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Little use has been made so far of large-basis calculations of. 
SCF molecular orbitals to bring up to date old questions like the 
nature of the atomic orbitals referred to in the standard theory of 
directed va1lency. In this paper, along with some novelties con­
cerning the inclusion of d orbitals in hybrids, we indicate some 
of the points waiting to be discussed, give the whole scheme needed 
to express canonical orbitals as combinations of one in situ orbital 
per atom, and present a sample application of that scheme to a 
double-zeta study of the halogeno-methanes, as studied by Berthier 
and coll. Interesting indications regarding radial distortion and 
hybridization have been obtained. 

INTRODUCTION 

The widespread availability of sophisticated ab-initio programs for the 
SCF orbitals of molecules has made analysis of results an urgent problem. In 
the literature, attempts to tackle it are numerous, but, as far as we know, they 
either work on energy partitions1 or on linear transformations of canonical 
orbitals, especially with a view to localizing them2• In this paper we wish to 
consider the more modest, but perhaps equally essential problem, of direct 
analysis of the canonical orbitals issued from a standard extended-basis ab­
-initio computation. 

Our point of view, already briefly tested in an application to model di­
peptides3, is that it should be possible to recast a canonical orbital in a form 
that can be interpreted in terms of one possibly hybrid atomic orbital per 
atom, so as to divide the interpretational problem into the tradional two : 
weights of atoms in an MO and characteristics of AO's representing them. 

The analysis suggested in this paper is a return to the old and still unsolved 
question of the MAO's (Modified Atom Orbitals)4•5 . This is based on the phi­
losophy which has guided the quantum chemistry of great pioneers like Mul­
liken, Pauling, Coulson, and still guides most applications of theory to organic 
chemistry - as is proven by the work of R. Hoffmann6 : namely, that there 
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exist minimal-basis atomic orbitals, which are entitled to represent each 
specific atom in the electronic wave function of a molecule. 

In attempts to put this point of view on firmer formal grounds Mulliken 
referred to the united-atom and separated-atoms limit, and was led to empha­
size that an atomic orbital in situ may be a MAO not only because of hybrid­
ization, but because of radial distortions due to promotion and to the environ­
ment4b. As concerns hybridization, questions like the consequences of differences 
in the radial parts of the s, p, and d components, as well as the very character­
ization of d-including hybrids remain largely unexplored. 

Therefore, before giving some 'indications concerning the formal analysis 
of canonical MO's - quite a straightforward business - we shall present a 
few remarks on the much more intricate problem of the interpretation of 
results. 

RADIAL DISTORTION 

Overlap can be used as a compact and quite sensitive measure of dif­
ferences in the radial behavior of atomic orbitals. Therefore, it is used in 
Tables I and II to illustrate two different effects : the artificial .radial distortion 
introduced by the choice of the basis, and the physically significant distortion 
due to promotion. 

Table I provides a comparison between different LCSTO forms of the 4s 
AO of nickel: the quadruple-C (practically HF) forms for the 3d94s (3D) and for 
the 3d84s2 (3F) configurations, and the approximate double-zeta and single-zeta 
forms for the latter configuration7a. The overlap values at the standard Ni-Ni 
distance in the crystal and at the distances of successive neighbors are given. 

Inspection of Table I shows that double-zeta orbitals give quite reasonable 
overlap values, indeed values larger than those of the HF AO's for distances 
up to twice the equilibrium distance. Therefore, they are only dangerous in 
s-band calculations in solids, where larger order neighbors are very ·important 
to ensure the convergency of computations. The values shown also remind us 
of the fact that, although the statement that limited-basis calculations tend to 
underestimate tails holds true in general, the inference that the correspond­
ing overlap integrals are smaller than in the »best-atom« case is not generally 
valid even at distances of the order of the bond length. 

TABLE I 

(4s,4s) Overlap Values for 3D (3d94s) and 3F (3d84s 2) of Nickel at the Distances Rn of 
Neighbours of Various Orders in the Hartree-Fock Limit (HFl and HF2 Respectively) . 
For the d8s2 Configurations also Overlaps According to Double-zeta (DZ), Single-zeta 

(SZ) .4.pproximationsa 

Rn HFl HF2 DZ sz 

2.492 .5176 .4491 .4613 .4320 
3.524 .2935 .2265 .2346 .1973 
4.316 .1709 .1197 .1226 .0864 
4.984 .1028 .0665 .0659 .0379 
6.593 .0263 .0144 .0117 .0036 

• Linear combination of STO's according to Clementi and Roetti (Ref. 7a). In all 
ca<ses the linear combination orthogonalized to inner shells has been taken. 
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A comparison of HF 4s orbitals for the states 3F and 3D indicates that 
radial distortion by promotion is very important: the ·overlap values associated 
with the d9s1 configuration are between 15°/o and 821>/o higher that those of 
the d8s2 confoguration. Now, it may be expected that other two-center matrix 
elements behave like overlap : then, one may suspect that many cases where 
'correlation' has been invoked as a source of error are in fact related to lack 
of adaptability of the basis to promotion - i. e. failure to use a suitable pre­
pared and sufficiently flexible basis. This is all the more important since the 
molecular environment can also be a cause of radial distortion. 

We do not know of any published study explicitly devoted to this question: 
it is currently tackled only indirectly when some flexibility is allowed in 
Gaussian-type bases. The latter can be excellent approximation of HF atomic 
orbitals even at comparatively large distances at least as overlap values go; 
this is illustrated in Table II, with the confidence suggested by Table II, radial 
distortion can be discussed in terms of current GO basis sets; in the subsequent 
section we shall propose a pattern for such a discussion of the example of 
carbon in the methylhalogenides as computed by Berthier and coll.8 

TABLE II 

Overlap Integrals: Gaussian vs . STO Bases (Carbon-Carbon Bond) 

R ss1.2 ppa1.2 pp:n;l.2 
A 2 3 1 2 3 1 2 

1.54 .3572 .3566 .3570 .2645 .2648 .2650 .2678 .2677 
1.64 .3164 .3158 .3157 .2719 .2723 .2653 .2350 .2350 
1.74 .2788 .2781 .2779 .2731 .2736 .2612 .2058 .2058 
2.00 .1966 .1955 .1959 .2557 .2564 .2370 .1445 .1443 
2.50 .0939 .0918 .0946 .1863 .1873 .1655 .0711 .D708 

1 column (1) contains HF overlaps according to Clementi and Roetti (Ref. 7a) 
column (2) contains overlaps for 10s6p GO proposed by Huzinaga (Ref. 7b) 

3 

.2222 

.1924 

.1662 

.1121 

.0491 

2 column (3) contains overlap integrals obtained when the double zeta basis of the 
following tables (Ref. 8) is assigned coefficients a and b. 
a) atomic orbital: ~(a · lsc (l;,i) + b · lsc (l;,/))ci 

I;, I;,· c 

12.6727 5.02536 - .054620 
.479273 .190056 .655905 a= .745895 
.186530 .073969 .390346 b = .279695 

b) atomic orbital: ~(a · 2Pc (l;,i) + b · 2Pc (l;,/))ci 

I;, I;,· c 

9.92496 2.101970 .093444 
2.36586 .051057 .475417 a= .375187 
.73330 .155303 .575982 b = .706207 

HYBRIDIZATION 

A mathematical formulation of the qualitative theory of directed valency 
was given long ago by one of us9. For each atom, hybrid orbitals were deter-
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mined so as to maximize separately the overlaps of the bonds in w hich the 
given atom participated; and then they were made orthogonal to one another 
by a least-square procedure, suitable weights ensuring certain physically im­
portant conditions (lower flexibility for hybrids corresponding to higher over­
lap and lone-pair hybrids). The resulting hybrid atomic orbitals could even 
be used to predict the geometries of molecules10. They were used to construct 
zero-order bond-orbitals in the PCILO method11 • 

The resulting »maximum-localization hybrid orbitals« (MLHO) provide a 
description of binding which, in the case of familiar molecules, clearly appears 
to be in agreement with the simple idea of directed valency12. 

Two difficulties appear, one technical, the other conceptual: the inclusion 
of d orbitals, and the significance of hybrids when the radial parts of the 'pure' 
orbitals are different. 

Inclusion of d Orbitals 

So far, no computing program has been made available to extend the 
MLHO procedure to d-orbitals. We have therefore tackled th~ problem, and a 
program determining general s, p, d hybrid types has been prepared. The 
results are best illustrated by diagrams of the types shown in Figures 1 and 2. 
In Figure 1 we present the hybrid orbitals of the central iron atom in two 
planar clusters of five iron atoms, in ·a square and rectangular arrangement, 
respectively. 

The distortions due to the presence of d orbitals are evident in the smaller 
lobes, even though the hybrids have a familiar shape. 

The role of d-hybrids in determining the direction of a general hybrid 

I hi) = a1i I s ) + b1i Ip rJ ) + b2i I p n) + b3i I p n' ) + c1i I d rJ ) + c2i I d n ) + 

+ c3i I d n' ) + c4i I d ll ) + c5i I d ll ' ) (1) 

(where we shall normally assume that the a axis is the z axis) is not intuitively 
clear. We have adopted the following definitions : The direction of an s, p, d 
hybrid orbital (taken as the direction of the p component in the case of s, p, 
hybrids) as well as its polarization are obtained from the radius vector of the 
centroid of the hybrid, i. e. from the expectation-value vector ( x ) i + ( y ) l._ + 
+ (z) !:.:_It is easy to show that: 

with 

<x> =al b2 W1 + v3 (b2 C5 + b3 C4 +bl C2- b2 cifv3} W2 

(y) =al b3 W1 + v3 (b2 C4 + b3 C5 +bl C3- b3 cif v3} W2 

(z) = a1 b1 W1 + (2 b1 c1 + VS b2 c2 + VS b3 c3) W 2 

and W2 = - (p n Ix Id a) 

(2) 

(3) 

In the case of 4s, 4p, 3d STO's with orbital exponents Cs, cp, Ca the two para­
meters of Eq. (3) are 
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Figure 1. (a) Angular dependence of the four hybrids of the central iron atom for 
the square five atoms arrangement I (side : 4.05 A based on the crystal structure). 
The overlfrP integrals have been calculated with the following basis : single zeta 
STO's for 4s and 4p CCs = Cp = 1.379) and double zeta STO's for 3d (Cdi = 5.35, Ca2 = 
= 1.80, c1 = .5366 and c2 = .6678) ; only the four bonds of the central atom were taken 
into account in the process of determining hybrids. The values of S1 give the scaling 
factors used for each series of drawings. The centroid components and angle are 

given in Table III. 
(b) Same as (a) for the rectangular arrangement II (sides 2.86 and 4.05 A). 
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Table III shows the results obtained from equations (2) and (3) for the system 
of Figure 1. 

TABLE III 

Characteristics of Hybrids of CentraL (Illa) and Corner (IIIb) Iron Atoms (Fee and 
Fev respect.) in Square and RectanguLar Fe5 Systems 

III a 

Fev square Fev rectangular Fev square Fev rectangular 
H ybrid 1 1 2 2 

.363 45.0 .409 36.531 - .054 154.274 .087 75.659 

.363 45.0 .303 53.468 .026 64.274 - .165 118.043 
0 90 0 90 0 90 .297 32.091 

3 3 4 4 
- .145 167.297 -.215 140.907 .061 57.074 -.198 131.327 

.033 77.297 .170 52.192 -.094 147.074 -.225 138.616 
0 90 -.041 98.499 0 90 .009 88.211 

5 5 6 6 
.008 88.174 - .108 138.995 --.232 164.185 .042 83.603 

- :263 178.174 .054 67.723 -.066 105.814 -.146 112.976 
0 90 .077 57.575 0 90 -.342 156.049 

7 7 
0 -.016 152.318 
0 .009 62.318 
0 0 90 

III b 

Fee square Fee rectangular Fee square Fee recta'IJ.gular 
Hybrid 1 1 2 2 

.340 45 .361 38.889 -.340 135 -.291 128.889 

.340 45 .291 51.110 .340 45 .361 38.889 
0 90 0 90 0 90 0 90 

3 3 4 4 
.340 45 .291 51.110 - .340 135 - .361 141.110 

- .340 135 -.361 141.110 -.340 135 - .291 128.889 
0 90 0 90 0 90 0 90 

5 5 6 6 
0 0 0 0 
0 0 0 0 
0 0 0 0 

For each hybrid, the components (a. u.) of the radius vector of the centroid as 
well as its angles with the reference axes x, y , z are given. 

The expected square arrangement of the binding hybrids of centrnl iron atom in 
the square system is correctly produced. 

Note that the »lone pair« hybrids of Fev are pushed out of the x, y plane because 
of the weight ). ;e 0 (.15) assigned to them (.l. is a measure of the tendency for the 
lone pair hybrid to retain an s character in spite of the orthogonalization to other 
hybrids (Ref. 15). 
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Figure 2. (a) Rectangular Fe5 (cf. Figure lb): angular dependence of the »lone-pair« 
hybrid 2 of the corner atom Fez. This hybrid has been obtained in the same way as 
those of Figure 1. The curves are given for different distances R from the center 

Fez with suitable scaling factors S1• (b) Same as (a) for As in AsF3. 
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Eq. (2) solve the problem posed by the direction of d including hybrids 
when these contain a p-contribution; and they clearly show that, if Ca is of 
the order 7/ 11 Cv, even a small d-contribution may seriously modify the direct­
ion of the hybrid as defined by the p orbitals. This may create very interesting 
situations as regards the »shapes« of the hybrids. Another special limiting case 
is found when the p contribution vanishes. Clearly, in that case the centroid 
of the orbital coincides with the center of the pure components. Yet, as is 
well-known s, d hybrids are oriented. The reason is that they behave like an 
ellipsoid; the axes can be obtained as the principal axes of the tensor (_!_!J 
consisting of the expection values of the products of all the pairs of coordinates 
( z2 ) , ( x z), etc ... 

RADIAL DEPENDENCE 

Even when d hybridization is not a source of difficulties, the definition of 
the p-character of a hybrid is a delicate question when the radial factors of the 
p orbitals are different from those of the s ones. In the standard expression 

--> 
I spn ) = cos a ! s ) + sin a I p ~ ) (4) 

--> 
C denotes the axis of the hybrid and sin2 a is currently assumed to denote its 
p weight (n being given by tg2 a) : sin2 a somehow measures the degree to 
which the given hybrid resembles a p orbital in its angular behavior. This, 
however, is only rigorously true when the radial parts of the s and p orbitals 
are the same up to a constant factor. For suppose that j s ) and Ip ) are repre­
sented by STO's with orbital exponents 2 and .02 respectively, then a (2s, 2p) 
digonal hybrid (a = 45°) directed along the z-axis will have the form 

N 1 
< r I sp > = ri r . ( 3 e - 2r + e - O 02 cos 6); 

which means that, whereas for r ~ 0 this is a standard sp hybrid, when r is 
very large the p part dominates to such an extent that the hybrid is practically p. 
A more realistic case is illustrated in Figure 2b: the evolution with the distance 
of an {s, p, d) hybrid orbital of an iron atom at the corner of the rectangle of 
Figure 1. 

Much work remains to be done to develop the interpretation based on 
hybridization, but we believe that the question briefly illustrated here deserves 
further reflection. 

ANALYSIS OF CANONICAL ORBITALS 

Having recalled some of the still open questions in the elementary atomic 
orbital theory of chemistry, we now come to the question mentioned above: 
extract from the canonical molecular orbitals, obtained from an extended basis 
ab-initio computation, information concerning the nature of the atomic orbitals 
used by the given atoms in the given molecule. 

General Analysis 
Let I Anlm ) be a pure AO centered on atom A and let I Anlmµ ) be an 

LGCO-AO, (i. e. a given contracted GO, which will be normally associated 
with a specific principal quantum number even if it consists of ls Gaus-
sians): 

J Anlm ) =}.; D~i,r;i I Anlm µ) (5) 
µ 
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In terms of LCGO -AO's and pure -AO's, the j-th molecular orbital is written: 

I j > = d'1JS:: ! AnLm,u > = ~ c7Ji.tjm I AnLm > (6) 
A,n,L,m ,µ A ,n,L,m 

When an extended basis is used the coefficients D ~tm of Eq. (5) vary according 
to the MO under consideration, and therefore Eq. (5) must be replaced by 

\ AnLmj ) = ~ D1JfJ;: I AnLmµ) 
µ 

(7) 

Consider in the j-th MO the LCGO-AO's associated to A and to the same 
quantum number set nlm, with their -coefficients in \ j ) . Their contributions 
can be reduced to that of a single pure AO carrying a coefficient C 1J1Jn when in 
I j ) . Therefore, the coefficients ~ of Eq. 7 must be obtained from the relation­
ship 

(8) 

and 

cn~m = U {~ dntm dnim < AnLm I AnLmv >j' 112 
AJ A3µ A3v µ 

µ,v 
(9) 

(U being the sign of the major contribution). 

The linear combination ! Anlmj ) thus obtained is not necessarily the 
correct representation of the atomic orbital representing A in ! j ) with quan­
tum numbers nlm, because it is not in general orthogonal to other LCGO 
orbitals with the same l, m pair. This results in the appearance in I j ) of 
contributions of lower-n orbitals of A wich may be just due to the intra­
atomic orthogonality requirement. We take care of this by Schmidt ortho­
gonalization so as never to admix outer shells to inner shells. 

With the simplified notation: 

M stands for ALmj (10) 

we obtain for the orthogonalized AO: 

_ \ Mn ) - ~ \ Mn' ) < Mn' \ Mn ) 
IMn ) -

- (1 - ~ I ( Mn' I Mn ) !2) 112 
(11a) 

where the summations are taken over n' = 1, .. ., n-1. Eq. (11a) defines a 
triangular linear transformation T taking the nonorthogonal AO set \ M ) 
into the orthogonalized one \ M ) : 

I M > =\M ) T 

In the same matrix notation Eq. (6) can be written 

I j) = ~ I M > C./ 
M 

('j denoting the j-th column of the given matrix); and therefore 

I j > = c ~ I M > T-1 C/' 
M 

(llb) 

(12) 
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Using the notation 

(13) 

Eqs. (6) and (7) may be rewritten in the form 

I j > = ~ c'.tr I Anlmj > (14a) 
A,n,l,m 

I Anlmj > = ~ i5"Ji.ir; I Anlmµ > (14b) 
µ 

where the bars denote that the orthogonalization procedure has been applied: 
the bar on the LCGO-AO I Anlm,u ) reminds us that now also GO combination 
originally associated with principal quantum numbers lower than n are included 
in the set for n. 

In the following, we shall drop the bars and assume that the orthog,onal­
ization procedure has been performed, or, -- as is the case with pseudopotential 
calculations - has not been necessary. 

The last step in the general analysis is construction of hybrid orbitals 
; Aj ) . As the j Anlmj ) orbitals form an orthonormal set, we write , 

(U = sign of s component) (15a) 

C nLm _ cnLm 
Aj - Aj 

I Aj > = ~ c'.Ji.r I Anlmj > 
n,L,m 

so that the given MO is finally cast into the form 

I j) = ~ c Aj I Aj) 

which corresponds to the chemical idea of an LCAO molecular orbital. 

(15b) 

(15c) 

(15d) 

We can now proceed to interpret and further elaborate the coefficients 
and orbitals defined above. Instead of discussing all the general possibilities 
we shall refer to a specific example which provides an interesting case study 
and, together with the examples of Ref. 3, covers the most important transfor­
mations of the preceding general analysis. The case chosen is a pseudopotential 
double-zeta calculation of methylhalogenides carried out by Berthier and coll8. 

These calculations do not include inner shells but are most instructive as 
concerns other important problems like radial distortion. 

RADIAL DISTORTION 

Table IV presents the double-zeta in situ s orbitals -0f carbon in the four 

halogenides. The coefficients a and b are nothing but the coefficients D~01~ and 
D~i~ of Eq. 7. They may be compared with the free-atom values, evaluated 
by us by imposing a CC (2s, 2s) overlap value of .357 at an internuclear distance 
of 1.54 A. Cases like the fifth MO of CH3F suggest that in some cases the radial 
distortion may be very important. The overlap values shown for comparison 
are consistent with this impression, even though the picture they provide is 
not dramatic at all. Should we conclude that the current assumption that a 
reasonable description of a molecule can be provided by standard atomic 
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TABLE IV 

Radial Distortion of Carbon 2s AO's in HaLogeno-Methanes CH3X . Pseudopotential 
Double-Zeta CaLculation with the Basis of Table II8 : . CC Overlap Obtained from 

in situ 2s Orbitals at Various Distances R 

RIA 
MO x a b 1.54 2.0 2.5 Cs 

1 F .8655 .1506 .3139 .1592 .0697 - .1310 
Cl .6074 .4242 .4048 .2379 .1241 .4414 
Br .6318 .3990 .3965 .2305 .1189 .5695 
I .6362 .3945 .3959 .2299 .1184 .7454 

2 F .7033 .3247 .3719 .2089 .1036 .7161 
Cl .6949 .3335 .3749 .2114 .1054 .6328 
Br .6935 .3350 .3754 .2119 .1057 .5269 
I .7761 .2475 .3463 .1866 .0883 -.2273 

5 F -.1181 1.1018 .5991 .4271 .2719 -.0922 
Cl 1.2224 -.2632 .1799 .0514 .0020 .0192 
Br .6848 .3441 .3784 .2145 .1076 .0411 
I .5186 .5139 .4339 .2641 .1431 -.0721 

free at. .7459 .2797 .3570 .1959 .0946 1 

The inclusion of polarization orbitals (d on C and F, p on H) gives the following 
results in CHsF: 

1 F .9230 .0533 .2817 .1323 .0520 -.1256 
2 F .7893 .2333 .3415 .1827 .0855 .6073 
5 F -.0083 1.0072 .5770 .4032 .2515 .1658 

Note: For the meaning of the coefficients a and b cf. note 2a to Table II. 

orbitals is not correct? This conclusion would be somewhat surprising in view 
of the comparative success of minimal basis calculations. The origin of this 
apparent contradiction lies in the non-orthogonality of the two LCGO-AO's 
used to represent the two STO's entering the 2s orbital. Call I 2s0 ) the free­
-atom 2s orbital of carbon as defined in Table II. It is easy to construct another 
orbital I 2s0') which is orthogonal to i 2s0 ), and thus represent a standard 
linear combination of upper shell s orbitals. Then, an in situ 2s orbital can be 
recast in the form: 

1l 2s ) = cos ,8 I 2s0 ) + sin .B I 2s0' ) (16) 

and its percentage of free-atom character can be written 

u 5 = 100 cos2 (J. 

This orthogonal decomposition, which assigns radial distortion to some general 
promotion, leads to a surprising conclusion: even in the seemingly dramatic 
case of the fifth occupied MO of CH3F the 2s orbital contains 83°/o of the 
free-atom one! On the other hand, overlap values show that very small 
amounts of radial distortion (as measured by weights of I 2s0 ) ) may involve 
serious changes in overlap values: an extreme example is the carbon 2s AO in 
the second MO of CH3F without and with polarization function : the free-atom 
orbital weights are 99.952 and 99.9490/o respectively, but the overlap values at 
1.54 A differ by 100/o. 

The results for p orbitals are similar, except for the fact that only the 
lowest-lying molecular orbital involves an important distortion. 
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The morality to be drawn from the above results in not only that, even 
though free-atom AO's are resonable first order choices for in situ AO's -
thus confirming a conclusion often drawn from energies, distortions can appear 
that do not correspond to an obvious trend; but also that slight changes in the 
basis set or further flexibility might seriously affect conclusions regarding 
orbital distortion in molecules. A proof of this is given by the analysis of 
carbon-2s distortion when polarization functions are included: the percentage 
of f 2s0 ) in the fifth occupied MO of CH3F goes up by almost four points (cf. 
Table V). 

TABLE V 

Radial Distortion and Hybridization of Carbon in the Symmetric Canonical Orbitals 
of CH3X. (Pseudopotential Double-Zeta Calculation with the Basis of Table II (Ref. 8)) 

MO x Us 1lp Cs Cp c 

1 F 99.61 91.31 .8719 .4896 .1503 
Cl 99.50 99.65 .9878 .1554 .4468 
Br 99.66 98.12 .9981 .0627 .5706 
I 99.68 86.60 .9996 .0289 .7457 

2 F 99.95 99.39 .9885 -.1513 .7253 
Cl 99.93 99.98 .9763 -.2161 .6481 
Br 99.93 99.99 .9628 .2701 .5472 
I 99.98 99.76 .7745 -.6325 .2935 

5 F 82.97 99.99 -.2028 .9792 .4545 
Cl 93,25 99.48 .0379 .9992 .5064 
Br 99.90 99.21 .0774 .9970 .5312 
I 98.68 98.85 .1295 .9915 .5409 

Explanation: 

U s: percent of free-atom 2s orbital (as defined in Table II) resulting from orthogonal 
decomposition (see text) of the 2s orbital ; 

up: idem for the p orbital; 
c8 , Cp: coefficients of the norma'lized carbon (s, p) hybrid in the given MO ; 
C: coefficient of the whole atomic orbital in the given MO. 

Hybridization 

Combination of in situ (radially distorted) pure orbitals gives hybrids, 
whose s and p coefficients are presented in Table V. Here again the main 
question is : are these hybrids transferable, at least between molecular orbitals 
of the same m olecule? 

The same answer as for radial distortion holds: they are transferable when 
the overall weight of the hybrid in the MO is comparatively high. On the 
contrary, they vary a lot when they obviously correspond to fine details of 
the molecular electronic structure (weight .3). 

A special feature of the hybrids of carbon in the halogenomethanes is 
that they are practically s and p when they carry on impor tant weight. This 
r esult is quite surprising in view of the fact that we are dealing with an 
almost tetrahedral carbon, and that it applies in particular to the lowest lying 
MO, which is clearly the CX bond-orbital. In the case of chlorine it takes the 
form: 

.7555 (.9921 f Set>- .1255 \ PZc1 )) + .4469 (.9879 \ Sc >+ .1554 f PZc )) (17) 
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The analysis of hybridization in the case of our test molecules is made 
particularly difficult by symmetry. Taking into account that, if there were 
no coupling between bonds, the second symmetric MO should be degenerate 
with the two immediately higher degenerate antisymmetric orbitals, one may 
proceed to recombine them in the case of CH3F so as to have only one hydrogen 
with a non-vanishing coefficient (neglecting differences in radial distortion of 
hydrogen ls orbitals). This results in molecular orbitals like the following: 

12') = - .56862 I hF2') = .74575 I hc2·) + .27769 J lsm 2·) (18a) 

where 

J hFz' ) = .31654 I sF2 ) + .23309 J pzF2 ) - .42251 J pxF2 ) + .81668 .J PYFi ) (18b) 

J hc2• ) = .84650 I sc2 ) - .12960 J PZc2 ) + .25817 J pxC3 ) - .44719 J PYCJ ) (18c) 

This is clearly an antibonding combination between a lone-pair hybrid of 
fluorine (at 76° from the z-axis oriented along CF) and a CH bond, the two 
hybrids being parallel. Work along the same lines · on the molecular ·orbitals 
5, 6, 7 would finally produce almost complete separation of the lone pairs and 
the CH bonds. However, the result ·obtained allows already a clear physical 
interpretation, for it represents one of the 'hyperconjugation' orbitals, the 
»n« components of the carbon and fluorine orbitals lying in the same plane. 

It may be claimed that the MO mixing advocated here is nothing but an 
artificial localization procedure such as those discussed in Ref. 2. We suggest 
that it is only required because of the high symmetry of the molecules studied: 
when no bonds equivalent by symmetry are present (as in the case with the 
CF bond) no difficulty in direct interpretation arises. 

Coming back to hybridization, note that the hybrids (18) have much higher 
p-character than those resulting from Table V. This is an indication that sym­
metry, by separating x, y and z components out, may give misleading indicat­
ions regarding what is strictly related to bonds13 and this explains the some­
what surprising hybrids obtained for, say, water, when a procedure like 
Ruedenberg's14 is applied. 

CONCLUSION 

The above sample discussion is by no means an exhaustive illustration of 
the posibilities open for theoretical reflection by the straightforward analysis 
presented here as interpreted in terms of the physically significant atomic 
orbitals defined in Eq. 15. As has been mentioned, the whole elementary orbital 
theory of chemistry - an invaluable tool for experimentalists regardles>. of its 
status in the value-scale of computational chemistry - can be put on firmer 
grounds by elaboration of good ab initio SCF r esults: which need not be used 
only to discuss energies and populations. 
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SAZETAK 

In situ atomske orbitale i mo'lekulski racuni s prosirenim skupovima osnovnih 
funkcija 

Giuseppe Del Re i Claudette Barbier 

Razmotren je problem odredivanja modificiranih atomskih orbitala (MAO) u 
molekularnim MO racunima. Posebna paznja posvecena je nalazenju minim~lnog 
skupa atomskih orbitala, koji bi dobro opisivao kemijska svojstva vezanih atoma, a 
bio bi primjenljiv mr vrlo velike molekule kao sto su to npr. dipeptidi. Vrlo inte­
resantni rezultati dobiveni su s tzv. atomskim orbitalama. Svaka od njih karakte­
rizira jedan atom u kanonskim MO orbitalama. S pomoeu tih orbitala analizirani 
su ab initio DZ rezultmi za halometane koji su uzeti iz literature. Izvedeni su 
zanimljivi zakljucci o radijalnoj distorziji AO kao i o d-hibridizaciji. 




