
CROAT I CA CH EMI CA AC T A CCACAA 57 (5) 855-864 (1984) 

CCA- 1497 
YU ISSN 0011-1643 

UDC 541 
Original Scientific Paper 

Many-Body Perturbation Theory Based on Localized Orbitals 

Ede Kapuy*~, Zoltan Csepes+, and Cornelia Kozmutza+ 

*D epartment of Theoreti.cai Physics, J6zsef Attil.a University, H-6720 Szeged, Aradi 
vertanuk tere 1, Hungary and +Quantum Theory Group, Physics I nstitute, Technical 

University Budapest, H - 1521 Budapest, Budafoki ut 8, Hungary 

Received March 30, 1984 

Diagrammatic formulmion of the MBPT has been extended 
to the case when both the occupied orbita'ls and the virtual ones 
are separately localized, i.e., they are unitary transforms of the · 
canonical HF orbitals. All diagrams representing ground state 
correlation energy are generated through the fifth order. For cyclic 
polyenes C4n+z H4n+z as model systems, in PPP approximation, all 
perturbation energy corrections through the fourth order have been 
calculated for a wide range of the coupling constant: (J-1. Some 
fifth order energy corrections have also been evaluated and the 
convergence of the localization corrections has been studied. For 
CsHs the results of the canonical and the localized versions have 
been compared with those obtained by full CI. We have shown 
that in the localized representation the energy corrections can be 
partitioned into local and nonlocal contributions. 

1. INTRODUCTION 

One of the most systematic approaches that goes beyond the independent 
particle scheme is the diagrammatic manny-body perturbation theory1- 5• In 
the algebraic approximation it is used for atoms and small molecules through 
fourth order in the energy.6- 10 The evaluation of all terms in fifth and higher 
orders is feasible only for model systems at present.11 There exist methods 
where terms of certain types are summed over to infinite order (CPMET12·•13, 
CEPA14,15 Green's functions16.·17, etc.). Formerly it ·was supposed that in calcu
lating the correlation energies only the local contributions were important.18 

One of the authors (E. K.) elaborated a perturbational approach where the 
zeroth order wavefunction is the APSG ground state.19 The PCILO method 
of Diner, Malrieu and Claverie is based also on localized orbitals, the latter 
are, however, not solutions of the Hartree-Fock (HF) equations.20 Amos and 
Musher21 and Davidson22 have shown how the zeroth order Hamiltonian and 
wavefunchons can be chosen when the orbitals used are unitary transforms 
of the canonical HF orbitals. 

To the knowledge of the authors the localized orbitals, up to the present, 
have been applied only in theories involving partial summations.12-11,19,.23 

The aim of the present paper is to show the applicability and the advan
tages of the many-body perturbation theory (MBPT) based on localized HF 
orbitals which are unitary tranforms of the canonical ones. As model systems 
we use cyclic polyenes in the Pariser - Parr - Pople (PPP) approximation 
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for which other results including full CI are also available.24 They are metallic
-like one-dimensional, non well localized systems very suitable to study the 
importance of non-local effects. 

2. THEORY 

The exact (nonrelativistic) Hamiltonian is partitioned in the following way: 

A A A 

H = H co> + W. (1) 

The occupied single-particle functions 'ljl;, i = 1, 2, ... , N, and the virtual 
ones 'lfJa, a = N + 1, N + 2, . . . , M are solutions of the canonical HF equations 

where 

A 

A 

F '!fJk = sk '!fJk, k =l, 2, ... , M, 

A A N - A -

F = H(l) + l: ( j I T12-1 (1- P12) I j )i. 
j=l 

(2) 

(3) 

When H<Ol is chosen as 
A N A 

H '0> = l: F (i), (4} 
i = l 

the perturbation is the foUowing 

A N N A 

W = ~ l: r;?- l: <Tl r;2- 1 (1- P;2) Ji);. (5) 
i,j = l i,j = l 

If we transform the occupied and the virtual single-particle functions 
separately by unitary transformations 

N 
'!fJi = l: uii '!fJi' (6) 

j = l 

M 
'!fJa = l: vab '!fJb, (7) 

b = N+l 

the localized single-particle functions obtained satisfy the following non
diagonal HF equations 

A N 
F '!fJi = l: sii '!fJj, i, j = 1, 2, ... , N, (8) 

j=l 

A M 
F 1pa = l: sab'!fJb, a,b=N+l, N+2 ... ,M. (9) 

b=N+ l 

According to Amos and Musher21 we can choose a new HF operator 

A A 

F
10

e = F - l: I i > liij < j I - l: I a > liab < b 1, (10) 
i,j a,b 
tj:j a:f:b 

the eigenfunctions of which are the transformed single-particle functions 

A 

F 10
e '!fJi = Ii; '!fJi> i = 1, 2, ... , N, (11) 



MANY-BODY PERTURBATION THEORY B Y LMOS 857 

" F 10
e 'ljJa = e a 'lfa• a= N + 1, N + 2, . . . , M. (12) 

In this case the zeroth order Hamiltonian and the perturbation can be chosen 
in the following way 

A N" 
Hloe(ol = ~ Floe (i), (13) 

i = l 

" N 
wioe = ~ ~ r;t -

i, j = l 
i=J=j 

N N A N M 
-~ { ~ < i Jr;2- 1 (1-P;2) [,i>;- ~ [ k > Ekz < l I- ~ [a > t:ab < b I } (14) 

i = l j = l k ,! = 1 
k =J=! 

a,b = N + l 
a=J=b 

As a consequence of the nonzero off-diagonal Lagrangian multipliers Ek/, 

JOab, perturbation (14) has extra terms as oompared to (5). 
In the diagrammatic formulation the terms of the perturbation series 

a re represented by graphs. We apply the »mixed« Hugenholtz - Feynman 
representation proposed by Brandow2 (details can be found also in Refs. 25 
and 26) . One of us (Z. Cs.) elaborated and programmed an algorithm that 
constructs the Hugenholtz and Feynman diagrams and automatically picks 
out conjugate pairs and equivalent diagrams.27 Through fourth order, all 
diagrams necessary when using canonical orbitals can be found in the lite
rature.8·25 The rules of how to translate graphs into formulae can also be 
·found ·in many places.2,,s,25,2s 

In the following each Hugenholtz diagram is represetned by a Feynman 
g raph with antisymmetrized vertices 

A 

( kl I r 12- 1 (1-Pu) I mn) = ( kl II mn) = ( kl I mn) -(kl I nm) . 

The diagrams which represent the second and third order energy correc
tions using canonical HF orbitals are shown 'in Figure 1. (In the following 
we call them canonical diagrams). 

In the fourth order we have 39 Hugenholtz diagrams (among them 8 
conjugate pairs).s 

Due to the nonzero off-diagonal Fock matrix elements 'in (14) , new terms 
€nter the perturbation corrections in third and higher orders. We call these 
terms localization corrections. In the diagrams representing the localization 
terms the off-diagonal Fock matrix elements are denoted by crosses in circle. 
The latter are called localization diagrams.28 

As the occupied and the virtual orbitals are localized separately, no off
-diagonal Fock matrix element connects particle and hole states. Thus the 
localization diagrams can be derived from the canonical ones by inserting 
·crosses in the hole and/or in the particle lines. By putting just one cross in the 
second order canonical diagram (Figure 1) w e obtain the two third order 
localization diagrams (Figure 2). By inserting two crosses in the second order 
diagram or one cross in the third order diagrams (Figure 1) we get the fourth 
order localization diagrams. We obtain 22 antisymmetrized Feynman diagrams 
but among them 18 form 9 conjugate pairs so only 13 are different (see 
Figure 3) . 
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Figure 1. Second and third order antisymmetrized Feynman diagrams. 
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Figure 3. Fourth order localization diagrams. 

In the fifth order we have 462 different canonical diagrams and 300 different 
localization diagrams. Among them there are 14 different diagrams which can 
be derived from the second order canonical diagram by inserting three crosses. 

Due to the localization terms, in the localized representation extra com
putational work is necessary. In a given order, however, it is only a fraction 
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of the computing time because the number of indices to be summed over are 
always less in the localization terms then in the canonical ones. 

The possible advantage of the localized representation is that the compu
tational work can be decreased, namely, if the orbitals are well localized into 
different spatial regions, for the matrix elements ( ij I kl ) the zero differential 
overlap approximation is applicable. It means that all terms containing at 
least one factor ( ij I kl ) in which 1/Ji 't/Jk and/or 1/Ji 't/Jl are localized into different 
spatial regions can be neglected. In evaluating a perturbation correction the 
summation in a closed loop should only be extended over indices of orbitals 
which are localized into the same spatial region. This advantage is partly can
celled by the occurrence of the localization terms the importance of which 
depends on the magnitude of the off-diagonal Fack matrix elements. Whether 
the smallness of these terms or the localization of the orbitals are more 
important can be decided only by actual calculations. For weakly localizable 
systems these two requirements might not be satisfied simultaneously. 

The virtual orbitals, in general, cannot be localized uniquely into the 
spatial regions of the occupied orbitals.29 There are exceptions: when some 
small bases (single zeta, double zeta, etc.) are used, or for model systems 
where the localized orbitals are completely determined by symmetry. A con
siderable amount of exploratory calculations is necessary in order to decide 
which localization procedure (Edmiston -- Ruedenberg30, Boys31 ) is the most 
suitable. 

3. CALCULATIONS 

We carried out actual calculations for the cyclic polyenes C411 +2 H411 , 2, 

n = 1, 2, 3, 4, 5, 6, 7, in the PPP approximation. These systems being only 
weakly localizable are well suited to study the importance of the localization 
terms because the contribution of the latter is a sizable fraction of the total 
correction. In addition, for C6 H6 and C10 H10 full CI is also available.24 

The PPP Hamiltonian is the following 

A A A A A AA 

H""r = fl ~ aµ/ avu + Y2 ~ Yµv aµ/ av/ a,1~ aµu' 
µ,v,a 
µ=j=v 

µ,v 
a,r 

(16) 

where ,u, y and a, i are atomic orbital and spin indices, respectively. For the 
matrix elements yµv we used the Mataga - Nishimoto parametrization.32 The 
CC bond length was taken to be 0.14 nm. An advantage of the PPP approxi
mation is that fJ-1 can be regarded as the coupling constant of the electron-elec
tron interaction. 

The canonical HF orbitals are completely fixed by symmetry 

'P· = N-1
/ 2 ~ exp ----- X - N ( 2niµ j) 

I µ~ 1 N µ> 

,. - 0 + 1 + 2 + ( N - 1) N ( N · dd ) J - ' - ' - , ••. - 2 , + 2 ' 2· 0 ' (17) 

where Xµ is an atomic orbital centered on atom fl· 

It is well known that for N 2': 3 (N ¥- 4) , there exists a continuum of sets 
of localized orbitals.33 We applied the set which formally corresponds to a 
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Kekule structure. The (equivalent) localized orbitals of this set are the 
following: 

where for the occupied orbitals 

(~ -+) 

N 
'P; = ~ C;µXµ, 

µ= 1 
(18) 

C;µ=2' i2N-1 {1+2 ~ cos pN:rr: (2µ-4i+l)}, i=l,2, .. . ,N/2; (19) 
p=l 

and for the virtual ones 

(~ -+) 
C;µ * = 21

/ 2 N-1 (-1)µ-1 { 1 + 2 ~ cos 
p = l 

p:rr: (2µ - 4i + 1) }, i = 1, 2, . .. , N/2. 
N 

(20) 

Having evaluated the matrix elements of the HF orbitals (17)-(20) within 
the framework of the PPP scheme no further approximation was made, the 
calculation of the energy corrections was carried out on ab initio level. 

The energy corrections were calculated through fourth order in both the 
canonical and the localized representation for the interval 0 ;?:: fJ ;?:: - 10.0. 

The total energy correction of a given order, n, in the canonical represen
tation is denoted by Ccan<n>. In the localized representation for n > 2, C1oc(n) 
consists of two terms: Cc1<n>, Cn<n> . The former is the total contribution of the 
canonical diagrams with localized orbitals whereas the latter is the total 
contribution of the localization terms. 

The total energy corrections through a given order, n, are denoted as 
follows 

where 

n 
Ecan (n) == ~ Ccan ( i )' 

i = 2 

n 
Eloc(n) = ~ <:"1oc(i>, 

i = 2 

{ 

r (i ) 

(i) - 'cl ' 
Cloe - !- (!) + !- (i) 

Sc! S 11 ' 

if i = 2, 

if i > 2. 

For C6H6 in the interval 0.0 ;::::: fJ ;?:: -10.0 Ecan<4> and E10 c<4> are compared 
to the result obtained by full CI24 and displayed in Figure 4. For fJ > - 2 
both versions fail to give a sizable fraction of the exact result. It has been 
shown34 that the interval 0.0 ;?:: fJ ;?:: -2 is outside the convergence radius of the 
perturbation expansion in terms of p-1• 

It is apparent that as I fJ !-+ oo, the relative contribution of the localization 
terms increases but never becomes larger than 5.5°/ o of the total contribution 
E10c<4>. The localization diagrams represent a small but non negligible fraction 
of the total correlation energy. 

In order to illustrate the convergence of the MBPT for C6H6 we display 
perturbation corrections Cc1<2>, Cc1<3>, Cc1<4> in Figure 5. It can be seen that for 
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Figure 4. Portions of the total correlation energy for C6H6 (in °/o) recovered by, the cor
responding perturbation correction. The results obtained by full CI are taken as 100°/o. 

f3-+ 0 Cc1C4l goes below Cc1C2> and CcIC3l, i. e., the perturbation series fails to con
verge, but for the interval -2.0 > f3 2':: -10.0 the convergence is satisfactory. 

It should be noted that in the interval -1.5 2':: f3 2':: -10.0 c11c4> goes below 
Cn<3l and in addition C10 c<3> and C10 c<4l go below the corresponding canonical 
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Figure 5. Perturbation energy corrections E10c<n> for C6H6 as functions of fl : ---
second order; .. ... . . third order ; ---- fourth order. 
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quantities (can(3) and (can(4l, respectively. For the total contributions, however, 
inequalities 

are valid everywhere. 
It is easy to show that the localization corrections converge even with 

increasing I fJ I, while the rate of convergence is, however, slowing down. 
If, in the localized representation, we sum up to infinite order the con

tributions of diagrams derivable from the second order canonical diagram 
(Figure 1) by inserting crosses on the particle and hole lines, pr-ovided the 
series converges, the result should be equal to the contribution of the second 
order canonical diagram in the canonical representation. In Figure 6. we show 
for C6H6 the corrections 

where 
.EcJ<2>, Ec1<2> + En<n> [2], n = 3, 4, 5, 

n 
E1t> [2] = ~ ~n<'> [2] , 

i = 3 

and 2 in the square bracket means that only those contributions are included 
whose diagram is derivable from the second order canonical diagram. The 
difference between the fourth and fifth order terms is already small, and 
the latter is very close to the second order result in the canonical represen
tation, demonstrating the convergence of the series. 
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Figure 6. The convergence of the localization corrections derivable from the second 
order canonical diagrams for C6H6• The second order results of the canonical 

representation are taken as 100°/o. 

We obtained very similar results for other CNHN systems with an axcep- · 
tion: the minimum of ( 11 (3) and ( 11 (4l as functions of fJ are shifted towards larger 
I fJ I values showing that the relative importance at a given (J of the localization 
correction depends on the particle number. 

One of the expected advantages of the localized representation 'is that 
the local and nonlocal contributions of the correlation energy can be separated. 
In the case of the cyclic polyenes to every orbital pair 'l.f'i 'l.f'k we can uniquely 
assign a number characterizing the distance of their centers. The integral 
( ij I kl ) can also be partitioned according to the distances of orbital pairs 
ip; 'l.f'k and 'l.f'i 'If'! : d = I i - k I, or d = I j - l I· 
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Eval-uating the perturbation corrections the summations in a closed loop 
of the diagrams should only be extended over indices of orbitals whose 
distance : Ii- k I and/or I j - l ! does not exceed a certain number. In the 
case of C14H14 the possible values of d are 0, 1, 2, 3. If only d = 0 was allowed, 
we would get an approximation which is closely related to the conventional 
separated pair theory (see Ref. 19). When d = 1 or 2 the first or the first and 
second neighbour indices are also included. If d = 3, no terms are omitted from 
the summations. 

TABLE 

Porti ons of the Total Correlation Energy of C14 H 14 when Nonlocal Contributions 
are Graduaily Separated out. E 1o/J i s Taken as 1000/o. E1o/! (2) : Third Neighbor 
Indi ces Omitted; E1oc<•> (1): Second and Thi rd N eighbour Indices Omitted; E1oc<•> (0): 
only the Strictly Local Contributions are Retained (: First, Second and Third 

Neighbour Indices Omitted) 

(J/eV 0 -1.0 -2.5 -5.0 -10.0 

Eloc (4) (2) (O/o) 87.0 85.0 84.9 84.0 83.3 
Eloc (4) (1) (O/o) 75.8 73.0 71.0 69.5 68.2 
Eloc(4J (0) (O/o) 56.5 55.0 53.9 51.5 50.2 

In the Table we show the effect of the gradual separation of nonlocal 
contributions to the correlation energy of C14H14 as function of (3. The results 
are compared to the case when no <omissions are made (d = 3). It is rather 
surprising that even for this weakly localizable system more than 50°/o of 
the correlation energy consists of strictly local contributions (d = 0). 

Investigating the pa'ir correlation energies we obtained similar results.28 

4. CONCLUSIONS 

We have shown that the diagrammatic MBPT can be used without any 
difficulty also in the localized representation. The practical calculation of the 
extra terms (missing rn the canonical representation) does not require signi
ficant amount of computer time. 

The convergence properties of the two representations are very similar 
for the model systems investigated. 

The mai n advantage of the localized representation is that nonlocal effects 
can be gradually separated from the local ones by partitioning the localized 
orbitals according to the »order of neighbourhood« (in our case : d) and trun
cating the summations in the perturbation corrections to a given »order«. This 
would decrease the required computer time drastically at least for extended 
systems. 

If there exist local symmetries in the system considered further simpli
fications can be expected. 
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SAZETAK 

Perturbacijska teorija viSe tijela na temelju lokaliziranih orbitala 

Ede Kapuy, ZoLtcin Csepes i Cornelia Kozmutza 

Dijagramska formulacija perturbacijske teorije vise tijela (MBPT) prosirena 
je na slucaj u kojemu su posebno lokalizirane zaposjednute orbitale, a posebno 
nezaposjednute ili virtualne orbitale. Svi dijagrami koji opisuju korelacijsku ener
giju osnovnog stanja dani su do aproksimacije petog reda. Za modelne sustave
prstenaste poliene C4n+2 H 4n+ 2 - sve perturbacijske korekcije izracunane SU do 
cetvrtog reda za vrlo sirok raspon konstante sprezanja meduelektronskog djelovanja 
/]"""1• Procijenjene su takoder neke korekcije petog reda i razmatrana je konvergencija 
postupka s lokaliziranim orbitalama (LO). Pokazano je da! se u LO slici korelacijske 
energije mogu rasclaniti na lokalne i nelokalne doprinose. 




