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A simple method is presented for calculating the hybridization 
of any orbital. The dependence of the hybridization upon radial 
distance from er nucleus is discussed, and a procedure for deter­
mining the avemge hybridization is suggested with special con-· 
sideration for doubly occupied orbitals. 

INTRODUCTION 

Since its introduction by Pauling1 and Slater2, the concept of hybridization 
has proven to be useful in all areas of chemistry. Pauling's original paper is 
a thorough exposition on covalent bonds from the valence bond (VB) point 
of view. He begins with the proposition that a chemical bond is formed by the 
overlapping of two orbitals on different atoms each of which contains one 
electron whose spin is paired with the other. He then argues that the strongest 
bonds can be formed from orbitals with large overlaps and shows very clearly 
that the superposition of orbitals with different angular behavior can generate 
hybrids that are localized in specific directions and therefore should be par­
ticularly effective at bonding. The angular arrangements of hybrids that can 
form in different circumstances have formed very useful guidelines for the 
discussion of the geometry of molecules3 ever since Pauling's work. 

The development of computers has fostered a different viewpoint in the 
theory of molecular structure, however. Most modern ab initio methods of 
describing the electron distribution in molecules do not constrain the orbitals 
to be of a specific atomic form, but solve for those self-consistent field orbitals 
which minimize the energy of a certain approximate form for a total wave­
function. Thus, the »best« (in the sense of lowest energy) orbitals are obtained 
as linear combinations of basis functions situated on many atoms or even as 
numerical tabulations. Because the concept of hybridization has been so useful, 
it is desirable to determine the hybridizations of the orbitals that result from 
such calculations. Valence bond orbitals are easiest to analyze because hybridi­
zation was developed with them in mind. The optimum VB orbitals4•5 turn 
out to be primarily localized on one atom and are spin-paired into bonds, lone 
pairs and inner shells. A typical VB orbital can be expressed in terms of 
functions on one atom, and its angular composition can be evaluated readily. 

The case for Hartree-Fock (or any other doubly occupied) orbitals is not 
so simple. First of all, the (canonical) orbitals that satisfy the Fock equation6 
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are delocalized throughout the molecule, but this can be changed by a unitary 
transformation to localized orbitals. Various criteria have been proposed to 
define the most localized orbitals. The resulting sets of localized orbitals are 
all similar to one another, so the choice of methods is arbitrary, but we have 
used the Edmiston-Ruedenberg7 method because it is widely accepted and easy 
to apply. The resulting localized Hartree-Fock (LHF) orbitals do correspond 
nicely to electron pair bonds, lone pairs and inner shells. 

However, the LHF bond orbitals are usually concentrated around two 
nuclei and therefore present a problem in the determination of their hybrid­
ization about one of those centers. The usual solution to this difficulty has 
been to truncate the orbital, discarding all basis functions not centered on 
the nucleus of interest8• There are several reasons that truncation should be 
avoided. First of all it is arbitrary. Consideration of a numerical bond orbital 
illustrates that there is not an obvious unique way to divide an orbital between 
two atoms. If an orbital e~pressed in terms ·of a basis set is truncated, one 
should worry about whether the basis is balanced between the two centers. 
That 1is, do the basis functions on each center have the same flexibility of 
describing a wavefunction near it. Regions of rapid orbital fluctuation caused 
by the core electrons close to one nucleus ought not be considered in the 
hybridization of another center as we shall see. Yet valence and diffuse basis 
functions on a center can contribute significantly to the orbital amplitude and 
hence to the hybridization in the bonding region and in regions near a second 
atom. Such portions of an orbital should not be discarded. 

In the next section, a method for determining the hybridization of any 
orbital without truncation is presented and discussed. 

COMPUTATIONAL METHOD 

In a general orbital such as an optimum VB or LHF orbital, it 1s quite 
common that different angular momentum components predominate at dif­
ferent distances from a nucleus. Thus the relative proportions of s, p, d etc. 
character of the orbital, that is its hybridization, are functions of the distance 
from the origin. It is of interest to investigate this radial hybridization behavior 
and to consider what sort of an average might show sufficient significance to 
be called »the hybridization« in a particular orbital. First a method is described 
by which any orbital can be decomposed into angular momentum components 
at a sequence of radii from the nucleus of interest. Then plots of hybridization 
vs. radius are presented, and the important considerations in determining an 
average hybridization are discussed. 

We desire the fractional angular composition of an orbital a given distance 
from a nucleus. In other words, we want to determine its s, p, and d etc. 
character on a spherical surface of a certain radius. For an orbital expressed 
in terms of a basis set, it is possible to expand every basis function onto the 
center of i'nterest9•10 But we prefer a more simple minded and more general 
approach which will work even for a numerical orbital. One can successively 
project the orbital onto normalized s, Px, py, etc. angular functions on the 
surface of a sphere, giving the amplitude coefficients a1m (r) 

aim (r) = S 'lfJ (r, f>, <p) Y 1m ({}, <p) r 2 sin ({}) d {} d <p 
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The relative contributions of angular momentum components are given by 
the squares of the a1m's. The p-hybridization, for example, would then be 

h1 (r) = k [a1,,, (r)]2 

m=x,y,z [a00 (r)]2 

The average hybridization is then given by 

Tmax 

h1 = J h1 (r) w (r) r 2 dr 
Tm in 

where w (r) is a weighting function to be chosen. This procedure can be con­
veniently carried out numerically. The minimal number of integration points 
in {}, rp space that can determine all angular momentum components through 
l = 2 with acceptable accuracy seems to be a set of 26 points given by Abra­
mowitz and Stegun11• 

The C-C bond of ethane will be used as a typical example. Pitzer's12 

localization of the original Pitzer-Lipscomb staggered ethane calculation13 was 
reproduced, and the p-hybridization (sp") of the carbon-ca·rbon LHF orbital 
versus distance from one of the carbon nuclei is shown in Figure 1. Remember 
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Figure 1. p-hybridization and radial density (dC!'shed line) of ethane's C-C orbital; 
its average hybridization is sp2· 45d0 -23• The bondlength is 2.9 a. u. 

that the abscissa of the figure is the radial distance from the carbon at the 
origin; hence, the plot is not symmetric about a radius equal to half the bond 
distance. The most important feature of this plot is that the hybridization 
varies slowly in the central portion of the bond. The radial electron density 
in the CC orbital is also plotted in Figure 1 in order to illustrate that the 
hybridization is relatively constant in the region where the CC orbital density 
is largest. If this were not true, an average hybridizati:on would not seem 
meaningful. The large fluctuation in hybridization near r = 0.25 a. u . is near 
a node in the s portion of the orbital which is caused by the requirement that 
the C-C bond orbital be orthogonal to the doubly occupied inner shell orbital. 
A similar fluctuation is apparent near the carbon-carbon distance and is caused 
by the same effect. It is generally believed that such regions are not intimately 
associated with the C-C bond, so they should not be included in determining 
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the average hybridization. At large distances from the nucleus, not only do 
orbitals on the atom bonded cause rapid changes in hybridization, but con­
tributions from other atoms add their effect. These contributions are largest 
in the high angular momentum terms because an extensive sum over angular 
momentum functions is required to expand even an s orbital onto a different 
center. Consequently, the region over which the hybridization is averaged 
should begin at some radius greater than zero and should end before the core 
region of the other nucleus is reached. 

Because the importance and effectiveness of hybridization is greatest in 
regions of large electron density, it seems reasonable to use the electron den­
sity as a radial weighting factor in determining the averaged hybridizations. 
Such a procedure was also followed in reference 10. The electron density in 
the C-C bond LHF orbital is very small within 0.5 a. u . of the carbon nucleus, 
so using the orbital's electron density in a thin spherical shell as a weight 
function will effectively eliminate the contribution of the region near the 
node at r = 0.25 a. u. to an average hybridization. 

The radial density does not die off at a radius near the bondlength; instead 
it fluctuates rapidly near the bonded nucleus and then tends smoothly to zero. 
Using the density as a weight function will not eliminate the hybridization 
fluctuations at large radii. Instead, the averaging process must be truncated 
at some point. It turns out that the resultant average hybridization is not 
very sensitive to the choice of a cutoff radius as long as it is short of the core 
region of the bonded nucleus. One might be tempted to average only to the 
bond midpoint, arguing with an attitude similar to that of truncation, that the 
podion of the orbital in the range 0 < r < 0.5 R »belongs« to the atom at the 
origin. Inspection of the plots, however, shows smooth hybridization versus r 
behavior, and there seems to be no reason to stop the average at 0.5 R. Certainly 
the atom's orbitals extend past the bond midpoint, and it seems reasonable to 
average over as much of the orbital as is bonding in nature rather than core­
-like or rapidly fluctuating because of the orthogonality constraints. Based on 
ones indoctrination that ethane's bond orbitals should be sp3 hybrids, one 
might be inclined to weight the outer region of the orbital more heavily, 
because all of the schemes suggested here yield less than 750/o p-character. 
But that argument can not be taken seriously. 

An array of results is listed in Table I. For comparison, the hybridization 
of the truncated C-C bond orbital in ethane is spL92 • Reducing the maximum 

TABLE I 

Average Hybridization of the C-C OrbitaL in Ethane 

Hybridization 

rmin 7 max p d 
a.u. a.u. 

o. 10. 2.44 0.54 
0. 5. 2.46 0.53 
0. 2.75 2.51 0.26 
0. 2.5 2.45 0.23 
0. 2.0 2.27 0.11 
0.5 2.75 2.50 0.26 
0.5 2.5 2.44 0.24 
0.5 2.0 2.25 0.11 
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cutoff to exclude the region near the second nucleus greatly reduces the 
d-hybridization for reasons already mentioned. The p-hybridization is fairly 
insensitive to the region averaged over. Also notice that beginning the average 
at 0.5 a. u . instead of zero ha:s a negligible effect. So a reasonable rule of thumb 
seems to be to use the orbital electron density as a weight function a:nd to 
average from the origin to about 0.5 a. u. short of the bonded atom. That is 
out to a radius of about 800/o of the bondlength. 

EXAMPLES 

The C-C bond of ethane shows somewhat more variation of hybridization 
with distance than do the ethylene or acetylene C-C bonds. C-H bonds in 
hydrocarbons have about the same amount of variation of hybridization with 
distance as the ethane C-C bond. Figures 2-4 display the hybridization in 
the C-H bonds of ethane, ethylene, and acetylene. (The computations of 
reference 8 were reproduced). The p-hybridization in each of the bonds shows 
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Figure 2. p-hybridization and radial density (dashed line) of ethane's C-H orbital; 
its average hybridization is sp2-40d 0•08• The bondlength is 2.1 a. u. 
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Figure 3. p-hybridization and radial density (dashed line) of ethylene's C-H orbitaol; 
its average hybridization is sp1 -90d0. 07• The bondlength is 2.0 a. u . 
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Figure 4. p-hybridization and radial density (dashed line) of acetylene's C-H orbital; 
its average hybridization is sp1-25d0.08• The bondlength is 2.0 a. u. 

a steady increase from the carbon core region out to the C~H bond length 
(2.1 a. u.), and it does not exhibit rapid fluctuations near the hydrogen nuclei. 
Hydrogen is unlike any other atom in that it has no doubly occupied core, 
hence no orthogonality constraints, to force wild behavior of valence orbitals 
in its vicinity. Thus, there seems to be no reason not to average the hybridizat­
ion all the way out to the proton in the C-H bond orbitals, so that is what 
has been done. While these are not sp3, sp2, and sp, there is a very distinct 
difference in their p-character. 

The bridge bond in the diborane molecule is an example of an orbital that 
might be expected to have an unusual hybridization behavior (about the boron 
atom). This orbital is an especially bad case for truncation because it has so 
much contribution from the bridge hydrogen atom. Indeed, in the minimum 
basis calculation14, which we have reproduced, the bridge hydrogen coefficient 
is more than twice as large as any other. Truncation to one boron atom actually 
eliminates 90°/o of the electron density in the B-H-B orbi.tal. Figures 5 and 6 
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Figure 5. p- and d-hybridization and radial density (dashed line) of diborane's bridge 
bond orbital; its average hybridization is sp2-86d0.85, but see the text. The B-B di­

stance is 3.4 a. u. 
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Figure 6. p-hybridization and radial density (dashed line) of ethylene's C-C orbital ; 
its average hybridization is sp2.91 d0.11 • The bondlength is 2.6 a. u. 

show plots of the hybridization of one of diborane's bridge bonds and one of 
ethylene's double bonds. (Localization produces two equivalent banana C-C 
bonds in C2H4.) They are quite similar with each showing only a modest change 
in p-hybridization outside of core regions. The contribution of the bridge 
hydrogen is far more evident in the density plot than in the hybridization 
itself. The p-hybridization in the bridge bond is quite well behaved, and from 
that point of view, it seems quite similar to one of the ethylene double bonds. 
See, however, the discussion in reference 14. 

The bridge bond does have a significant amount of d-hybridization. Thi::. 
arises from the region near the bridge proton and from the second boron's core 
region. As a result, the average d-character of the B-H-B orbital, shown il, 
Table II, is sensitive to the averaging cutoff radius. If a value for r max of 3.0 a. l L 

TABLE II 

Average Hybridizati on of the Bridge Bond i n Diborane 

Hybridization 

Tmin rmax 
p d 

a.u. a. u . 

0. 10. 3.17 1.28 
0. 5. 3.11 1.25 
o. 4. 3.06 1.16 
0. 3. 2.86 0.85 
0. 2.5 2.75 0.55 
0. 2.0 2.60 0.21 
0.5 3.0 2.85 0.86 
0.5 2.0 2.58 0.21 

is used, the boron core is excluded, and the bridge hydrogen is included. Thi~ 
is a rather arbitrary choice, however, and it is perhaps better to say that tht 
d-hybridization in the bridge bond is sizeable but not very well defined. Nom 
of the hydrocarbon orbitals has any significant d or higher angular momentun. 
character, and so those terms have not been discussed in detail. 
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The main result of this work is that a hybridization can be defined and 
readily computed for doubly occupied orbitals. Truncation of the orbitals need 
not be invoked, and the hybridization can be determined by methods that do 
not depend on having a balanced basis set. The hybridization of localized 
Hartree-Fock orbitals should be a useful tool in categorizing and comparing 
different calculations. 
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SAZETAK 

0 odredivanju orbitalne hibridizacije 

William E. Palke 

Prikazana< je jednostavna metoda racunanja hibridizacije atomskih orbitala. Pro­
diskutirana je ovisnost hibridizacije o radijalnoj udaljenosti od jezgre i dan je postu­
pak odredivanja prosjecne hibridizacije. Posebno su razmotrene dvostruko zapo­
sjednute orbitale. 




