On the Stability of BH_{3} and BF_{3} Adducts with BF, CO and N_{2}

Amelia Garcia-Leigh and John N. Murrell*
School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 9QJ, Great Britain
Received December 19, 1983

Abstract

Ab-initio SCF NO calculations have been carried out on the adducts of borane and boron trifluoride with carbon monoxide, dinitrogen, and boron fluoride. The calculations correctly predict that BH_{3} forms stronger complexes than BF_{3} and that CO forms stronger complexes tham N_{2}. It is predicted that the complexes of BF should be even stronger. These trends can be understood from the energies and wave functions of the HOMO and LUIMO orbitals of the components.

INTRODUCTION

$\mathrm{BH}_{3} \mathrm{CO}$ is a surprisingly stable species, having a calculated dissociation energy into BH_{3} and CO of $75 \mathrm{~kJ} / \mathrm{mol}^{1}$. The species $\mathrm{BF}_{3} \mathrm{~N}_{2}$ and $\mathrm{BF}_{3} \mathrm{CO}$ are known as van der Waals complexes, having been detected spectroscopically in supersonic nozzle beams with binding energies presumably no greater than $c a$. $17 \mathrm{~kJ} / \mathrm{mol} .{ }^{2} \mathrm{BH}_{3} \mathrm{~N}_{2}$ has not been reported but presumably would also exist only as a van der Waals complex. There are two features of interest in this family. Firstly that BH_{3} appears to form a stronger complex than BF_{3} and secondly that CO forms a stronger complex than N_{2}. There have been some qualitative explanations of these trends and some MO calculations which support the facts $^{3-10}$. However, the two are not in all respects consistent.

Several different types of study have been previously carried out with some of the adducts analysed in this work. The system that has received most attention is $\mathrm{BH}_{3} \mathrm{CO}$. In one of these studies ${ }^{4}$ (non-empirical SCF) it was pointed. out that the electron donation is mainly from the $2 s$ orbital of the carbon to the empty $2 p_{z}$ orbital of the boron. This gives rise to the major component of the B-C σ bond-order. The authors also point out that electrons migrate from the oxygen via the carbon towards the boron. Also, the $B-C \pi$-bond interaction is slightly bonding in character, which the authors believe indicates a hyperconjugative effect by the BH_{3} group.

Other authors ${ }^{6}, 11-13$ also discuss the importance of hyperconjugation in $\mathrm{BH}_{3} \mathrm{CO}$, pointing out, amongst other things, the expected shortening of the $\mathrm{B}-\mathrm{C}$ distance and the increase in the $\mathrm{B}-\mathrm{H}$ bond distance. Although the first factor does occur (by $0.18 \AA$), the second one, i.e. increase on the $B-H$ bond length, is very small (less than $10^{-2} \AA$), indicating that the $\mathrm{B}-\mathrm{H}$ bond length is not influenced by hyperconjugation.
$\mathrm{BH}_{3} \mathrm{~N}_{2}, \mathrm{BF}_{3} \mathrm{~N}_{2}$ and $\mathrm{BF}_{3} \mathrm{CO}$ have also been studied. In the case of $\mathrm{BH}_{3} \mathrm{~N}_{2}$ one of the groups ${ }^{1}$ which have studied this system indicate that no equilibrium geometry could be found, although they observed, that the N-N bond has a smaller electronic loss than the corresponding $\mathrm{C}-\mathrm{O}$ bond in $\mathrm{BH}_{3} \mathrm{CO}$. Another group ${ }^{14}$, using the CNDO/2 method, not only found a minimum but also found that the side-on conformation (in both $\mathrm{BH}_{3} \mathrm{~N}_{2}$ and $\mathrm{BF}_{3} \mathrm{~N}_{2}$) is more stable than the linear. However, CNDO is not an adequate method for studying weakly interacting systems.

Our study has the objective of giving a simple explanation based on good quality ab-initio calculations and we have extended the calculations to the isoelectronic species $\mathrm{BH}_{3} \mathrm{BF}$ and $\mathrm{BF}_{3} \mathrm{BF}$ to predict whether either should have a stability similar to that of $\mathrm{BH}_{3} \mathrm{CO}$.

All calculations were carried out using the GAUSSIAN 76 series of programs ${ }^{15}$. All molecules have singlet ground states and were treated in the RHF model. The split-valence $4-31 \mathrm{G}$ basis set supplied by the program was used in all cases.

In the BH_{3} adducts the BH bond was fixed at $1.19 \AA$, and in the BF_{3} adducts the BF bond was fixed at $1.31 \AA$. All other bond lengths and angles were optimised, or varied sequentially.

In Figure 1 we define the nomenclature used here for the parameters of all the molecules, $\mathrm{BX}_{3} \mathrm{~L}_{1} \mathrm{~L}_{2}$ (where $\mathrm{X}=\mathrm{H}$, or F , $\mathrm{L}_{1}=\mathrm{C}$, N , or B , and $\mathrm{L}_{2}=$ $=\mathrm{O}, \mathrm{N}$, or F).

Figure 1. Nomenclature for molecular geometries.
In all the cases it was found that the geometry presented in Figure 1 is energetically more stable than the geometry $\mathrm{BX}_{3} \mathrm{~L}_{2} \mathrm{~L}_{1}$, or, in the case of the N_{2} complexes, the side-on geometry.

RESULTS

The calculated and experimental geometrical parameters, where they are known, are presented in Tables I and II for the BH_{3} and BF_{3} molecules respectively, the calculated energies are presented in Table III.

The dispersion energy, due to electron correlation between the components of the molecules, cannot be obtained by SCF calculations. However, it should be included to obtain accurate potentials and when the binding energies are very small as in $\mathrm{BH}_{3} \mathrm{~N}_{2}$, it is reasonable to assume that the main part of the binding energy is due to this dispersion energy. Although we are aware of the necessity of including this dispersion energy the methods used to obtain it, configuration interaction or many-body perturbation theory, are outside the scope of this work.

TABLE I
Equilibrium Geometries of the $B H_{3} L_{1} L_{2}$ Molecules

Molecule	R_{1} / \AA	R_{2} / \AA	$\frac{R_{3}}{\AA(\text { fixed })}$	$\frac{\Theta}{\text { degrees }}$
$\mathrm{BH}_{3} \mathrm{BF}$ calc.	1.646	1.294	1.19	105.8
$\mathrm{BH}_{3} \mathrm{CO}$ exp. (12)	1.54	1.31	1.194	104.6
exp. (16)	1.53	1.14	1.25	103.0
exp. (13)	1.53	1.14	1.22	103.7
calc. (1)	1.611	1.136	1.209	104.0
calc.	1.61	1.131	1.19	104.0
$\mathrm{BH}_{3} \mathrm{~N}_{2}$ calc.	2.644	1.085	1.19	92.5

TABLE II
Equilibrium Geometries of the $B F_{3} L_{1} L_{2}$ Molecules

Molecule	R_{1} / \AA	R_{2} / \AA	$\frac{R_{3}}{\AA(\text { fixed) }}$	$\frac{\Theta}{\text { degrees }}$
$\mathrm{BF}_{3} \mathrm{BF}$ calc.	2.683	1.287	1.31	93.8
$\mathrm{BF}_{3} \mathrm{CO} \text { exp. (2) }$	$\begin{aligned} & 2.89 \\ & 2.886 \end{aligned}$			ca. $\begin{array}{r}90.7 \\ 91.0\end{array}$
calc.	2.678	1.132	1.31	92.5
$\mathrm{BF}_{3} \mathrm{~N}_{2}$ exp. (2)	2.88			90.5
calc. calc.	$\begin{aligned} & 2.864 \\ & 2.523 \end{aligned}$	1.085	1.31	ca. 91.0

TABLE III
Corrected Total Energy, Binding Energy, Distortion Energy and Binding Energy of the Distorted Fragments

	Corrected Total Energy	Binding Energy	Distortion Energy	Binding Energy of the Distorted Fragments Molecule
	$\frac{E^{*}(\mathrm{AB})}{E_{\mathrm{h}}}$	$\frac{\Delta E}{\mathrm{~kJ} / \mathrm{mol}}$	$\frac{D}{\mathrm{~kJ} / \mathrm{mol}}$	$\frac{\Delta E^{*}}{\mathrm{~kJ} / \mathrm{mol}}$
$\mathrm{BH}_{3} \mathrm{BF}$	-150.325	-101.780	54.516	-156.296
$\mathrm{BH}_{3} \mathrm{CO}$	-138.912	-27.423	54.308	-81.732
$\mathrm{BH}_{3} \mathrm{~N}_{2}$	-135.104	-2.450	1.602	-4.051
$\mathrm{Br}_{3} \mathrm{BF}$	-446.729	-14.524	5.986	-20.510
$\mathrm{BF}_{3} \mathrm{CO}$	-43.39	-2.009	5.779	-7.787
$\mathrm{BF}_{3} \mathrm{~N}_{2}$	-431.540	0.649	5.779	-5.130

[^0]It is also necessary to correct the total energy of the molecules to take into account the fact that the basis is overgenerous to the molecules in comparison to the fragments, that is, we have to consider the basis set superposition error. If $A B$ is the molecule with fully optimized geometry, A^{∞} and B^{∞} are the optimized fragments at infinity and AB^{0} and $\mathrm{A}^{0} \mathrm{~B}$ represent the molecule with no electrons on B or A , respectively, then the energy gained by the molecule from basis set extesion can be taken as,

$$
\Delta=\left[E\left(\mathrm{AB}^{0}\right)-E(\mathrm{~A})\right]+\left[E\left(\mathrm{~A}^{0} \mathrm{~B}\right)-E(\mathrm{~B})\right]
$$

The corrected total energy is

$$
E^{*}(\mathrm{AB})=E(\mathrm{AB})-\Lambda
$$

The value of Δ in our calculations varies from - $2.78 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{BH}_{3} \mathrm{~N}_{2}$ to $-19.19 \mathrm{~kJ} / \mathrm{mol}$ for $\mathrm{BH}_{3} \mathrm{CO}$. Table III gives both the values of $E^{*}(\mathrm{AB})$ and the binding energy of the complex defined as,

$$
\Delta E=E^{*}(\mathrm{AB})-E(\mathrm{~A} \infty)-E(\mathrm{~B} \infty)
$$

This binding energy contains the distortion energy of the fragments, which is the energy required by the BX_{3} groups to change from $D_{3 \mathrm{~h}}$ to $C_{3 \mathrm{v}}$ geometries and the change in bond length, which is small, for the other fragment. The distortion energy, D, is given by

$$
D=E(\mathrm{~A})-E(\mathrm{~A} \infty)+E(\mathrm{~B})-E(\mathrm{~B} \infty)
$$

and for these distorted fragments there is a binding energy, ΔE^{*}, given by,

$$
\Delta E^{*}=\Delta E-D
$$

Both of these quantities are also given in Table III.
In Table IV we present the charge distribution for all the molecules and the fragments, at the optimum geometries for the former and the distorted geometries for the latter. The last column shows the amount of charge donated from each of the atoms when the complexes are formed. A positive sign indicates that electrons have been donated from the respective atom.

DISCUSSION

The better bonding of CO compared with N_{2} to transition metals has been attributed ${ }^{17}$ to the fact that the highest occupied σ orbital of CO ($I P=0.52 E_{h}$) is non-bonding with its greatest component on the carbon, whereas that of the $\mathrm{N}_{2}\left(I P=0.57 E_{\mathrm{h}}\right)$ is bonding with equal weighting on both atoms. The electrons in this orbital are therefore more readily available for σ - bonding to another species in the case of CO. The non-bonding orbitals of N_{2} are of very low energy and derived from the s-atomic orbitals. There is much more $s p$ mixing in CO than in N_{2} and the difference in the energies of the non-bonding orbitals in N_{2} and CO is a reflection of this. It has been suggested that the properties of N_{2} are a reflection of a unique electronic structure. ${ }^{17}$

It has also been suggested ${ }^{18}$, from an analysis of the properties of complexes of CO and N_{2}, that N_{2} is a poorer $(\sigma+\pi)$ ligand than CO but π-acceptance relative to σ-donation is more important in N_{2} than in CO. By comparison with CO and RCN it can be said that N_{2} is a moderate π-acceptor but a weak

TABLE IV
Charge Distribution in the Complexes and Fragments

Molecules			Charge Donated		
BH_{3}	BF		$\mathrm{BH}_{3} \mathrm{BF}$		
B 0.2028	B	0.4302	B	-0.1525	-0.3553
-0.0676	F	-0.4302	B	0.7319	0.3017
			F	-0.4105	0.0197
			H	-0.0563	0.0113
BH_{3}	CO		$\mathrm{BH}_{3} \mathrm{CO}$		
B 0.2028	C	0.3955	B	0.0327	-0.1701
-0.0676	O	-0.3955	C	0.5339	0.1384
			O	-0.4140	-0.0185
			H	-0.0507	0.0169
BH_{3}	NN		$\mathrm{BH}_{3} \mathrm{~N}_{2}$		
B 0.2322	N	0.0	B	0.2364	0.0042
-0.0774	N	0.0	N	0.0178	0.0178
			N	-0.0031	-0.0031
			H	-0.0858	-0.0084
BF_{3}	BF		$\mathrm{BF}_{3} \mathrm{BF}$		
$\mathrm{B} \quad 1.2985$	B	0.4302	B	1.3001	0.0016
-0.4328	F	-0.4302	B	0.4828	0.0526
			F	-0.4168	0.0160
			F	-0.4554	-0.0252
BF_{3}	CO		$\mathrm{BF}_{3} \mathrm{CO}$		
B 1.2985	C	0.3955	B	1.3201	0.0216
-0.4328	O	-0.3955	C	0.4510	0.0555
			O	-0.4086	-0.0131
			F	-0.4542	-0.0214
BF_{3}	NN		$\mathrm{BF}_{3} \mathrm{~N}_{2}$		
B 1.2985	N	0.0	B	1.3452	0.0467
F -0.4328	N	0.0	N	0.0069	0.0069
			N	0.0045	0.0045
			F	-0.4522	-0.0194

σ-donor. ${ }^{18} \mathrm{CO}$ normally can displace N_{2} from its complexes, but the converse is not true. ${ }^{19}$

To find out if our results show this behaviour for $\mathrm{CO}, \mathrm{N}_{2}$ and BF , we used Koopmans' theorem ${ }^{20}$, to equate the eigenvalue of an orbital to the negative of the ionization potential of an electron in that orbital. The $\sigma I P$'s for BF, CO and N_{2} produced by our calculations are $0.4022,0.5490$ and $0.6295 E_{\mathrm{h}}$, respectively, which can be compared with the experimental values, $0.4085^{21}, 0.5150^{21}$ and $0.5725 E_{h}{ }^{22}$, respectively. Approximate Hartree-Fock calculations ${ }^{23}$ show that the highest occupied orbital for all three molecules has σ symmetry. Our calculations for N_{2} lead to the occupied π orbital being just above the σ but for comparison we have used the σ orbital energies for all three species. The
lowest vacant orbital in these molecules is a π orbital with energies 0.1216 , 0.1487 and $0.1590 E_{\mathrm{h}}$ for BF, CO and N_{2}, respectively.

However, one cannot explain the bonding just in terms of orbital energies because CO does not bond through the oxygen atom nor BF through the fluorine. The distribution of the σ-donor and π-acceptor electrons must be equally important. Our calculations give the σ - and π-MO Mulliken populations shown in Table V. We note that the atom through which bonding occurs is that having the greatest σ and π populations. Moreover, the order of the populations suggests both a σ and a π bond strength increasing from N_{2} to CO to BF. If the overlap populations are ignored (they contribute equally to both atoms in the Mulliken scheme used for Table V) then the π populations for N_{2} and CO are increased (because the π overlap population is negative) and all other populations are decreased.

TABLE V
σ - and π-MO Mulliken Populations for BF, CO and N_{2}

		σ	π
	B	0.88	0.80
BF			
	F	0.12	0.20
CO	C	0.17	0.70
$\mathrm{~N}_{2}$	O	0.50	0.30

Cl and F atoms withdraw negative charge from the B atom and so increase the electron affinity associated with the boron vacant $2 p$ orbital, thus increasing acid strength relative to BH_{3}. It has also been said ${ }^{3}$ that halogens and similar atoms in BX_{3}, also feed some negative charge into the vacant orbital by a resonance effect, thus tending to decrease its energy, but, apparently, the net effect is usually to increase acid strength. The incomplete octet in BX_{3} compounds makes them behave as Lewis acids (acceptors), with the boron obtaining its maximum coordination with an approximately $s p^{3}$ hybridization. ${ }^{24}$

Using Koopmans' theorem we predict ionization potentials of $0.4966 E_{\mathrm{h}}$ and $0.6671 E_{\mathrm{h}}$ for BH_{3} and BF_{3} respectively. The HOMO for BH_{3} is E^{\prime} in $D_{3 h}$ and hence will overlap with vacant π orbitals of the diatomic fragment. For BF_{3}, the HOMO is A^{\prime} but localised almost entirely in the F atoms. There is, however, an E^{\prime} orbital just below this A^{\prime}, giving an ionization potential of $0.6882 E_{\mathrm{h}}$ and it is this which will act as the electron donor orbital to the diatomic fragment. BH_{3} is, we see, a much stronger donor than BF_{3}.

The LUMO's of BH_{3} and BF_{3} have energies $0.0937 E_{\mathrm{h}}$ and $0.1733 E_{\mathrm{h}}$ respectively. In both cases these are $A^{\prime \prime}$ for the planar boron ligand, largely p orbitals on the boron, and these accept electrons from the donor σ orbitals of the diatomic ligand. BH_{3} is a stronger acceptor than BF_{3}.

It has been said that BH_{3} is a stronger Lewis acceptor than BF_{3} because in BF_{3} (and the other boron trihalides) the boron $2 p$ orbital is not fully vacant due to hyperconjugation with the halogen lone pair orbitals. The energy of this orbital is raised by this interaction ${ }^{11}$. Also deformation of the BH_{3} or BF_{3} structures from $D_{3 \mathrm{~h}}$ to $C_{3 \mathrm{v}}$ in the complexes is necessary to minimise the
repulsion of filled orbitals in the two components and to maximise the availability of the boron vacant orbital, and hyperconjugation would lead to a greater deformation energy for BF_{3} than for BH_{3}. This was suggested as the reason for the nonexistence (at the time) of $\mathrm{BF}_{3} \mathrm{CO}^{25}$

The energy required to distort BF_{3} or BH_{3} by the same angle is always greater for BF_{3}. However, in the stronger complexes the distortion of the BH_{3} is always larger than of the BF_{3}, so the distortion energy is actually larger in $\mathrm{BH}_{3} \mathrm{CO}$ and $\mathrm{BH}_{3} \mathrm{BF}$ than in the corresponding BF_{3} complexes. The distortion of the BH_{3} and BF_{3} fragments in the nitrogen complexes are, however, very similar and hence $\mathrm{BF}_{3} \mathrm{~N}_{2}$ has the larger distortion energy (Table III).

It is, however, necessary to compare these energies of deformation with the binding energies of the complexes (Tables I and III). In some of the cases shown in Table IV the differences between these two energies are so small that there is a competition between the formation of the complex, with the distortion of the BH_{3} or BF_{3}, or the non-formation of the complex.

As can be seen from the table, $\mathrm{BH}_{3} \mathrm{~N}_{2}$ and $\mathrm{BF}_{3} \mathrm{CO}$ have very small binding energies and will therefore only exist as van der Waals complexes in very low temperature beams. We find no binding energy for $\mathrm{BF}_{3} \mathrm{~N}_{2}$ but the dispersion energy would provide for small stabilization of a van der Waals complex.

In the case of the complex between BF_{3} and BF one has to consider the possibility of forming the species $\mathrm{B}_{2} \mathrm{~F}_{4}$. It has been reported ${ }^{26}$ that $\mathrm{B}_{2} \mathrm{~F}_{4}$ can be prepared by passing BF_{3} over crystalline B at $2233-2273 \mathrm{~K}$ under 1 mm pressure, conditions which give high yields of BF. BF condenses to a green polymer at 77 K from which small amounts of volatile boron fluorides containing up to 14 boron atoms are released on warming. Amongst the products obtained were $\mathrm{BF}_{3}, \mathrm{~B}_{2} \mathrm{~F}_{4}$, and possibly $\mathrm{B}_{3} \mathrm{~F}_{5}$. The amount of $\mathrm{B}_{2} \mathrm{~F}_{4}$ obtained depended very strongly on the amount of BF_{3} condensed along with the BF.

From experimental evidence ${ }^{27}$ it is known that $\mathrm{B}_{2} \mathrm{~F}_{4}$ is planar in the gas phase with $r(B-B)=1.720^{4} \AA r(B-F)=1.317^{2} \AA$ and $\left\langle B F F=121.4^{01}\right.$. However, ab-initio SCF calculations using contracted Gaussian basis sets show the staggered form to be more stable but with essentially free rotation about the $\mathrm{B}-\mathrm{B}$ bond. ${ }^{28}$ We have calculated $\mathrm{B}_{2} \mathrm{~F}_{4}$ using the parameters obtained in Ref. 28 and compared the energies obtained with those obtained for $\mathrm{BF}_{3} \mathrm{BF}$. The total energies are: $\mathrm{B}_{2} \mathrm{~F}_{4}, D_{2 \mathrm{~d}}-446.796923 E_{\mathrm{h}}, D_{2 \mathrm{~h}}-446.796841 E_{\mathrm{h}}, \mathrm{BF}_{3} \mathrm{BF}-446.733005$ E_{h}. Also we have calculated the total energies for $\mathrm{B}_{2} \mathrm{H}_{3} \mathrm{~F}$ in $D_{2 \mathrm{~d}}$ and $D_{2 \mathrm{~h}}$ (in this case, we have optimized the three bond lengths keeping the angles fixed at 120°) and compared them with the energy obtained for $\mathrm{BH}_{3} \mathrm{BF}$. The values are: $\mathrm{B}_{2} \mathrm{H}_{3} \mathrm{~F}, D_{2 \mathrm{~d}}-150.363396 E_{\mathrm{h}}, D_{2 \mathrm{~h}}-150.353426 E_{\mathrm{h}}, \mathrm{BH}_{3} \mathrm{BF}-150.328358 E_{\mathrm{h}}$. As can be seen from this results, both $\mathrm{B}_{2} \mathrm{~F}_{4}$ and $\mathrm{B}_{2} \mathrm{H}_{3} \mathrm{~F}$ in the $D_{2 \mathrm{~d}}$ conformation seem to be more stable than the corresponding $\mathrm{BX}_{3} \mathrm{BF}$ molecules.

REFERENCES

1. J. Breulet and J. Lievin, Theor. Chim. Acta 61 (1982) 59.
2. K. C. Janda, L. S. Bernstein, J. M. Steed, S. E. Novick, and W. Klemperer, J. Amer. Chem. Soc. 100 (1978) 8074.
3. The Chemistry of Boron and its Compounds, E. L. Muetterties, John Wiley and Sons, N. Y., 1967.
4. D. R. Armstrong and P. G. Perkins, J. Chem. Soc. A (1969) 1044.
5. R. M. Archibald, D. R. Armstrong, and P. G. Perkins, J. Chem. Soc., Faraday Trans. 269 (1973) 1793.
6. S. Kato, H. Fujimoto, S. Yamabe, and K. Fukui, J. Amer. Chem. Soc. 96 (1974) 2024.
7. H. Umeyama and K. Morokuma, J. Amer. Chem. Soc. 98 (1976) 7208.
8. D. R. Armstrong, Inorg. Chim. Acta 33 (1979) 177.
9. L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, J. Amer. Chem. Soc. 101 (1979) 2856.
10. D. T. Clark, B. J. Cromarty, and A. Sgamellotti, Chem. Phys. 46 (1980) 43.
11. Molecular Complexes. A Lecture and Reprint Volume, R. S. Mulliken and W. B. Person, Wiley-Interscience, N. Y., 1969.
12. R. C. Taylor, J. Chem. Phys. 26 (1957) 1131.
13. A. C. Venkatachar, R. C. Taylor, and R. L. Kuczkowski, J. Mol. Struct. 38 (1977) 17.
14. I. B. Golovanov and V. M. Sobolev, Teor. Eksp. Khim. 10 (1974) 252 (Engl. version).
15. GAUSSIAN 76, J. Binkley, R. A. Whiteside, P. C. Hariharan, R. Seeger, J. A. S. Pople, W. J. Hehre, and M. D. Newton, Q.C.P.E., 11 (1978) 368.
16. C. Pepin, L. Lambert, and A. Cabana, J. Mol. Spectrosc. 53 (1974) 120.
17. J. Chatt and G. J. Leigh, in: Recent Aspects of Nitrogen Metabolism in Plants, E. J. Hewitt and C. V. Cutting (Eds.), Academic Press, London, 1968.
18. G. M. Baucroft, R. E. B. Garrod, A. G. Maddock, M. J. Mays, and B. E. Prater, J. Amer. Chem. Soc. 94 (1972) 647.
19. J. Chatt, J. R. Dilworth, and R. L. Richards, Chem. Rev. 78 (1978) 589.
20. T. Koopmans, Physica 1 (1933) 104.
21. Inorganic Chemistry, Principles of Structure and Reactivity, J. E. Huheey, Harper-Row. U. K., 1972.
22. R. B. Caton and A. E. Douglas, Can. J. Phys. 48 (1970) 432.
23. R. K. Nesbet, J. Chem. Phys. 40 (1964) 3619.
24. Advanced Inorganic Chemistry, A Comprehensive Text, F. A. Cotton and G. Wilkinson, 4th Edit., Wiley-Sons, U.S.A., 1980.
25. D. R. Armstrong and P. G. Perkins, Theor. Chim. Acta 15 (1969) 413.
26. P. L. Timms, J. Amer. Chem. Soc. 89 (1967) 1629.
27. D. D. Danielson, J. V. Patton, and K. Herdberg, J. Amer. Chem. Soc. 99 (1977) 6487.
28. See for example, M. F. Guest and I. H. Hillier, J. Chem. Soc., Faraday Trans. 270 (1974) 398.

SAZ̆ETAK

O stabilnosti adukata $\mathbf{B H}_{3}$ i $\mathbf{B F}_{3}$ s dvoatomskim molekulama $\mathbf{B F}, \mathbf{C O}$ i \mathbf{N}_{2}
Amelia Garcia-Leigh i John N. Murrell
Ispitana je mogućnost vezanja fragmenata BH_{3} i BF_{3} na dvoatomske molekule BF , CO i N_{2} primjenom ab initio SCF MO postupka. Računi ispravno reproduciraju činjenicu da BH_{3} stvara stabilnije komplekse od BF_{3}. Isto tako proizlazi da su kompleksi s molekulom CO jači od onih koje stvara molekula dušika N_{2}. Predviđa se, također, da BF daje najstabilnije komplekse. Spomenuti trendovi mogu se racionalizirati s pomoću oblika HOMO i LUNO orbitala fragmenata i njihovih orbitalnih energija.

[^0]: * $1 \AA=10^{-10} \mathrm{~m}, 1 E_{h}=$ hartree $=2626 \mathrm{~kJ} / \mathrm{mol}$

