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The Valence-Shell-Electron-Pair-Repulsion theory, in its Po­
ints-on-a-Sphere (POS) variant has been heretofore almost ex­
clusively applied to molecular structure. It is shown that the POS 
model also implies the form of the potential energy surface for · 
bending deformations of molecules. The extent to which this ele­
mentary mechanical model simulates quantum mechanical inter­
actions in binary compounds of main-group elements is investigated 
using recent EHT molecular orbital calculations to supplement the 
rather sparse accumulation of experimental and ab initio character­
izations of potential surfaces. It is found that the POS force field, 
in the main, parallels quantum quadratic and anharmonic com­
ponents so closely that it promises to become a useful tool in spec­
troscopic and diffraction research. A simple effective force law 
between repelling points, namely -CJV;i (r)/or ex r-<•+1>, accounts 
well for the known data<. For experiment and ab initio theory, the 
parameter s expressing the hardness of repulsions is about 4, while 
for EHT computations with frozen VOIP values, interactions are 
slightly harder with s = 6. Implications are briefly discussed. 

INTRODUCTION 

The notion that molecular stereochemistry can be classified, perhaps even 
understood, in terms of the distribution of mutually avoiding valence-shell 
electron pairs has attracted attention for a half century. It was recognized 
from the earliest days of quantum chemistry that the most appropriate hybrid 
orbitals for bonds and lone pairs radiating from an atom are naturally dis­
tributed in space to point away from each other.1- 3 While the relevance of the 
concept of »molecular-adapted minimal-basis-set atomic orbitals« survives even 
in today's rigorous quantum treatments,4 one need not look far to find cases 
where an unambiguous intuitive decomposition into elementary hybrids for 
predicting stereochemistry is not at all obvious. In most such cases, however, 
it has been found unnecessary to speculate about the nature of the hybrid 
orbitals involved. It is enough merely to count valence-shell electron pairs and 
to direct the associated bonds/lone pairs in space according to simple rules. 
One of the first quite general formulations of such r ules was articulated by 
Sidgwick and Powell in 1940.5 After considerably more structural information 
had become available, Gillespie and Nyholm6 extended the rules and gave the 
stereochemical model the name it is known by today, the »Valence-Shell­
-Electron-Pair-Repulsion« (VSEPR) theory. Subsequently Gillespie7 and many 
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others popularized the model and it has become a valuable tool for chemists. 
Reinforcing the pair-repulsion concept have been recent quantum calculations 
of molecular electron densities. Regions identifiable with localized electron 
pairs are plainly evident in the Laplacian of the density, and their spatial 
distribution agrees with that of the VSEPR theory.8 One unfortunate pitfall 
which corrupts the meaning more than the utility of the model is the readiness 
with which many chemists confuse VSEPR repulsions with simple electrostatic 
repulsions between electrons. This commonly encountered error will be discus­
sed in a later section. 

According to the VSEPR theory, bond angles in molecules are governed 
by the mutual »repulsions« of Lewis electron pairs9 in the valence shells of 
atoms, and these forces are best accomodated when the electron pairs achieve 
an ·optimum mutual avoidance. Plausible rules regarding the effects upon pair­
-repulsions of electronegativity, multiple bonding, etc., have been formulated. 
For an illustration of the stereochemistry and structural trends correctly pre­
dicted by these rules, see Figure 1. So straightforward is the agency of the 
repulsion envisaged to be that repulsions between electron pairs in a given 
atomic valence shell have been modeled (successfully) as if they are repelling 
Points-on-a-Sphere (POS) .7 A voluminous literature1,10 applies the POS model 
to stereochemistry and structure. Curiously, little attention has been paid to 
the fact that a POS model not only implies equilibrium structure-it also 
implies the shape of the multidimensional potential »surface« for bending 
deformations of molecules.1i-t7 If the VSEPR theory in its POS variant is a 
bona fide theory yielding correct structures for nonspurious reasons, then, the 
implied potential surface should closely parallel that revealed by experiment. 
Although the fact that it actually does in the cases so far examined was at 
first obscured by misassignments in published vibrational spectra, subsequent 
work has supported the POS model to a surprising degree.16,17 That is the 
principal theme -0f the present paper. 
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Figure 1. Examples of stereochemistry and structural deformations well accounted 
for by VSEPR theory. 

In the following sections we shall sketch how a potential surface can be 
extracted from the model of repelling Points-on-a-Sphere, give a few illustrat­
ions of the structural chemistry implied, and examine what kind of force law 
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is required to secure realistic harmonic and anharmonic characteristics for 
the POS force field. Applications in spectroscopy, diffraction, and structural 
chemistry in general will be evident. In keeping with the early state of develop­
ment of the ideas involved, some of them heretofore unpublished, we shall 
concentrate upon binary compounds in order to avoid the complexity of having 
to introduce multiple parameters to account for different types of electron 
pairs. Since individual binary compounds (e.g. CF4, IF7) each require a large 
number of potential constants to characterize their potential surfaces for 
bending, they present quite a discriminating test of the POS model. We shall 
also restrict our attention to compounds of main group atoms. As discussed else­
where,14 the substantially different types of bond orbitals utilized by transition 
metals are modeled less plausibly by points on a sphere. 

FORMULATION OF POS FORCE FIELD 

For the present surfaces we assume that valence-shell electron pairs i, j, 
etc. can be treated as points constrained to move on the surface of a sphere 
of radius R under the influence of pairwise additive interacti:on energies Vii· 

As a consequence the potential energy for any bending deformation Sm of a 
molecule AXn can be expressed by 

V(Sm) = (~ ~ V;i)-V0 (1) 
j>i 

where the constant V 0 is the sum over the V;i taken at the equilibrium mole­
cular configuration. It is taken for granted to keep the model elementary that 
the bond directions radiating from central atom A are centered on the points. 
In prior work the potential functions V;i have usually been expressed as Kr;/-" 
or, occasionally, as C exp (- ar;i), where r;i represents the distance between 
points i and j, and K, s, C, and a are constants. Radius R can be absorbed into 
parameter K or a. No explicit inclusion of any bending force constants is used 
to augment equation (1), nor are the undoubtedly appreciable atom-atom non­
bonded Urey-Bradley interactions considered. 

Minimization of equation (1) with respect to displacements of the points 
yields the equilibrium bond angles. A Taylor series expansion of equation (1) 

(2) 

leads to the force constants fzm, fzmn, etc., where the tildes denote that coordinates 

S 1, Sm, etc., are curvilinear, not rectilinear.18 Explicit formulas have been deriv­
ed analytically for many of the constants of AXn for 4 :o; n :o; 7. It is often 
simpler to calculate anharmonic constants numerically, however, than to carry 
out Taylor expansions to higher order terms. 

STRUCTURE IMPLICATIONS OF POS 

For binary compounds AXn without valence shell lone pairs, equilibrium 
structures implied by Eq. (1) are trivial for n :o; 6 inasmuch as they are totally 
insensitive to the form of the repulsion for any plausible V;i, and follow the 
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rules originally proposed by Sidgwick and Powell.5 (In cases with nonequivalent 
valence-shell pairs, structures deviate in predictable ways19 from the idealized 
reference structures, as can be seen in Figure 1). Binary -compounds with n 
in excess of 6 present more interesting possibilities. Here the predicted struc­
ture depends upon the »hardness« of the repulsion, i. e., upon the magnitude 
of s if we adopt V;i = Kr-•. For example, given seven repelling points11 with 
s < 2.0 (soft repulsion) a pentagonal bipyramid with Dsh symmetry is the most 
stable static structure. In the range 2 < s < 5, equatorial repulsions in the 
tightly packed 5-ring induce an ez'' ring puckering of greater amplitude, the 
greater is s. Puckering, in turn, induces an e1' axial bend coupled in phase with 
the pucker. The resultant flexible structure is predicted to execute large­
-amplitude (Pitzer-type) pseudorotations because the barrier between the C2 

and Cs conformers is very small. In the range 5 < s < 5.5 a C2v structure is 
optimum. Aboves= 5.5 a C3v structure becomes lowest in energy. Consequently, 
even if molecular structure reveals little about repulsion in AXn molecules 
with n ~ 6, the structures of AX7 molecules should provide valuable informat­
ion about valence-shell interactions. 

This turns out to be the case for iodine heptafluoride. Of the four possible 
structure types Dsh, C2/C5 , C2v, and C3v forecast by the POS model for different 
ranges ·of s, electron diffraction studies20 placed IF7 in the C2/C5 category (2 < 
< s < 5). Moreover, the anharmonic coupling between the ez'' and ei' modes 
predicted by POS was in fact observed and this, together with the magnitude 
of the ring pucker, further narrowed down the allowed hardness exponent to 
a value of about 3.5. As we shall show, this hardness is also the value required 
to fit the shape of the potential surface calculated much later by an ab initio 
molecular orbital trea tmen t .17 

Another n = 7 example is XeF6 which possesses a xenon lone pair in ad­
dition to the six bond pairs. In this case the lone pair, apparently endowed with 
a high degree of s-character, is quite different from the bonding pairs. While 
the lone pair is observed to be stereochemically active, electron diffraction 
studies21 •22 indicate that the distortion from o h symmetry is modest and labile, 
with the lone pair gliding fairly freely from face to face of the octahedron, 
repelling adjacent bonds as it migrates. Ab initio pseudopotential calculations23 

on XeF6 suggested a less freely migrating lone pair but otherwise supported 
the diffraction study. It is worth noting, here, that Gillespie,24 relying on VSEPR 
theory, had steadfastly i.nsisted that xenon hexafluoride would be found to be 
distorted from Oh symmetry even though molecular orbital calculations25 had 
suggested that it would not. 

Few other structures of molecules with large coordination numbers have 
been determined in the gas phase. Corresponding solid state structures have 
been less useful in elucidating VSEPR forces than might be hoped because 
of packing forces, on the one hand, and the proclivity of nearly spherical 
molecules to disorder in crystals. A rather large amount of fruitful work, 
interpreted on the basis of a POS model, has been done on complexes of higher 
coordination in the solid state, however, particularly with bi- and multidentate 
ligands.10 In these cases the bite of the ligands has a strong influence on the 
stereochemistry. 
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For the above reasons, molecular structure, while for the most part pre­
dicted with admirable sucess by the VSEPR theory, has been of limited value 
(save for the case of IF7) in providing insight into the character of the forces 
involved. An intrinsically more penetrating type of observable, applicable to 
AX,, molecules with any coordination number greater than 1, is the potential 
surface for bending as characterized by quadratic, cubic, and higher force 
constants. This source of information is discussed in the next section. 

POTENTIAL ENERGY SURFACE 

A. Introductory Remarks 

A single experimental force constant, by itself, sheds no light on the 
character of VSEPR forces because the magnitude of a given constant can be 
matched by adjusting either or both the scale factor K and the gauge of hard­
ness, s, in equation (1). If a molecule has several known bending force con­
stants, however, a much more discriminating test is offered, because all should 
be represented by a single K and s. Moreover, experience suggests that s may 
reasonably be constrained to a value in the range of, say, 3.5-6. Because the 
spectrum of force constants often is not extremely sensitive to s in this range 
it may be adequate to fix s at the outset. Therefore, the POS force field reduces 
virtually to a single parameter problem (K adjustable) to fit an appreciable 
number of harmonic and anharmonic bending constants that are usually con­
sidered to be independent. Molecules of lower symmetry (e.g., AX5, AX7) 

provide more interesting tests than molecules of higher symmetry (e.g ., AX~, 

AX6) because they possess more independent quadratic constants. Anharmonic 
constants, being much more numerous, seem to offer a richer test than har­
monic constants. The fly-in-the-ointment frustrating extensive tests is that few 
truly bona fide quadratic constants are yet available from experiment, and 
cubic and higher-order constants are considerably rarer. Even worse, published 
experimental vibrational assignments and, consequently, assigned force con­
stants were incorrect in the cases first examined for POS tests,14,15 ,17 namely 
AX5 and AX7• Clearly, the greater power of the force field diagnosis in com­
parison with the structure approach is complicated by the greater risk of 
encountering aberrant data. 

If the severely limited amount of reliable spectroscopic information makes 
the present undertaking seem unpromising and too academic to be of practical 
use, it should be recognized that there are other sources of information. What 
precipitated the present scrutiny of the anharmonic components of the bending 
force field was a recent, quite down-to-earth need. Electron diffraction studies26 

of very hot molecules (CF4, SiF4, and SF6) revealed substantial asymmetries 
in the radial distribution peaks of the nonbonded distances. Skewing of peaks 
increased as the temperature was raised and could only be understood on the 
basis of substantial bond bending anharmonicity.27 Because too little spectro­
scopic information was available to confirm this interpretation, a POS force 
field computation of cubic constants was carried out, for what it was w orth, 
calibrating the scale factor by means of the known quadratic constants. When 
this approach was found to account for the diffraction intensities of hot 
molecules,27 it was decided to compare the mechanical (POS) model with a 
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quantum mechanical model.28 For initial explorations we applied the semi­
empirical extended Ruckel molecular orbital theory (EHT) which had already 
been found to give reasonably good potential surfaces for bending. Subsequently, 
as a check, we carried out SCF ab initio computations upon CF4• Ab initio cal­
culations for the quadratic and a few cubic constants had already been per­
formed for PF5

29 and IF7.17 

Accordingly, the remainder of the paper will examine the degree to which 
the POS model accounts for the potential energy for bending deformations. 
In those cases where the quadratic field includes a fair number of constants 
(AX5, AX7), only a few key aspects of anharmonicity will be examined. In 
cases with only two or three quadratic constants (AX4, AX6) the cubic field 
will be explored in detail, as well. Results of the heretofore unpublished mole­
cular orbital calculations28 are preliminary. 

B. AX2 (Doo1t) and AX3 (D11t) 

Linear triatomic molecules, which have no cubic and but a single quadratic 
bending force constant, provide too little information to . warrant a POS 
analysis. Planar AX3 molecules, with one cubic (in-plane) and two quadratic 
constants offer somewhat more information but are not a clean test of POS. 
The best-known stable examples, boron trihalides, confuse the issue by the 
appreciable :rc donation of the halogen lone pairs into the az" p-orbital of boron. 
While the associated stiffening of the out-of-plane bend is of the same origin 
as that handled successfully in ethylene by the POS model,5 the variable 
degree of conjugation introduces another parameter and thereby makes the 
AX3 system of little interest to treat. 

C. AX4 (Ta) 

Although the :re bond contributions in tetrahalides are often considered to 
be significant, especially in shortening the bond lengths in CF4 and SiF4, the 
effects on bending force constants are, presumably, modest. The two indepen­
dent quadratic force constants, by themselves, afford meager fare for study but, 
when the three cubic force constants are also brought into the comparison, the 
tetrahedral case becomes more illuminating. Unfortunately, there exist virtually 
no reliable experimental data on bending anharmonicity in these molecules. 
Therefore, we have carried out EHT calculations and, in the case of CF4, ab 
initio computations. For methane both ab initio and experimental values are 
available from the literature.30 

Shown in Figure 2 are profiles for several tetrahedral molecules, of rela­
tive force constants, »normalized« to unit mean quadratic force constants. The 
conformity of POS profiles to quantum profiles is, while imperfect, more 
noteworthy than the disparity. Methane is conspicuously the worst case, par-

~ 

ticularly in the constant f222 for which the olz>served and MO values agree 
while being quite out of line with the pattern of the other molecules studied. 
Why methane, the only case with no core or lone pair electrons in the ligands, 
is so different is not altogether clear. 
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Figure 2. Quadratic and cubic bending force constants for representative tetrahedral 
molecules, labeled by symmetry coordinate sequence. Lines, molecular orbital cal­
culations. Solid points and open circles, POS force field with s = 6 and 4, respectively. 
Crosses, experiment. For display purposes the sign convention of reference 30 was 

changed for S2. Symmetry coordinates in radians. 

One systematic feature also encountered in other systems is that EHT 
force fields with standard parameter appear to correspond to slightly harder 
v alence shell repulsions (s ~ 6, say) than do ab initio repulsions (s ~ 4) . 

As outlined elsewhere16,31- 33 the vibrational properties of pentacoordinated 
compounds of main group elements display a common theme. We shall consider 
a single prototype case, PF5, first studied in this manner a decade ago. Sketched 
in Figure 3 are the profiles of the five independent quadratic force constants 
as computed or measured in various ways. Again, provided that the correct 
vibrational assignment is made, the POS model is seen to work pleasingly 
well. 

Little information is available about the anharmonic components of the 
force field beyond the influence they have on the barrier to Berry pseudo­
rotations.34,35 If the barrier is inferred solely from the quadratic bending force 
constants, a value perhaps four-fold too high is obtained, according to the POS 
model14 and to estimates by Holmes31 based on spectroscopy. If the POS scale 
factor is adjusted to fit the quadratic constants, the quadratic components of 
the force field imply a barrier of about 22 kcal/mol while the full accounting 
of POS anharmonicity reduces the barrier to 5.5 kcal/mol [n ~ 4, calibrating 
scale factor with f (e1' eq)]. Ab initio molecular orbital values of Strich and 
Veillard36 are 4.8 (or 8.5) kcal/mol for basis sets including (or excluding) d 
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Figure 3. Profile of quadratic force constants for bending of PF5 according to POS, 
molecular orbital, and various experimenta-1 force fields. See reference 14 for details. 

functions on phosphorus. Full accounting of anharmonicity was built into the 
treatment. It appears, then, that the anharmonic aspect of the POS field is of 
the correct order of magnitude. 

E . AX6 (01i ) 

Octahedral binary compounds are of little interest unless their small set of 
three bending quadratic force constants is supplemented by anharmonic con­
stants. Comparisons are available for only one example to date, that of SF6• 

For this example, however, not only are the quadratic constants known from 
experiment but also one of the cubic constants.37 Portrayed in Figure 4 are the 

relevant profiles. All but one POS constant, f555, are in reasonably satisfactory 
agreement with calculations and/or experiment. This constant, for which only 
EHT values are so far available for comparison,28 turns out to be unstable with 
respect to charge iteration, unlike the others, and must be regarded as un­
settled. 

F. AX7 (Dsh Reference) 

For pentagonal bipyramids there are seven bending quadratic constants 
that can cover a wide range of values as shown in Figure 5 for IF7• If a diagonal 

- - -
valence force field had been plotted, the profile ratios for pure S4, S7, S10, and 
- - -
S11 would all have been unity, while those for S6 and S 9 would have been equal 
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Figure 4. Quadratic, cubic, and diagonal quartic bending force constants for SF6. 
Lines, extended Ruckel molecular orbital theory. Points, POS force field with s = 4. 

POS 

s=7 *----K 

s=3.5 -
s= I o· ·········o 

EHT 

INCL d *----K 

EXCL d ----

AB INITIO 

PSEUDOPOT. 
(+=POS,s=3.5) 

4 6 6,7 7 9 10 11 4 ~ 9 10 11 4 6 6,7 7 9 10 11 
a~ e~ e

1

2 e',' e'~ 

Figure 5. Profile of quadratic force constants for bending of IF7 according to POS 
and molecular orbital calculations. See reference 17 for details. 

to each other but different from unity. Such an approximation fails to exhibit 
the trends of the MO calculations that are so faithfully followed by the POS 
model. It is noteworthy that the electron diffraction structural data,20 analyzed 
a dozen years before the ab initio computations were carried out, 17 implied, 
as explained in a previous Section, an r-3.5 POS force law. This can be seen 
in Figure 5 to correspond, as well, to the hardness required to fit the ab initio 
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quadratic force constants. Only one cubic force constant for bending has been 
,,. 

studied, namely F7,11 ,11 , the important constant coupling the axial bend to the 
ring pucker. Expressed in the convention of reference 17, the POS value 

- 0.11 mdyn A/A3 (for s = 3.5, scale factor to fit f77) agrees well with the ab 
initio value, 17 -0.13 mdyn A/A3• 

DISCUSSION 

As shown in the foregoing sections for binary compounds, the Valence­
-Shell-Electron-Pair-Repulsion theory in its elementary repelling Points-on-a-
-Sphere formulation mimics the behavior of molecules too successfully to be 
dismissed as spurious. This is compelling evidence that occupied bond orbitals 
are guided by quantum laws to avoid each other in space. Such a repulsion of 
valence electron pairs is, unfortunately, all too often confused with a simple 
electrostatic repulsion. The present paper is not the place to expound upon 
this fallacy in detail but a few words are appropriate. According to the Hell­
mann-Feynman theorem,38•39 to be sure, the forces acting upon the atomic 
nuclei are identically the electrostatic forces exerted in the molecule with its 
quantum mechanically governed electron distribution. This is not at all similar 
to summing the repulsive coulomb forces acting between a few localized bits 
of the electron distribution and ignoring forces associated with the remainder 
of the electron distribution and the nuclei. In this vein it is important to 
note that the POS model conforms to observed intramolecular force fields only 
when the repulsions are made considerably harder than electrostatic repulsions. 
As has been noted elsewhere,40 ,41 in molecules the mutual avoidance of filled 
orbitals correlates one-to-one with the striving to achieve the best possible all­
-round bonded overlap of atoms (and, where applicable, the most effective 
lone pair occupancy of low-energy orbitals) consistent with the constraints of 
orbital use imposed by the exclusion princi:ple.42 In short, the POS »Pauli 
force « is not the vague, hypothetical force so often set up as a straw man to 
be knocked down; in molecules it is manifestly covalent in origin. In the not 
unrelated illustrative case of electron pair avoidance, the nonbonded repulsion 
of two helium atoms, the role of the exclusion principle is transparent, for it 
prohibits the second electron pair from populating the low-energy bonding 
molecular orbital occupied by the first. Mulliken43 has aptly referred to non­
bonded repulsions as »covalent antibonding. « As successive electron pairs are 
fed into molecules, successively less stable orbitals with progressively more 
nodes must be called upon. Nodes are the link between avoidance of localized 
orbitals and governance of energy. 

Lest the foregoing seem to attribute the POS repulsions, say, in SiF4 to 
F ... F atom-atom repulsions (which indeed are much harder than coulombic) 
instead of to bond-bond repulsions, it is pertinent to discuss the matter ex­
plicitly. In all of the AXn cases discussed above, precisely the same type of 
POS force-field behavior could be obtained by invoking atom-atom instead of 
electron pair repulsions. The most obvious evidence that this is not an appo­
priate interpretation is that the VSEPR repulsions required to reproduce the 
observed force fields do not fall off as rapidly as the expected X ... X re­
pulsions when the size of A increases, lengthening the X ... X distances. Plau­
sible estimates17•44 make X ... X repulsions too small to correspond to POS 
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repulsions, though in some cases with small central atoms or large n, the 
atom-atom forces may make quite a significant (Urey-Bradley) contribution. 

Another feature of the POS model deserves comment. In constructing the 
model, the points on a sphere symbolically representing localized electron 
pairs are assumed to be placed on the straight lines connecting bonded atoms. 
In bending deformations, then, the angular displacements of the points are 
the same as the angular <:J.isplacements of the atoms. In short, POS bond lines 
are never bent. This restriction is purely a convention for book-keeping and 
cannot be assumed to imply anything about the physical details of covalent 
bonds. There is evidence that bonds tend to bend in vibrational displace­
ments,45-48 with central atom hybrids not closely following ligand motions. 
Some molecular properties are well accounted for by bond bending even in 
equilibrium structures.s,49,5o Presumably, endowing a POS model with more 
flexible bond lines would not change the correlations already established; it 
would simply encumber a plain, neat treatment with (perhaps) pointless 
complexity. 

Limitations of the POS model, in its simplest form at least, include its poor 
applicability to compounds of transition metals . Another problem (causing 
little trouble in practice) is encountered in systems such as AX5 and AX7. In 
these systems the bonds spontaneously organize into an equatorial girdle 
pierced by two axial bonds. Since axial and equatorial bonds are intrinsically 
different, the POS axial and equatorial points might be expected to follow 
different effective force laws. In practice the difference can be absorbed into 
the hardness parameter s. Another limitation of the POS treatment is its 
inability to account for a (so far) small fraction of the potential constants of 
main group compounds. Viewed from another perspective, this shortcoming of 
POS might be of some use in helping to identify atypical interactions of potent­
ial interest. 

Despite the above imperfections of the POS model, the most important 
fact is that it manages to reproduce quite well a large body of information. 
That it can interrelate so many constants without parameter adjustment purely 
on the basis of the geometric properties of space suggests some underlying 
authenticity. It appears that the model may have a number of applications in 
helping to diagnose molecular behavior. It seems to offer a simpler yet more 
reliable scheme14-17 than those customarily adopted by spectroscopists in as­
signing molecular vibration frequencies . It can provide quick estimates of 
anharmonic potential constants for bending if the harmonic constants are 
known. Here, in the limited studies we have made,28 it handles the quartic and 
higher constants as well as the cubic. It is promising in its ability to characterize 
certain dynamic properties of molecules such as Berry pseudorotation34 (in 
trigonal bipyramids) and Pitzer pseudorotation51 (in pentagonal bipyramids), 
including the coupling of modes of different symmetry that can lend intensity 
to overtones of nominally inactive modes.20 It was able to account for puzzling 
anomalies seen in diffraction patterns of very hot molecules.27 It even cha­
racterizes in a rather appealing physical way the systematic imperfection to 
be expected in EHT molecular orbital computations of the potential surface 
:for bending. Although these surfaces are surprisingly good, when calculated 
(as is customary) with frozen matrix elements instead of elements adjusted 
to compensate for the flow of charge in molecular deformations, the implied 
valence-shell-electron-pair repulsions are somewhat too »hard«. 
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What significance underlies the concept of »hardness of repulsions« in 
VSEPR theory and, indeed, why quantum interactions in molecules are simul­
alted so realistically by a simple mechanical model, are questions that have 
not been analyzed searchingly. Whatever the basis of the correlations turns out 
to be, however, the model itself is ripe for exploitation. Its heretofore practical­
ly unnoticed virtues offer food for thO"Ught for experimentalists and theorists, 
alike. 
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SAZETAK 

Da Ii odbijanja VSEPR »tocaka na kugli« simuliraju kvantne interakcije? 

Lawrence S. BarteH 

Model odbijanja parova velentnih elektrona u svojoj varijanti »tocaka na 
kugli « (POS) rabio se do sada iskljucivo za odredivanje ravnoteznih strukturCI' mole­
kula. U ovom radu pokazano je da POS daje i potencijalne plohe za deformacije ku­
tova veza, koje se mogu usporediti s plohama dobivenima kvCl'Iltno-kemijskim meto­
dama (ab initio, EHT). Proizlazi da model POS postaje koristan pribor za spektro­
skopska i difrakcijska istrazivanja. Efektivna silCI' koja djeluj e izmedu »tocaka na 
kugli« moze se izraziti kao - r - <" 1>, gdje je s ~ 4. 




