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The conceptual and mathemaitical basis of a molecular orbital 
method which enables the calculation. of conformational energy 
changes and other properties of proteins, is presented. The informat- · 
ion inherent in the chemical formulae of the polypeptide backbone 
and side chains is maximally exploited. A basis of strictly localized 
molecular orbita-ls is used, thus allowing the partitioning of the 
molecule into four fragments: central part (C), delocalization (D), 
inductive (I) and transferable bond (T) regions. Fragment C consists 
of bonds which undergo the most important chemical changes. For 
this conventional self-consistent field equations with an effective 
core Hamiltonian accounting for the influence of fragments D, I 
a'Ild T, are given. Simple perturbation expressions are used for 
fragment D in order to calculate tails of strictly localized molecular 
orbitals, which account for charge transfer from and to the central 
part. Only inductive effects are considered for fragment I by solv­
ing a coupled set of 2 X 2 secul<N equations in order to optimize 
coefficients of strictly localized molecular orbit<Fls. Regions C and 
T lie very far from each other and therefore empirical strictly 
transferable coefficients are used for the latter. The above pro­
cedure allows the treating of proteins at the zero differential over­
lap level, since with increasing molecular size the amount of com­
putationa<l work becomes proportional to the first power of the 
number of bonds. Applicability of the present concept is discussed 
on the basis of numerical results obtained for the electrostatic 
potential and conformational properties of serine proteinases. 

INTRODUCTION 

Quantum chemical computation methods are mostly based on the mole­
cular orbital (MO) concept.1 One-electron functions, required in the indepen­
dent-particle approximation, are expanded on the basis set of atomic orbitals. 
This allows an elegant and economic treatment of the accompanying mathe­
matical problem: solution of a secular equation. The appearance of more and 
more powerful computers as well as exploitation of a number of technical 
tricks in software resulted in very effective programs for the solution of self­
-consistent MO problems. Treatment of molecules with less than 40 or 10 heavy 
(Z > 2) atoms have became routine at the semiempirical or an initio levels, 
respectively. 

Despite the spectacular success of the MO concept, at least two important 
aspects of quantum chemistry seem to resist its power: the theory of the 



802 G. NARAY-SZABQ 

chemical bond and the treatment of very large molecules such as proteins. 
We feel that these two problems can be approached from a common starting 
point: an appropriate counterpart of the bond concept has to (and can) be found 
in quantum chemistry and such a concept could also help in treating very 
large molecules quantitatively. We firmly believe that in order to reach this 
goal the chemist's way of thinking has to be followed. Our studies are restricted 
to classical molecules which have a well-defined chemical formula. Quantum 
chemical computational methods should exploit all information inherent in 
the formula. This philosophy serves as a basis for our considerations, and sup­
ports our feeling that, despite its methodological character, the present paper 
fits well into the topic of this Special Issue: Conceptual Quantum Chemistry -
Mode ls and Applications. 

The bond concept is very old in quantum chemistry. The valence bond mo­
del of Pauling and others2 achieved spectacular success at the qualitative level 
and its failing reputation is primarily due to technical problems. An alternative 
way of making use of the chemical formula in numerical calculations is of­
fered by strictly localized MOs or, in other terms, bond orbitals.3- 15 These may 
serve as building blocks in constructing approximate wave· functions thus 
reducing the computational work considerably. The crucial points in applying 
bond orbitals in quantum chemical calculations is their transferability and 
localizability. We have been continuously studying this quesHon in our labo­
ratory and proposed efficient methods for correcting deficiencies arising from 
the partial violation of th e above conditions.15- 20 

In the present paper we are presenting an outline of a method which is 
capable of treating very large molecules, especially proteins, at the CND0/2 
level of approximation. Its application is restricted to such problems where 
chemical events are localized to a relatively small region of the molecule ; 
other parts remain fixed and function as an environment. An example is 
conformational behaviour of protein side chains, which can be studied succes­
fully by the simple CND0/2 method as well.19 Bulk properties, such as skeletal 
vibrations or electric conductivity seem to be beyond the scope of this method. 

The chemical model is presented in the next section followed by physical 
aspects and mathematical formulae. The present paper is closely related to that 
of Surjan21 in this issue, in which further details can be found. Although we do 
not have a complete computer program at present which would encompass the 
calculations outlined in this paper, several results obtained by various bond 
orbital methods are available. These w ill be discussed however, and the paper 
ends with an outlook for further applications. 

MODEL 

We divide a biomacromolecule (e.g. protein) into four parts (cf. Figure 1). 
By using chemical intuition let us first define a central region (C). The majority 
of actual changes, like rotation around a bond, geometry distortion, or local 
electronic excitations, can be localized in this group of atoms. The central 
region concept is exploited in biomimetic chemistry22 where appropriate mole­
cular models, containing not more than some dozen atom, are studied instead 
of the biomacromolecule as a whole. The second region, directly linked to the 
first one, is the delocalization part (D). Region D is not very much affected by 
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Figure 1. Chemical fragmentation of the active site in a-chymotrypsin. 

the events in the central part, but the relatively sma11 alterations in its electron­
ic structure may strongly influence the small energy changes in C. The most 
important effect is electron delocalization from C to D and vice versa. It has 
been pointed out that this is of primary importance in determining barriers 
to rotations around single bonds.18 Besides delocalization, inductive effects are 
also present, which means that the electrostatic field of C polarizes bonds 
in D thus producing a different environment for C. In region I delocalization is 
neglected and only inductive effects are considered. Finally, we define a region, 
T, which is composed of completely transferable bonds and serves as a rigid, 
nonpolarizable environment for regions C, D and I. 

The advantage of this chemical partition is that for different regions, the 
degree of sophistication of the applied quantum chemical methods may be 
different. Thus, an SCF procedure is applied to C accounting for even drastic 
changes in the electronic structure. This is very time consuming, but it does 
not have to be applied to regions D, I and T. Delocalization together with 
electron correlation can be considered by applying perturbation approximat­
ions23 and inductive effects are also calculated very simply.7•13•15 As a result, 
the computational work for regions D and I will be proportional to the square 
of the number of bonds present here. Going a step further , bonds in region T 
are considered to be strictly transferable, therefore the empirical parameters 
of the corresponding orbitals can be stored in a computer program and no 
optimization procedure is necessary. Neglecting nonorthogonality terms, which 
is allowed if T is far from C, the amount of computational work becomes 
proportional only to the first power of the number of bonds in the biomacro­
molecule.12,16 This allows the treating of real systems of very large size at a 
low cost. 
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MATHEMATICAL FRAMEWORK 

In order to find a counterpart of the chemical model outlined in the 
previous section, we used a basis of strictly localized MOs (SLMOs). For each 
bond, i, a set of SLMOs, linear combinations of normalized atomic hybrid 
orbitals (HYOs, h m;), is defined 

M; 

cpµi = L c.;,,; h mi 
1n= 1 

5 

hmi = L a;,,; U P 
11 - 1 

(1) 

(2) 

uv is a Slater-type atomic orbital (STO). p = 1, 2, 3, 4 and 5 stands for ls (for 
a H atom) , 2s, 2px, 2py and 2p,-type STOs, respectively. Notice that the 
»hybrid« for a H atom is a pure ls-orbital, hHi = u18 and, on the other hand 
a1,n; = 0 for heavy (Z > 2) atoms. For classical molecules, such as proteins. 
three types of SLMOs can be defined. 

- Lone pairs 
(3) 

The orientation and s-character are defined by the coefficients in Eq. (2). The 
finding of these is not quite simple, however a chemical evidence may help16 

The best choice seems to be the case when chemically reasonable lone-pair 
HYOs are othogonalized to each other on the same atom.19 

- Two-centre a-bond orbitals 

cp1 ~ = Cl hi + C2 hz 

cp2 ~ = Cz hi - Ci hz 

(4) 

(5) 

h1 and h2 are HYOs on atoms 1 and 2, respectively, oriented in the bond 
direction. ci and c2 are bond polarities. To ensure normalization within the 
ZDO assumption c1

2 + c2
2 = 1. 

- :n:-bond orbitals delocalized to M" centres 

M. 

cpµ = L cµ u 2vz 
it m m (6) 

1n= 1 

Eqs. (1-6) define a minimal basis set if occupied and virtual orbitals in Eq. (6) 
are also considered. A zeroth order wave function can be constructed from all 
occupied strictly transferable SLMOs. We use this wave function, appropriate 
for calculating molecular electrostatic potential maps16, for region T . Inner 
reg~ons, I , D and C, have to be described more precisely and therefore bond 
polarities of Eq. (6) are optimized. We derive the following secular equation 
for the vector of coefficients of the i-th system 

(7) 

where the Fockian is defined within the frame of the CND0/2 approximation2 ~ 

M, 
F . = H eff +· "' p ( " · 1 " ' ) aa , l aa, i ~ mm, i ai , at m t, mt -

m=l 

1 - 2 cPaa, i - l) (ai ; ai I ai ; ai) (8) 
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1 
Fab, i = H~~:i - 2 Pab, i (ai; ai I bi; bi) (9) 

Notice that in Eqs. (7)-(9) i represents one index (for a-bonds) or a set of 
indices (for :n-bonds). 

The effective core Hamiltonian is defined as follows 

N Alj NT Mk 

H~~: i =Haa,i+ ~ ~ Pmm,j(ai;ai l mj;mj)+ ~ ~ Pmm,k(ai;ai[mk;mk) (10) 

j=l m=l k=l m=l 

H~~1• i = Hab, i (11) 

The first and second te,rm in Eq. (10) stand for the interaction between electrons 
of the i-th bond and those of other bonds within the inner (I, D and C) and 
outer (T) regions, respectively. The core Hamiltonian is defined as in the 
CND0/2 method 

1 M, 
Haai = - - (Ia+ Aa)- ~ z/11 (ai; ai I mi; mi) 

2 m=l 

(12) 

(13) 

Ia, A a and Zm are ionization potential, electron affinity and core charge of the 
corresponding atom in bond i, /3ab is the resonance integral in the CND0/2 
approximation. The overlap and ~oulomb integrals are defined as usual 

Sab,; = f hai (1) hbi (l) dv1 (14) 

(ai; bi I mj; nj) = SJ h ai (1) hbi (1) r12- 1 h;.;j (2) h,,i (2) dv1 dv2 

P is the density matrix defined as follows 

Ni 

(15) 

p nzn, i = 2 ~ cµmi cµni (16) 
µ=1 

Summation in Eq. (16) runs over occupied orbitals belonging to system i (one 
for a-bonds and more for :n-systems). 

The last sum in the effective core Hamiltonian of Eq. (10) comes from 
region T (containing NT bonds) and is an additive constant. On the other hand, 
the first sum represents the electronic interaction between bonds in regions 
C + D + I (containing N bonds) and changes continuously in the iteration 
process. Consequently, solution of the secular equation in Eq. (7) corresponds 
to an ordinary, M; X M; eigenvalue problem which depends on N through 
Eq. (10) quadratically. As a result, the dimensionality of Eq. (7) is quasi­
-independent of the number of bonds (electrons) in regions C + D + I. For 
proteins, the largest :n-system is that of tryptophan (M; = 9), which means that 
numerical problems at this level of approximation are negligible. 

Once we have optimized parameters in the SLMO basis set, the molecular 
orbitals for region C can be written as 

Mc 
'l/Jcm = ~ amk 'Pk 

k=1 

(17) 
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where <]?k is an SLMO formally defined by Eqs. (1)-(6). Notice that coefficients 
in Eqs. (5)-(6) are optimized by solving Eq. (7) . Summation in Eq. (17) runs 
over occupied and virtual orbitals i . e. 

(18) 

where N 0 , N" and N1p are the number of two-centre a-bonds, occupied :re-orbitals 
and lone pairs, respectively. 

To find the best wave function for the cen tral region, th e a 111 k coefficients 
should be optimized. This is done by solving the following secular equation 

(19) 

Af, 1 
F;i = HW + ~ P kz [(ij I kl) - - (ik I jl)J 

k ,l EO 2 
(20) 

H;r = H ;i+2 ~ (ij l kk) (21) 
kE D,,I ,T 

Eqs. (19)-(21) were derived by applying the variation principle to the total 
energy of the central part and making use of th e special form of the density 
matrix P (cf. Figure 2).20 Electron repulsion integrals (ij I kl) are obtained 

c 
DCC virt DCC virt 
~~~~ 

0 

~---~-~------ -- - ---

2 
2 

2. 
0 

· -o~ 

0 
0 

Figure 2. Schematic representation of the density matrix in Eq. (20) 

formally from Eq. (15) by replacing h a;, h 0;, hmi and hni by <pi, <J?i, <pk. and 
cp1, respectively. A similar relation exists between core Hamiltonians of Eq. (21) 
and Eqs. (10-16). Notice that even by applying the ZDO assumption, the <]?i cpi 
differential overlap does not vanish necessarily (e .g. in case of occupied-virtual 
combinations of a-bonds) . Mc is the dimensionality of the secular equation in 
Eq. (19). The principal feature of our method is that it is independent of the 
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size of the whole molecule. Its value depends only on the number of bonds 
which participate directly in the chemical event. 

The total energy of the system is written as follows 

E=EC+ D + l+_!~ P . (F .+ H ?~f)+ 
nucl 2 'J 11 i1 

i,iEC 

M, ff 
+ ~ ~ p ab (Fab i + H~b i ) +ED+ ET 

ieD,,I ab , ' 
(22) 

The first term stands for repulsion between nuclei of regions C, D and I, the 
second and third sums are electronic energies of the central part and delocaliz­
ation plus inductive regions, respectively. ED comes from electron delocalizat-

ion from and to the central region. It is associated with tails, 1'Jii• and ·17w ' of 
SLMOs in the following form 

) ' I 
ED = 2 ~ 1J ii* H ii* + 2 ~ 1J ii* H ii* 

ieC 
i*ED 

(23) 

In other words, 11 ••• is a coefficient for mixing virtual SLMOs to the occupied ., 1' 

one in order to account for delozalization 

virt 
'P;=Ni(r:pi+ ~ 1lii* r:pi.) 

i*ED 

(24) 

where Ni is a normalization factor. Although for classical molecules, 17. .• is 
'l 

relatively small,19 it may be extremely important e.g. if a hydrogen bond is 
formed between regions C and D. This is indicated by the fact that the cal­
culated rotational energy curve of region C in Figure 1 strongly depends on 
the choice of C if the correction in Eq. (23) is not considered.20 

Tails of SLMOs can be easily calculated in the framework of the linearized 
SCF model of Surjan and Mayer.17 Thus 

1'/;;• = 
ti E i i* Hw + (ii* I jj*) H ii* 

( .. * I . '*)9 • E • E ii J1 - - l.l ii* l.l ii* 
(25\ 

with 
ti Ew = F i*i* - Fii - (ii I j*j*) (26) 

Eq. (26) defines the energy of the i --+ j* excitation . Other terms in Eq. (25) are 
defined as in Eqs. (20)-(21). 

Finally, ET of Eq. (22) is the energy of the strictly transferable region 
including the nuclear repulsion with regions C, D and I. Owing to the large 
distance fr.om the central region, ET is considered as constant and therefore 
is dropped if calculating energy differences coming from chemical changes in C. 
It has to be noticed that E of Eq. (22) is not a strict upper bound for the total 
energy. This is a feature similar to the PCILO method.23 

DISCUSSION AND OUTLOOK 

In the previous section the mathematical background of our method has 
been presented. On this basis a computer program for the quantum chemical 
treatment of very large molecules, especially proteins, can be set up. Although 
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such a program is not yet available, we have several reasons to suppose that 
it would work for cases where chemical events can be loc2lized to a small 
group of atoms in th e m acrom olecule. Now we discuss these reasons in detail. 

Transferable SLMOs are appropriate building blocks of a zeroth order 
(»rigid«) wave function for very large molecules. 16 ,25 This wave function may 
be used to calculate molecular electrostatic potentials for protein molecules 
with up to 5000 atoms.26 ,27 Since, due to the l arge distance, the effect of region 
T on the central part C, is purely electrostatic, it is reasonable to suppose that 
it is appropriately treated by th e effective core Hamiltonians of Eqs. (10), (11) 
and (21) . This feature is of primary importance since it means that the com­
putational work necessary for obtaining the corresponding matrix elements is 
proportional only to the first power of the number of bonds in region T. As a 
result, protein molecules can be treated in full at reasonable cost and storag~· 
capacity. Obtaining charge distributions with a correct consideration of induct­
ive effects, i. e. solving a simplified form of Eq. (7), was first proposed by Del 
Re in his a-orbital method.7 It was later extended and applied to more com­
plicated systems,13,15 ,2s and found to work well at low cost. In our case the 
computational work increases quadratically with the number of bonds in 
regions C, D, and T, but the proportionality constant is small and therefore 
systems with 80-100 atoms can be handled successfully. 

Generation of tails in the delocalization and central regions by the for­
mulae in Eqs. (25)-(26) is an economic procedure and its efficiency has been 
tested ·on several model molecules.19 It has been found that beyond a distance 
of 4-500 pm, tails are negligible and, therefore, this is a reasonable radius for 
defining the extension of region D (cf. Figure 1) . Lone-pair tails are longer 
and this has to be borne in mind if defining the cut-off radius. 

The quantum chemical partitioning of a large molecule into a central 
region and environment has been proposed by several authors.29- 32 The intrinsic 
problem of all propositions is the definition of the central part which is often 
impractical and arbitrary. By using SLMOs a natural partitioning becomes 
possible a:s has already been indicated in a previous paper20 where regions D, 
1 and T were handled together. In defining the central part as sufficiently 
large, an almost quantitative agreement with full SCF results was achieved at 
the CND0/2 level. The reason for defining a delocalization region arnund the 
central parts, is that the size of C, for which a full SCF calculation has to be 
done, can be reduced to a minimum. 

A drawback of our method is that, in its present stage, it is semi-empirical. 
The general use of powerful computers allows the performing of ab initio 
calculations for medium-size molecules and therefore the popularity of semi­
-empirical methods continuously declines. For example, it is impossible to 
provide a correct energy curve for the 0-H ... 0 proton transfer in the water 
dimer (and in other systems e.g. proteins) by CND0/2 calculations. However, 
reasonable proton transfer energy curves can be obtained if a combined ab 
initio/semi-empirical calculation is performed (cf. Figure 3). A small, but ade­
quate model, e. g. the (H20h system, can be studied at the ab initio level by 
using a large basis set. The same system at the same geometries can be treated 
by the CND0/2 method, and by comparing the calculated values with the 
ab initio ones a correction is obtained. Adding this correction to the results, 
obtained by the present method for the real protein (Figure 3c), a reasonable 
proton-transfer curve is achieved which accounts for short-range and environ-
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Figure 3. Schematic proton transfer energy curves in a! hypothetical protein and in 
model systems. a) ab initio calculation with a large basis set, b) CND0/2 calculation, 

c) corrected CND0/2 curve including environmental effects. 

mental effects, as well. A calculation based on the above principle, was done 
to estimate proton-transfer energies for the Asp ... His catalytic diad ·in sub­
tilisin.33 Clearly, enviironmental effects which cannot be accounted for by a 
CND0/2-type approximation (e.g. dispersion forces) will be neglected in this 
combined approach, too. 

Acknowledgement. - The author is indebted to Dr. P . R. Surjan for fruitful 
discussions. 
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SAZETAK 

Molekulsko-orbitalni racuni na proteinima primjenom postupka kemijske 
fragmentacije 

Gabor Naray-Szab6 

Dana je teorijska osnova za racuna•nje promjena konformacijskih energija pro­
teina u okviru MO metode. Pri tome se maksimalno koriste informacije o polipep­
tidnoj kraljefoici i perifernim lancima, koje su pohranjene u kemijskim formulama. 
Pristup se temelji na potpuno lokaliziranim orbital~a. Citava se molekula moze 
tada podijeliti u cetiri regije: centralni dio (C), delokalizacijski dio (D), induktivni 
dio (I) te regiju transferabilnih veza (T). Najvafoije kemijske promjene zbivaju se u 
fragmentu C. Za taj SU dio formulirane jednadzbe s~ouskladenog polja pri cemu 
se rabi hamiltonijan efektivne kostice, a zatim se uzima u obzir utjecaj fragmenata 
D, I i T. Ovaj pristup omogucuje tretman proteina primjenom aproksimacije nultog 
diferencijll'lnog prekrivanja. Metoda je ilustrirana numerickim rezultatima za elek­
trostatski potencijal i konformacijska svojstva serin-proteinaze. 




