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Calculations of the vibronic levels in a Jahn-Teller coupling 
can be performed using either i:r crude adiabatic or an adiabatic 
basis set of electronic states. The experimental manifestations 
show up in the rotational and vibrational band structures and/or 
in the molecular shapes, and some examples are given. 

INTRODUCTION 

A great many papers have in the last years been published which deals 
with the Jahn-Teller »effect«. Experimentalists have used »effective« Hamil
tonians in order to rationalize absorption-and emission-spectra in terms of a 
number of Jahn-Teller coupling parameters. On the other hand, theoreticians 
have written down model Hamiltonians and studied the mathematical solutions 
in great detail. The question is then : how close is the connection between the 
idealized theoretical solutions and the hard realities of experiments? 

The Jahn-Teller theorem asserts that a non-linear molecule cannot be in 
a stable nuclear conformation, if that conformation will lead to electronic 
degeneracy. Linear terms in the nuclear displacement coordinates will appear 
in the expans<ion of the potential energy, and these can first be elimiriated 
when the degeneracy is lifted. 

The theorem tells us that some points in the nuclear configuration space 
cannot be stable points. Actual molecules or ions which are close to these 
points are therefore expected to exhibit some singular features. A general 
mathematical proof of the theorem was given by Ruch and Schonhofer1 in 
1965. Their proof eliminated the need for discussing all actual symmetries as 
originally done by Jahn and Teller2• Other mathematical proofs have been given 
by Blount3 and Raghavacharyulu4• It transpires that the Jahn-Teller theorem 
follriws logically from the Born-Oppenheimer approximation . of the wave
functions at the molecular equilibrium point in a real molecule. Physically one 
can understand the theorem by reflecting that in an electronically degenerate 
state, the electronic charge cloud has different orientations for different 
components. The linear terms in the nuclear displacement coordinates cannot, 
therefore, be eliminated for all components5• 

In order to exemplify the quantitative attacks on the problem we shall 
in this note look at a doubly degenerate E state coupled to a doubly degenerate 

* Based on a talk given at 19. Symposium filr Theoretische Chemie, Oktober 
1983, Miihlheim a. d. Ruhr, Germany. 
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E vibration. Methods to calculate the vibronic levels in a E ® E system experienc
ing a Jahn-Teller coupling were formulated in the late nineteen fifties by Mof
fitt and Thorson6 and Longuet-Higgins et al.7. Their treatments were based on 
the so-called crude adiabatic app:mx1imation to the electronic states. Recently 
Duch 'll.nd Segal8 have, however, used a basis of adiabatic Born-Oppenheimer 
states in order to calculate the vibronic levels. The differences between these 
two approximation schemes should become clear in the next section. 

THE MODELS 

Following Longuet-Higgins9 we shall write the Hamiltonian for a system as 

A A A 

H = T N + H (r, Q) 
A 

with T N being the kinetic energy of the nuclei 

A 

A 

and H (r , Q) being the »electronic Hamiltonian« 

A 

H (r, Q) = 
A A 

A 

P/ 
~ -- + V(r,Q) 

2m 

(1) 

(2) 

(3) 

Pn and Pe are the conjugated linear momenta to the nuclear coordinates Qn 
and electronic coordinates r, respectively. For the »electronic Hamiltonian« 
A 

H (r, Q) we have the Schrodinger equation 

A 

H (r, Q) 'If; (r, Q) = V; (Q) 'If ; (r, Q) (4) 

with the solutions 'l.jJ; (r, Q) . 

Consider now the situation in which the electronic Schrodinger equation, 
for a certain nuclear configuration Q0, has a symmetry determined doubly 
degenerate solution. Using two adiabatic Born-Oppenheimer wavefunctions 
'1./)1 (r, Q) xi (Q) and '1./)2 (r, Q) x 2 (Q) as basis functions, we seek solutions to the 
wave equation 

A A 

[TN+ H (r, Q)] lJ' = W lJI (5) 

where 'P is taken as 

P = '1/11 (r, Q) Xi (Q) + '1/12 (r , Q) X2 (Q) (6) 

The »vibrational« functions, Xi (Q) and x2 (Q) , are now to be determined by 
variation.9 

Let 5 mean a simultaneous, arbitrary, infinitessimal variation of Xi and x2 

and ( ) an integration over the electronic coordinates. Xi and x2 are then 
determined by 

A A 

as < 'lf1X1 + 'lf2X2 \ T N + H (r, Q ) - w i '!fiXi + '1/12X2 > dQ = 0 (7) 
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leading to the coupled equations 

A A A 

< 'lf1 [ TN+ H (r, Q) [ 'lf1X1 > + < 'lf1 i T N [ 'lf2X2 > = Wx1 (8) 

A A A 

< 1p2 [ T N + H (r, Q) J 'lf2X2 ) + < 'lf2 \ TN [ 'lf1X1 ) = W X2 (9) 

We now take Q to denote vibrational symmetry coordinates for a doubly de
generate E vibration, spanned by Qa and Qb. Changing to polar coordinates. 

(10) 

A 

and expanding the matrix-elements in Eqs (8) and (9) we get assuming9 P Q1p1 = 
A 

= P g1fJ2 = 0 and with M, being the effective mass of the doubly degenerate 
vibration 

( 

n,2 n,2 
v 0 --- --\j2 

1 (_, ¢) + 8 M 2 - 2 M ' 
,(! ' 

l n,2 a 
- 2M,e2 --;; 

Applying a unitary transformation 

~= ~21 ee- i: 
it_ 

2 

transform the set of coupled equations to 

_± 
2 

-ie 

it/> 
2 

ie 

(
l_ <V1 + V2) -~ \l ,2 e- it/>. 

2

1 
(Vl - V2) l 

2 2M, I 

l . 1 1 n.
2 J eztf> . 2 <V1-V2) - <V1 + V2)- - - \/,2 

£~~ 2 2~ 

(11) 

(12) 

ri1 

=W (13) 

ri2 172 

In order to solve the Eqs. (13) 'f}l and 'f}i are expanded in terms of the solutions 
1 

to the two dimensional harmonic oscillator. The potentials 2 (V1 + Vi) are 

calculated by ab-initio methods, point by point, and fitted to a power series 
expansion which incorporates the three-fold modulation of the potential8• In 
the quasiclassical approximation where 'h--+ 0, Eq. (13) can be diagonalized, 
leading to the two potential surfaces V 1 (P, ¢) and V 2 (P, ¢). 

Returning to the solutions to the Schrodinger equation (5) we now take two 
crude adiabatic wavefunctions, 1p1° (r) and ~p2° (r), and write for lJI 

1JI = 'lf1° (r) X1 (Q) + 'lf2° (r) X2 (Q) (14) 
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1J.'Jo (r) and 1f.'io (r) are evaluated at a point Q0• They are assumed to be ortho
-normal, but not necessarily degenerate. %1 (Q) and Xz (Q) are again to be deter
mined by variation: 

A ! ! ·· F. ; 

5 S < 'IJJ 10 Xi+ 'IJJio X2 J T Jt+ H (r, Q)- W j 'lfJio Xi + 'IJJ20 X2 > dQ = o (15) 

The variation leads to the coupled set of equations 

( TN +~'lfJi0 1 Iicr,Q) J'lfJ 1° > <'lfJ i0 J~Cr .. Q) J'lfJi
0

> ) ( X1) =W( X1) (16) 

< 'IJJ20 J H (r, Q) J '1JJ10) T N + < 'lfJio I H (r, Q) J 'IJJio > Xi 7.2 

As before Q is taken to denote a doubly degenerate e vibration, spanned by 
Qa and Q b. Expanding the electronic matrix elements in a Taylor Series in the 
nuclear coordinates to the second order we get 

A 

(17) 

When V11° = V22°, 1f.'i0 and 1J.12° are degenerate at the point Q0 . This is the 
situation dealt with by Jahn and Teller. Any actual system will then, according 
to their theorem, possess a doubly degenerate e vibration making the linear 
term in Eq. (17) different from zero. 

Let the symmetry determined degeneracy at the point Q0 be characterized 
A A 

by the presence of a C2 and a C3 axis. The number of independent electronic 
matrix elements in the expansion (17) is then three, which we may take as 

A 

c = - < 'ljJ1° I ( ;;a ) j 'ljJ1° > 
A 

A 

( 
a2H) 

/3 = < 'IJJ10 I aQb2 ~ 'IJJ10 > 

Changing to polar coordinates we get that Eq. (16) is transformed into 

T N +2 (a+/]) (}2 

r 
A 1 1 

cee- iif> - - (a- /3) e2e2ief> 
2 

l '''"- : <•-Pl e'•-'" 
A 1 
TN+ - (a+/]) (}2 

2 

Xi Xi 

=W 
Xi X2 

(18a) 

(18b) 

(18c) 

(19) 

The quasiclassical solution, obtained by letting 'h-7 0 is eas>ily seen to be 

(20) 
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1f 

Figure 1. Quasiclassical potentia'l surface for the E 0 E system. 

with k = (a + (3) and x = (a - (3). The surface is pictured in Figure 1. The two 
solutions form two sheets of a continous surface which intersect like a double 
cone at e = 0. The three-fold modulation of the potential i:s a second order 
effect. The cusp at e = 0 is an artifact, introduced by the quasiclassical ap
proximation. 

Putting x = 0, the first order Hamiltonian is 

A [;r~ n,
2 

11 a a 1 a2 1 ) J ( 1 o) c ( o e-i<P ) 
H = _ -__ I - - <e - ) + - -- + - ke2 1 + e ei-' 0 

1 2 M , \ e ae ae e2 0¢2 2 o .,, 
(21) 

This is the model Hamiltonian which has been studied most intensively. lt 
commutes with the operator 

j = ~ _i_ + __1_ ( 1 0) 
i 0¢ 2 ' 0 -1 

(22) 

5 therefore represents a constant of the motion with half-valued q.uantum 
numbers I 

I 

1 3 5 
j = + - ± ± - (23) - 2, 2' 2 

and may be looked upon as the total (angular plus electronic) moment. 

Actual systems usually have more than one E vibration. The Jahn-Teller 
couplings occuring when the same E state is coupled to more than one vibrat
ional motion, cannot be solved independently, because Hamiltonians of the 
type of Eq. (21) do not commute10• The solutions must therefore be obtained 
by diagonalizing the total Hamiltonian. The total Hamiltonian, commutes of 
course with the total angular momentum operator : 

; = k 2__ _a_+ ~( 1 o) 
u i o¢u 2 0 -1 

(24) 
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When the quadratic coupling is included, j ceases to be a good quantum 
2 

number. The levels I j I = 3 are split to first order, but due to the three-fold 

symmetry j' = j (modulus 3) is still a good quantum number. 

With c = 0 the solutions to the Hamilton operator (21) are those of a doubly 
degenerate harmonic oscillator .. Expanding Xi and x2 on these functions Moffitt 
and Thorson6 and Longuet-Higgins et al.7 calculated the energy levels, pictured 

2 

in Figure 2, as a functi·on of the dimernsionless parameter D = __ c_ 
2khw 

; the Jahn-Teller stabilization energy divided with a quantum of 

the harmonic vibration. 

Analytical solutions to the Hamiltonian (21) have used canonical trans
formations (Alper and Silbey11, Wagner12, Judd and V:ogel13 and Barentzen and 
Polansky14). Variational treatments have been given by Barentzen and Polan-

w 

0.5 1.0 1.5 2.0 2 .5 
0 

Figure 2. The calculated vibronic eigenvalues to E 181 E as a function of D . The 
points marked with letters, were the curves cross the »base lines« W == - D + n 

1 +- , n == 0, 1, 2, 3 ... , are the »exact« solutions of Judd18 and Reik19• For instance 
2 

5 19 
at the point y, D == --with W = - . The analytical solutions to the vibronic eigen-

16 16 
value problem was inspired by the precise numerica•l calculations of Thorson and 
Moffitt. 32 
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sky15, Ruff and Wagner16 and Ballhausen17• Isolated exact solutions for a 
number of D values were obtained by Judd18 and extensions of this work has 
been performed by Reik and coworkers19• 

THE MANIFESTATIONS 

The Jahn-Teller couplings may show up experimentally in 

1) The rotational structure of a band. 

2) The vibrational structure of a band and 

3) The molecular shapes and crystal structures. 

As an example of the evidence for rotational Jahn-Teller couplings we shall 
look at a Rydberg state of H3. Assuming D3h symmetry, the ground state of H3 
should be 2E. However, experiments and calculations show H3 to be unstable, 
dissociating into H 2 + H. Whether the instability can be associated with a 
Jahn-Teller coupling is a question of metaphysics. 

Experiments and calculations have shown that the H3+ ions is stable as an 
equilateral triangle. This indicates that Rydberg states of the H3 molecule may 
also be stable. Ab initio calculations by King and Morokuma20 showed that 
(2p) 2E' was unstable, but that (3p) 2E' was stable in a C2v configuration w ith 
~ Vr-r = 100 cm-1• The hw, vibration of H3+ is 2516 cm-1, leading to a D value 
of 0.04. The three-fold barrier was estimated to be at most a few wavenumbers. 

The extensive analysis of Herzberg and coworkers21 ,22 of the electronic 
emission spectra of H3 and D3 succeeded in extracting the rotational data for 
the (3p) 2E' state. The Jahn-Teller coupling causes a) a first order splitting of 
the rotational levels (A type doubling) b) a shift ·of other rotational levels 
(A type resonans) and c) a reduction of the Corioli coupling constant. (Child 
and Longuet-Higgins23 , Child24, and Child and Strauss25) . From the observed 
spectra some ten parameters, more or less influenced by the Jahn-Teller 
coupling, can be extracted. Neglecting the presence of the three-fold barrier 
both H3 and D3 show a value of ~ Vr-r = 87 cm-1 for the (3p) 2E' state. Using 
the ab-initio values of hw, Herzberg gives D (H3) = 0.0301 and D (D3) = 0.0424, 
indicating a weak coupling. 

The general interpretation is certainly satisfactory, but one should notice 
the mixture of high precission experiments with approximate theoretical cal
culations. The resulting parameter values may not be as precise as the reported 
number of decimal places indicate. 

Using the adiabatic coupling scheme, Eq. (13) , Duch and Segal8 , considered 
the Rydberg transition 1A 1 ~ 1 E' (3s) in cyclopropane, C3H6• Fitting the ab initio 
calculated potential surfaces of the first six excited states to a power ser ies 
expansion, a complex pattern of sheets with minima and saddle points energies 
emerges from the calculation. The surfaces of the excited states of cyclopropane 
are indeed a far cry from the »idealized« picture given by the crude adiabatic 
expansion. The frequency distribution of the vibronic bands is consequently 
extremely complex. Their matrix is, however, not correct.8 

Sears, Miller and Bondybey26 has studied the fluorescence spectra of 
1,3,5-C6H3F3+ and C6F6+ in gas phase and in solid Ne matrices. Cooled gas phase 
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laser induced fluorescence spectra of the same ions has been measured by Leach 
and coworkers27, with a resolution of 0.1 cm-1 between 4500-4700 A. The 
relevant data for the Jahn-Teller ground states of 2E symmetry are therefore 
very precise. However, they are sparse compared with the number of para
meters needed and with the dimensions of the vibronic matrices which must 
be solved. Some of the hot bands are therefore assigned differently by the two 
groups. 

Theoretically sym. C6H3Ft have seven, modes of E symmetry which may 
show Jahn-Teller activity. If all were included in a linear coupling there would 
neither be sufficient experimental data to determine the parameters nor would 
there at present be a computer large enough to diagonalize the relevant matrix. 
The inclusion of second order terms, where j ceases to be a good quantum 
number, would not improve the situation. 

The quadratic coupling splits the j = 3/2 level of a given v state. The ame
rican group found that the v = 1 in mode 13 in C6H3F3+ shoved a splitting of 
12 cm-1. The barrier height is estimated to be 5.3 cm-1. The four mode calculation 
(Sears et al.26 1981) using D; and hwi as parameters, i = 8, 12, 13, 14 gave that 
3 E vibrations (i = 8, 12, 13) were strongly active, the D values being 0.15, 0.60 
and 0.52 respectively. D14 was found to be 0.05. 

The french group27 finds that the number of active E modes are at most 
five (or seven in the deuterated species). They give D13 = 0.111. 

Configurational instability has played a great role in the structural che
mistry associated with Cu++ ions. In the system Cu+ doped into NaF, the cu+ 
lies at the center of an octahedron of F- ions. Mak!ing use of two-photon spectra 
McClure and coworkers28 observed the inter-configurational transition 3d10 ~ 
-* 3d94s. One of the excited states is of 1Eg symmetry, and with a Cu++ core 
with a 4s electron one would expect it to have a Jahn-Teller coupling similar 
to that of 2Eg in Cu++. The strong temperature dependence of the intensity 
indicate that the transition is vibronic. cu+ is therefore located on a center of 
inversion. 

The 1A1g-* 1Eg transition is double humped indicating a ~V1_r = 2250 cm-1. 

The average phonon frequency for the cg mode in the excited state is hw', = 
= 300 cm-1. D is therefore 7.5, and a strong coupling of the localized move
ments with the crystal lattice takes place. 

For Cu++ complexes the elastic properties of the lattice will give rise to 
an effective interaction between the Cu++ ions, leading to co-operative changes 
in the structure. (Orgel and Dunitz29 , (1957) , Gehring and Gehring30 (1975) and 
Reinen and Friebel31 (1979)) . The theory of the co-operative interactions is, 
however, not so well investigated as is the Jahn-Teller couplings of the single 
species. 

CONCLUSIONS 

In the treatment of the Jahn-Teller couplings the crude adiabatic approx
imation has certainly been valuable and has bridged the gap between theory 
and experiment. However, especially where the density of electronic states is 
high, cubic, fourth and even six-order terms, can be important when trying 
to obtain a realistic picture of the potential surfaces. At the risk of losing the 
transparency of a Taylor Series expansion about the degeneracy point, it must 
be recommended to calculate the potential, point by point, using an adiabatic 
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" basis set. On the other hand, the approximation PQ ip; = 0, i = 1 and 2, should 
also be tested before drawing any definite conclusions as to which model gives 
the best numerical results. 

The sophisticated mathematical solutions of the model Jahn-Teller Hamil
tonian are certainly impressive. However, they are not really of much help in 
the interpretation of complex experiments. Even though both theory and 
experiments dealing with Jahn-Teller couplings have made great strides 
forward in the last years there is still much which remain to be done, before 
the models and the manifestations are ·united. 
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SAZETAK 

E © E Jahn-Tellerovo sprezanje: modeli i manifestacije 

Carl J. Ballhausen 

Prikazano je stanje umijeca pri rje8avanju problema koji nazivamo Jahn
-Tellerovim sprezanjem. Konstatirano je da gruba adijabatska aproksimacija pred
stavlja koristan most izmedu teorije i eksperimenta. No, ako je gustoca elektronskih 
stanja velika, onda u Taylorovu razvoju treba uzeti u obzir cak clanove sestog reda-, 
sto je neprakticno. S druge strane, rafinirana matematicka rjesenja modelnog hamil
tonijamt nisu korisna u interpretaciji slozenih eksperimenata unatoc svojoj impre
sivnosti. Proizlazi da Jahn-Tellorov problem jos uvijek nije rijesen na potpuno 
zadovoljavajuci nacin. 




