant operator Oat in the state '¥ (2) is an even function of 2, i. e. 
A 

( Oat )i. = Oo + 22 02 + J,4 04 + ... (12) 
A 

where Oo = ( <I>o I Oat J <I>o ) , while 021 04, etc. are coefficients which can be 
obtained by performing the actual perturbation expansion. 

·Corollary 3 
A A 

The expectation value ( Ona! )A of an antialternant operator Ona! in the 
state '¥ (},) is an odd function of the parameter 2, i.e. 

A 

( Ona! )i. = 2 01 + 23 0 3 + J.5 0 5 + .. . (13) 

where coefficients Oi, 03, 0 5, ••• can be obtained by performing the actual 
perturbation expansion. 
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The expansion theorem and the above corollaries describe the behaviour 
of an alternant system subjected to an antialternant perturbation, and they 
are quite general. Firstly, each symmetric Hamiltonian H can be written as 
a sum of an alternant and an antialternant operator1,2, i . e. in the form {la), 
and hence one can in most cases apply the above approach. It is only required 
that the eigenstate <Do of the unperturbed Hamiltonian be an n-particle non­
degenerate state, and the condition of nondegeneracy can be ialso somewhat 
relaxed5• Perturbation approach is then highly simplified by the spedal form 
of the expansion (7). Expectation values of alternant and antialternant ope­
rators are then even and ·odd functions of the expansion parameter 2, respect­
ively. Since there is a simple algorithm to partition an arbitrary symmetric 
operator into its alternant and antialternant part1,2, this permits quite general 
qualitative analysis. It also simplifies quantitative predictions. Thus, it suf­
fices to evaluate the expectation value of an alternant operator up to the 
zeroth order in the expansion parameter }, in order to obtain results exact up 
to the first order, since according to corollary 2 all odd orders v:anish. The 

A 

zeroth or~er is however 0 0 = ( <Do I 0 .1 I <Do ) , which is the expectation value 
A 

of the alternant operator o.1 in the unperturbed state ([>0• In general, the 
expectati:on value of an alternant operator can always be evaluated up to 
some even order in the expansi·on parameter 2, which automatically yields 
the result which is exactly one ·order higher. Similarly, expectation value .of 
an antialternant operator can be always evaluated up to some odd order in 
the expansion parameter }. to obtain the result which is exactly one order 
higher. Furthermore, the definition of alternant and antialternant operators 
depends on the partition B-7 {B0

, B*} of the set B into source and sink 
subsets.1,2 Hence the partition of the Hamiltonian H on the alternant and 
antialternant component also depends on the partitition B -7 {B0

, B*}, and the 
flexibility in the choice of source and sink vertices can be used in ·order to 
make the antialternant perturbation }, H nal as small as possible.5 The above 
perturbation expansion can hence be e~pected to be relatively rapidly con­
vergent. In addition, it is usually much easier to diagonalise the alternant 
Hamiltonian H0 1, since its eigenstates are alternant-like, and hence have a 
uniform charge denSlity distribution with vanishing bond orders between 
vertices of the same parity etc.1- 3_ This leads to the simplification and even 
cancellation of many matrix elements.5 The splitting ( ! la) is hence rather 
natural in the sence that the unperturbed Hamiltonian H ai is relatively easy to 
diagonalise, while the perturbation }, H nal can usually be chosen to be »Small«. 

3. ANTIALTERNAN T PERTURBATIONS A ND DENSITY MATRICES 

Corollaries 2 and 3 refer to arbitrary alternant and antialternant operators. 
A A 

In particular, they apply to reduced operators R;; and R ;;, kl· Using expressions 
(Al)-(A8) defining these operators, one can obtain the following relations 
satisfied by the matrix elements of one- and two-particle density matrices 
associated with the state 'If (2)8 : 

a) One-Particle Density Matrices 

Matrix elements y;; (2) 1 

A 

Yij ().) = < w (J. ) I A;/2 I w (}.) )/( w (J. ) 1 w (}.) > (14) 
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of a one-particle density matrix y satisfy 

Yii (A.) = 1/2 + ). ' Yii<li + ;.• . Ya'"'+ ;.• . Yii"r + · · · c15ar 

Y.'. (' ) := "··(OJ + '2 • y .. C2J + J. 4 • y .. C<J + 
. I/ /.. I IJ . A l} ~ 1/ • ' • 

i and j ·are of opposite parity (15b} 

and 
(') _ , ,,, + ,. cai + 

Yi;" - "-Y;i '- Y;i · · · 

i and j are · of the same parity, (i f j) (15c)i 

where 

" 
Y;/°' == ( <I>o ! Ai/2 \ <I>o ), 

whil¢ 
Y;/''• Y;/2'• ... etc. 

are coefficients which can be determined by performing the actual perturbation 
expansion. According to these relations, the expressi•on [yii (A.) - 1/2] is an odd 
function of the expansion parameter A.. Similarly, the ·Off-diagonal matrix 
element Yii (J,) is an ndd function of A. if vertices i and j are of the same parity 
and an even function of }, otherwise. 

Orbitals \ Xi ) = Ii ) = 17t I 0 ) (i = 1, .. . , 2n) which build up the CI space 
X n are arbitrary, except for the orthogonality condition.1- 3 In most cases one 
assumes that there are n spin-a orbitals Xi = w i a and n spin-/J orbitals Xi = 
= w; fJ, where w; are orthonormalised atomic orbitals, while a and f3 are spin-a 
and spin-/J states, respectively. Source ~nd sink orbitals can now be defined 
in such a way that if Xi is source, then z; is sink, and vice versa (see Appendix 
and Ref. 1). The parity of the vertex (i) and atomic orbital w; is chosen to 
coincide with the parity of the spin-a OTbital Xi· For the sake of reference we 
call this model with the above conventions model A.1 One can now define 
spin-a (ya), ·spin-/J (yfi) and cross (yafi) density matrices.1 These matrices satisfy 
relations (15) . However, in the case of the cross density matrix yaP one has to 
be careful: since Xi and Xi are of opposite parity, -diagonal elements Yiia/3 (J,) are 
even functions of the expansion parameter A. (compare with Eq. 15a). Similarly, 
matrix element Yiiap (A.) is an even function of the expansion parameter A. if 
vertices (i) and (j) are of the same parity (spin orbitals z; and Xi are then of 
the opposite parity), and odd functions of A. otherwise (compare with relations 
15b and 15c). One can now define spin-independent density matrix (! = ya + yP 
to obtain for the diagonal elements 

(16} 

where Q;a (A.) = y;;a (J..), Ql (J..) = y;;fi (J..) and Q; (J..) = {!ii(},) are spin-a, spin-/J and 
total charges, respectively.1 The quantity [Qi (2) -1], where Q; (J..) is the total 
charge at the atomic orbital W ;, is an odd function of the expansion parameter ),. 
Similarly, total bond orders P ;i (2) = {!ij (J..) = Yiia (J.) + y;/ (A.) between atomic 
orbitals w ; and wi are found to be even functions of }, if vertices (i) and (j) 
are of opposite parity, and odd functions of A. otherwise. 
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b) Two-Particle Density Matrices 

Matrix elements I';i, kl (2)1 

A 

rij,kt <ll = < w m I A;j,1kf4 I w m >I< w <ll I w <Jc) > 

.of a two-particle density matrix r satisfy 

I' ij,k! (J.) = RlJ\1 + J,2 R l7\1 + A4 R lJ\1 + .. · 
even number of source vertices, (i ~ j ~ k ~ l) 

r ( ') _ ' . R Cll + , 3 R C3l + , 5 R (5) + ij, kl A - A ij, kl A i j , k l A i j , kl ' ' ' 

odd number of source vertices, (i ~ j ~ k ~ l) 

r ' 1 ' - (0) '2 (2) 04 (4) 
·1 ·1 (t.) - - - Y·· (1.) - R ·1 ·i + " R ·1 ·1 + " R ·1 ·1 + · · · I ,] 

4 
IJ I , J I , J I , J 

i and j are of the same parity, (i ~ j ~ l) 

i and j are of the opposite parity, (l ~ i, j) 

(i ~ j) 

(17) 

(18a) 

(18b) 

(19a) 

(19b) 

(20) 

where Rf}! kl are coefficients which can be 1obtained by performing the actual 
perturbation expansion. Each of the above expressions is either even or odd 
function of the expansion parameter 2. The last relation is particularly inte­
resting, since 2 I';j, ii = ( 17t 17; 11t 1'/i ) is the pair correlation function9110• This 
function gives the probability of finding simultaneously two particles, one 
particle at the vertex (i) , and another at the vertex (j) . This function measures 
the correlation between the two particles, and in the case of the one-deter­
minental function (no correlation) it factorises into 2 I'ii, ii = Yii Yii - Yii Yii ·9•

10 

According to the relation (20), the pair correlation function alone is neither 
even nor odd function of the expansion parameter J,. However, a particular 
linear combination of this function and particle densities at vertices (i) and (j) 
is an even function of J... A similar interpretation can be given to relations (19), 
while according to relations (18) matrix elements I' ;;, kl (2) (i ~ j ~ k ~ l) are 
already either even or odd functions of the expansion parameter J.. , depending 
on the number of source vertices. 

If orbitals [Xi ) = 17t [ 0 ) are chosen to be spin-a and spin-/J orbitals, in 
accord with model A above1, then matrix elements of the spin-a (I'""), spin-(J 
(I'~~) and cross (I'"~ and I'~") density matrices1 satisfy relations (18)-(20). Hence 
matrix elements P;i, k/1 

P ;j,kz = I'fi~kz + r f/,kz + r ~~kz + r ff,kz (21) 

.of the two-particle spin-independent density matrix P satisfy 
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P ( ' )-p(O) + ' 2p(2) 14p(4) 
ij, k/ A - ij,kl A i j, k l + A ij,kl + • • • 

even number of source vertices, (i ¢ j ¢ k ¢ l) (22a) 

p ij, kl (l ) = ). PU~kl + l 3 p 11\i + }.S p ~7\i + .. . 

odd number of source vertices, (i ¢ j ¢ k ¢ l) (22b) 

P ( ' ) 1 ' ) (0) , . (2) '4 (4) 
il, jl A - - 2- (!;j(A = Pil, jl + A-Pil,jl + A Pil,jl + ... 

i and j are of the same paritiy, (i ¢ j ¢ l) (23a) 

P ( ' ) 1 ( ' ' (1) 13 (3) 'S (5) ii.ii A - - 2-(!ij t.. ) =t.. P il,jl + " p il,jl+" p il,jl + .. . 

i and j are of the opposite parity, (l ¢ i, j) (23b) 

P ;
1
· ;

1
· (l ) - [Q,. (2) + Q. (2)] /2 = P iCq> . . + 22 p ~?> .. + 24 p ~~) .. + . . . (24) 

' I J, ' 1 •J,ZJ i], ' 1 

According to the above expressions, particular matrix elements of one- and 
two-particle density matrix (e.g. relations (15b), (15c) , (18) etc.), as · well as 
some linear combinations of these matrix elements (e . g. relations (15a) , (19) , 
(20) etc.) are either odd or even functions of the expansion parameter A. 
Further, in the case A. = 0, the above expressions reduce to the relations 
obtained in the previous paper for the case of alternant system.1 These relations 
are hence generalisations to an arbitrary nonalternant system. They are 
generally not true if the unperturbed Hamiltonian is not alternant and/or if 
the perturbation is not antialternant. The above regularities are thus due to 
the particular splitting (la) of the Hamiltonian H into the alternant and anti­
alternant part. 

Note finally that in the case when 'I' is a -0ne-determinental function, the 
two-particle density matrix r sati:sfies1,s-1o 

(25a) 

and hence spin-independent density matrix P is found to satisfie 

1 
P ii. kl = - - [(!; k f2;1 - (!a (!ik] 

2 
(25b) 

It can now easily be shown that relations (18)- (24) involving matrix elements 
of the two-particle density matrix follow from r elations (15) involving mat r ix 
elements of the one-particle density matrix , provided 'I' is a one-determinental 
function. For example, relation (25a) implies I';;, ii - (yu + Yii)/4 = (yu Yii ­
- Yii Yii)/2 - (y;; + Yii)/4 = [(y;; -1/2) (Yii- 1/2) -y;; y;;-1/4)/2. According to 
the relation (15a) expressions (yu - 1/2) and (Yii - 1/2) are odd functions A., and 
hence (y;; - 1/2) (y;; - 1/2) is an even function of A. . Similarly, r elations (15b) 
and (15c) imply that y;; y;; is an even function of A. Hence the expression 
[I';;, ii - (y;; + y;;)/4] is an even function of A. as well, in accord with the r elat­
ion (20). Analogously, all other expressions involving matrix elements of the 
two-particle density matrix can be derived from the expressions (15) i nvolving 
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matrix elements of the one-particle density matrix, provided relations (25) 
are satisfied, i. e. in the case of one-determinental functions. This applies to 
various self-consistent field (SCF) approaches. However, relations (18)-(24) 
are much more general, and they remain valid irrespective of relations (25). 

4. AN EXAMPLE OF THE ANTIALTERNANT PERTURBATION OF AN ALTERNANT SYSTEM 

In order to understand better the above relations, let us give a simple 
example. Consider a heterocompound such as pyridine or pyrylium (Figure la) 
where the heteroatom X donates one electron to the n-electron system. In the 
Hiickel apprnach the Hamiltonian H of this system is (expressed in Hiickel f3 
units) 

A 

H = Ha1+). (qi-1) (26) 

A A 

where Hai is the Hiickel Hamiltonian of the benzene molecule, while q1 = q1a + 
A 

+ q/1 = a1+ a1 + b1+ b1 is the charge density operator associated with the vertex 
(1) (at and bt being spin-a and spin-/3 creation operators, respectively1). The 
expansion parameter 2 depends on the heteroatom X and 1t expresses the 
strength of the . perturbation. In this simple picture the sole effect of the 
heteroatom X is to change the coulomb integral ai, while the resonance inte­
grals /312 and /316 are assumed to be unaffected. The unperturbed Hamiltonian 

A A A 

Hai is an alternant operator, while the perturbation q1 - 1 = (Rua + R11fJ)/2 is 
antialternant. Hence the Hamiltonian (26) represents an alternant system sub­
jected to an antialternant perturbation, and its eigenstates should satisfy all 
the properties discussed in sections 2 and 3. These properties are illustrated 
in Figures 2 to 5. Thus bond orders P 12 (2), P 23 (),) and P 34 (2) associated with the 
ground state '¥ (2) are even functions of the expansion parameter 2 (Figure 2) . 

4 

:o: 
x 
1 
a) 

4 305 
2 ,6 ,, .... 

1 
b) 

Figure 1. a) Example of an alternant system perturbed by an antialternant perturb­
ation. The calculation is done within the Buckel approach, and the unperturbed 
system represents the benzene molecule. The perturbation is due to the presence of 

A 

the heteroatom X, and it is represented by the operator ). (q1 -1) which is anti­
alternant. Symmetry properties of different observables associated with this system 
are shown in Figures 2 to 5. b) Example of an alternant system perturbed by the 
perturbation which is not antialternant. In this particular case the perturbation is 

A 

represented by the bond order operator p 16 which is an alternant operator. Figures 
6 to 8 illustrate the lack of symmetry with respect to the expansion parameter J.. 
In an arbitrary case, the perturbation is neither alternant nor antialternant, i. e. 

it is nonalternant. 
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This is in accord with our finding that total bond orders between vertices of 
the opposite parity are even functions of 2. In a similar way bond orders P 14 (2) 
and P 26 (2) are found to be even functions of 2. The total n-electron energy 
E (2) is also an even funct1on of 2 (Figure 3), in accord with the corollary 1. On 
the other hand, bond orders P 13 (2), P24 (2), P 26 (2) and P 35 (2) connecting vertices 
of the same parity are odd functions of 2, (Figure 4), as implied by relations 

Figure 2. In the case of the antialternant perturbation of an alternant system bond 
orders between vertices of the opposite parity are even functions of the expansion 

parameter .t This Figure corresponds to the heterocompound in Figure la. 

E(~) 

-2 -1 2 >.. 

Figure 3. In the case of the antialternant perturbation of an alternant system the 
total energy is an even function of the expansion parameter 2. This Figure cor-

responds to the heterocompound in Figure la. · 
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02 

---2 

-02 

Figure 4. In the case of the antialternant perturbation of an alternant system bond 
orders between vertices of the same parity are odd functions of the expansion 

parameter 2. This Figure corresponds to the heterocompound in Figure la. 

-0.5 

Figure 5. In the case of the antialternant perturbation of an alternant system netto 
charges Ii Q, = Q, - 1 are odd functions of the expansion parameter 2. This Figure 

corresponds to the heterocompound in Figure la. 

(15c). Similarly, perturbed total charges ti Q1 = Q1 - 1, ti Q2, ti Q3 and ti Q 4 

are also odd functions of A. (Figure 5), as predicted by the relations (16). These 
are properties of spin-independent one-particle density matrix. It is now easy 
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to show that spin-a and spin-(3 density matrices satisfy relations (15). Con­
cerning the properties of the matrix elements of the two-particle density 
matrix, they are here automatically satisfied since the Hiickel ground state \}1 
is a one-determinental function, and hence relations (25) hold. 

One might argue that the above regularities are an artifact of the sym­
metry properties of the benzene molecule. In order to show that this is not 
the case, consider again the benzene molecule as the unperturbed system, but 
take now the change in the resonance integral (316 between vertices (1) and (6) 
as a perturbaUon (Figure lb). In the Hiickel approach the corresponding 
Hamiltonian is 

(27) 
A A A 

where p 16 = p 16a + p1i 3 is the bond-order operator connecting vertices (1) and 
(6). This is an alternant operator, and thus the perturbation is alternant. 

Note that while the case l = 0 corresponds to the benzene molecule, the 
case l = -1 oorresponds to the hexatriene molecule. Bond orders P 12 (l), P 23 (Ii) 
and P 34 (J..) are shown in Figure 6 and it is obvious that they are neither odd 
nor even functions of the expansion parameter J... Similarly, bond orders P 14 (2) 
and P 25 (J..) have no definite symmetry properties with Tespect to 2 (Figure 7). 
Finally, the total :n-electron energy E (?,) is also neither an even nor an odd 
function of 2 (Figure 8). In this simple example bond orders P 13 (A), P 15 (A) and 
P 24 (?,) connecting vertices of the same parity are "identically zero, i. e. they 
are even functions of Jc. Similarly, total charges Q1 (?,), Q2 (2), ... , Q6 (?,) are 

10 

Figure 6. If the perturbation is not antialternant bond orders between vertices of 
the opposite parity are neither even nor odd functions of the expansion parameter J.. 

This Figure corresponds to the system represented in Figure lb. 
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Figure 7. The same as Figure 6. 

E (.~) ,, 

10 

Figure 8. If the perturbation is not antialternant the total energy is neither an even 
nbr an odd function of the expansion parameter /.. This Figure corresponds to the 

system represented in Figure lb. 
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identically equal to one, i. e. they are also even functions of 2. However, this 
is a trivial consequence of the fact that the Hamiltonian (27) is an alternant 

A 

operator, since the perturbation p16 is alternant. In a general case when a 
perturbation is nonalternant, i. e. when it is a nontrivial linear combination 
of an alternant and an antialternant operator, these bond orders and charges 
have no definite symmetry properties with respect to the expansion para­
meter 2. 

The above example is only an illustration of the symmetry properties of 
matrix elements of one- and two-particle density matrices. Though an example 
within the Hlickel approach is considered, these symmetry properties are 
valid much more generally, as implied by the expansion theorem. 

5. CONCLUSION 

The results obtained in this paper are generalisations of the properties 
of alternant systems as discussed in the previous paper1, to arbitrary non­
alternant systems. The most important result is the expansion theorem which 
refers to the special kind of the perturbation expansion where the unperturbed 
Hamiltonian Ho is chosen to be an alternant operator, while the pertµrbation 
}, V is chosen to be an antialternant operator. The eigenstate W (2) of the full 
Hamiltonian H = H0 + 2 V, the corresponding energy E (2), as well as expect­
ation values of alternant and antialternant operators have special properties: 
provided the unperturbed eigenstate <Do is nondegenerate, and if <])0 = <])0+ E X,,+ 
(which can be assumed without loss of generality), the expansion of the eigen­
state W (2) in terms of the expansion parameter }, is W (2) = <])0+ + 2 W1- + 
+ },2 W2+ + 23 W3- + .... As a consequence, the corresponding energy E (2) is 
an even function of 2, the expectation value of each alternant opemtor is an 
even function of 2, and the expectation value ·of each antialternaint operator 
is an odd function of 2. These are the most important results discussed in 
this paper. 

The expansion of the eigenstate W (2) is really remarkable: each term in 
this expansion is an alternant-like state possessing all the nice properties 
discussed in the previous paper.1 These properties are essentially the charac­
teristic properties of tlie eigenstates associated with neutral alternant hydro­
carbons, like uniform charge density distribution, vanishing bond orders 
between vertices of the same parity, etc.1. An »arbitrary« state W (2) is thus 
expanded in terms of functions with very particular and special properties. 
In addition, successive corrections W b W k+ i> • • . alternate in complementary 
spaces X n+ and Xn-· Namely, if Wk E X 11+ then W k+! E X11-, and vice versa. 
Beside undeniable conceptual appeal of such a picture, the actual numerical 
advantage is also apparent: since W1- E Xn- the summation involved in the 
evalution of the first order correction need not be performed over vectors 
contained in the space Xn+, and hence the number of terms is reduced by the 
factor two. Similarly, in the evaluation of the second order correction W/, 
there is a double summation, and hence the number of t erms is reduced 
roughly by the factor four, in the evalution of w3- by the factor of eight, etc. 
Of course, one usually does not consider the complete CI space X,,, but rather 
some subspace of this space containing energetically low lying and most 
important structures. However, whatever the approximation used, the fact 
that W1- E X n-, W2+ E X n+, W 3- E X ,,- etc. further reduces the numerical evalution 
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of these corrections by the factor two, four, eight etc., respectively. In addition, 
since corrections to all orders are alternant-like states, many matrix elements 
either vanish or considerebly simplify5, and this still further r educes the 
number of terms which should be considered. Finally, note that the decomposi­
tion of the Hamiltonian H in the alterna·nt and antialternant component, de­
pends ·on the partition of the set B on source (B0

) and sink (B*) subsets. The 
flexibility in the partition B--? { B 0

, B*} can be efficiently used ·in order to 
make the antialternant perturbation }, V as >>'small« as possible, especially in 
the ca'se of the ground state.5 In conclusion, the perturbation expansion sug­
gested here is likely to converge rapidly and to be mathematically very 
feasible involving a small number of t erms. 

There is no need to discuss in detail the three corollaries which follow 
from the expansion theorem, and which refer to the expectati<on values of 
different operators in the state W (?,). In addition to the obvious conceptual 
insight into the structure and behaviour of quantum systems, these corollaries 
take over from the expansion theorem all the numerical feasibility in the 
evaluation of different expectation values. It should be noted that there is 
an efficient and simple algorithm to decompose an arbitrary symmetric ope­
rator into its alterna:nt and antialternant component.1 Hence the expectation 
value of an arbitrary symmetric operator can be analysed in terms of corol­
laries 2 and 3 referring to alternant and antialternant operators, respectively. 
In particular, one can easily identify even and odd components of the expansion 
of the expectation value of an arbitrary symmetric operator in terms of the 
parameter ?.. 

At the end, the limitations of the expansion theorem should be noted. 
There are essentially three restrictions to the validity of this theorem as 
formulated here: the Hamiltonian H is assumed to be symmetric, the unper­
turbed eigenstate <I>o is assumed nondegenerate, and finally , the CI space X ,. 
generated by n electrons moving over exactly 2n orbitals is considered. The 
first restriction (Hamiltonian H is symmetric) is not so serious, and t~1e ex­
pansion theorem can be generalised to arbitrary Hamiltonians with essentially 
no change.5 The second restriction (unperturbed eigenstate ({>0+ E X,,+ is non­
degenerate) , can be generalised with minor changes to the case when ({>0+ E X "+ 
is degenerate, but only with eigenstates contained in the same space X,,+. In 
other words, there should be no unperturbed eigenstate <r>- E X ,,- of the operator 
H0 with the same energy ·as ({>0+ E X ,,+.5 If however <r>0+ E X ,,+ is degenerate with 
some eigenstate <I>- E X ,,-, the generalisation of the expansion theorem is still 
possible, but it is now quite radical, and a substantial modification of this 
theorem is required.5 Finally, the last restriction that only the CI space X,, 
is considered can be also relaxed. The expansion theorem can be generalised 
to · an arbitrary CI space X ,,N generated by n electrons moving over N orbitals 
(n and N arbitrary), but again with substantial modifications.5 

In conclusion, the expansion theorem is valid quite generally, either in 
the present form, or with some modifications.5 

APPENDIX 

The notion of alternant and antialternant operators, as well as the splitting 
theorem, can be consistently derived within the molecular orbital resonance theory 
(MORT) approach.1- 5 Here are presented only these results which are relevant for 
the understanding of this paper. For more details see the preceding paper, as well 
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as Refs. 2 and 3. It should be noted that in the connection with the remarkable pro- · 
perties of neutral AH compounds, various authors have considered different alternant 
systems.11 The critical discussion of these approaches can be found elsewhere.3 

Al. Alternant and Antialternant Operators 

Building blocks for the construction of alternant and antialternant operators 
A A 

are reduced operators R;i and R ii, d '2 

A A 

R ;i = A ;i - oii (Al)' 

A A 

R ii,kl = A ii,kl (i ¢ j ¢ k ¢ l) (A2) 

A A A 

A ;k, ik = 2 A ;k, ik + A ;; (i ¢ j ¢ k) (A3) 

A A A A 

R;;, ii = 2 A ij, ii + A u + A;; -1 (i ¢ j) (A4), 

where 
A 

A ;i = r;t rJ ; + r;/ rJ ; 
A 

Aij, kl = r; t r;/ r; k rJ1 + r; t r; t rJ ; rJ ; (A5} 

and r; t and r; ; are fermion creation and annihilation operators, respectively. A unit 
operator is a reduced operator as well. Reduced operators are symmetric, hermitian. 
and hence real operators.1•2 By definition, they satisfy symmetry relations 

A A A 
(A6)· 

R ;;, kl = - R;;, kl = R kz, ii 

A A 

in order to mimic analogous symmetry relations satisfied by operators A ;; and A ;i, kl· 

The set of all reduced operators is complete in the space of symmetric operators,. 
i . e. each symmetric operator can be represented as a linear combination of reduced 
operators.1•2 

Let there be 2n (an even number) of creation (annihilation) operators. Partition 
the set B = {i} of 2n vertices (i) into subsets B 0 and B * containing n vertices each.1- 3 

The crea-tion operator r; t, the annihilation operator r; ;. the one-particle state (orbital) 
I i ) = r; t I O) and the vertex (i) are »source« if (i ) € {B0

} and »sink« if (i) € {B *}.1-a 

Relative to this partition, each reduced operator is either »alternant« or »antialter­
nant<<: 

a) Reduced aiternant operators arei.2 : 

I 

A 

R;i 
A 

R;;,kl 

a unit operator 

i and j are of the opposite parity 

even number of source vertices 

(A7} 
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-0) Reduced antialternant operators are 1 •2 : 

i and j are of the same parity 
(AB) 

odd number of source vertices 

Fach linear combination of reduced alternant operators is an alternant operator, 
and each linear combination of reduced antialternant operators is an antialternant 
·Operator. There is a simple and efficient algorithm to represent an arbitrary sym­
metric operator as a sum of an alternant and an antialternant operator.1•2 

A2. The Splitting Theorem1- 3 

Let X n be the configuration interaction (CI) space spanned by all n-particle 
.states [ /',.v) = 1J;t 1J;t., · 1/ ;n+ [ 0 ) where I 0 ) is a vacuum state 

i = 1, ... , 2n (A9) 

'The partition B-+ {B0 , B*} uniquely determines the partition of the space X n into 
two complementary subspaces x n+ and x ,,-.1•3 These subspaces are of the same 
·dimension, and each state W E Xn can be uniquely written in the ·form W = rp+ + 
+ w- where w+ e xn+ and w- e x n-· In addition, alternant and antialternant ope­
rators satisfyi. 2 

The splitting theorem 

A A 

a) The expectation value < w+ I o al I w-> of each alternant operators o al between 
states w+ € x n+ and w- € x n- vanishes. 

A A 

b) The expectation value ( 1¥1 [ Ona! [ 1¥2 ) of each antialternant operator Ona! between 
:states 1¥1 and 1¥2 vanishes whenever either WI> 1¥2 E X n+ or 1¥1, 1¥2 E x n-· 
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SAZETAK 

Antialternantne perturbacije alternantnih sistema 

Tomislav P. Zivkovic 

Rayleigh-Schrodingerov raeun smetnje primijenjen je na sistem gdje je neper­
turbirani hamiltonian Ho alternantni operator, dok je smetanja ). V antialternantni 
·operator. Razmatran je konfiguracijsko-interakcijski prostor X.. sto ga tvori n 
€lektrona nad 2n ortonormiranih orbitala. Taj se prostor cijepa na komplementarne 
potprostore x .+ i x .- koji sadde »alternantna« stanja. Ta stanja imaju karakteri­
.sticna svojstva vlastitih stanja neutralnih alternantnih ugljikovodika. Ako vlastito 
.stanje <1>0 E X,, neperturbiranog hamiltonijana Ho nije degenerirano, tada je ono alter­
nantno i moze se bez gubitka opcenitosti pretpostaviti <I>0 = <I>o+ Ex.+. U tom je slu­
caju razvoj vlastitog stanja 'If (J.) totalnog hamiltonijana H = Ho + J.V u red poten­
·cija po parametru ). dan relacijom 'If(?.) = 1110+ +). '¥1- + ).2 Wit.+. 23 w3- + ... , gdje su 
sve korekcije '¥1-, '¥2+, ... alternantna stanja. Nadalje, sve parne korekcije ·sadrfane 
su u prostoru X.+, a sve neparne korekcije sadrafane su u prostoru x.-. Odgovarajuca 
vlastita vrijednost E (J.) parna je funkcija od ?.. Takoder, srednja vrijednost svakog 
.alternantnog operatora parna je funkcija od J.. , a srednja vrijednost svakoga anti­
alternantnog operatora neparna je funkcija od ) .. Ti su rezultati primijenjeni na 
matricne elemente jednocesticnih i dvocesticnih matrica gustoce, i dan je jedno­
stavan primjer koji ilustrira ta svojstva. 




