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The method of moments is used to derive the energy levels 
of a representative series of molecules, crystalline and noncrysta-1-
line solids. It provides a direct link between the density of states 
of the eigenvalue spectrum and the connectivity and topology of 
the molecular or solid state network. 

INTRODUCTION 

The traditional method used to ·obtain orbital energy levels and coefficients 
via an LCAO approach in both molecules and solids involves the diagonalizat­
ion of the secular determinant I H-SE I = 0. The H;j are the Coulomb (i = j) 
and Resonance (i ~ j) integrals and the S;i the overlap integrals associated with 
the set of atomic basis functions {<p;}. (In the simplest possible variant, that 
devised by Hlickel2 for conjugated organic systems S;i = o;i· Also H;i (i ~ j) = 0 
unless the atoms carrying orbitals i and j are linked to each other, in which 
case H;i = fJ.) In principle the energy levels of a molecule are obtained by 
solution of the secular determinant just once. The energy levels of a crystalline 
solid are generated by solution of the secular determinant I H (k) - S (k) EI = 0 
at a representative collection of k points in the Brillouin zone. (k is the wave­
vector). Here the atomic basis functions are the Bloch crystal orbitals { <p; (k) }. 
This is shown schematically in Figure 1. For those systems where all Hii values 
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Figure 1. Schematic representation of the traditional method of generation of the 
energy density of states n (E) or Q (E) in this article of a solid material. 
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are identical (conjugated n: systems for example) use of the Ruckel approximat­
ion leads to a mathematical situation identical with one from graph theory. 
The Ruckel energy levels in this case are simply equivalent to the eigenvalue 
spectrum of the corresponding graph. In spite of such a correspondence, and 
the tools from graph theory3 which can be brought to bear on the problem, it 
is usually not obvious how the energy level distribution of both molecules and 
solids is determined by the way the atoms are linked to one another. The 
problem is especially acute in the solid state where one is particularly inter­
ested in the form of the density of states plot and how it controls the stability 
of one structure over another. In this paper we describe a different approach, 
based on the method of moments, which gives directly the density of states 
patterns for molecules and crystalline and amorphous materials. It enables 
fresh light to be shed upon the energy level distribution and total orbital 
energy as a function of the number of electrons. 

THE MOMENTS METHOD 

While traditional calculations involve generating density of states and 
energy levels by first solving the secular determinant, the moments method 
provides an alternative technique for determining DOS curves relying pri­
marily on the connectivity or topology of the structure. The definition of the 
nth moment of E is 

µ,, =~Et discrete spectrum (1) 

µn = SE"(! (E) dE continuous spectrum (2) 

where i denotes a level index and e (E) is the density of states. By solving the 
secular determinant we diagonalize the corresponding Hamiltonian matrix. 
Since the trace of a matrix remains invariant under such diagonalization, the 
n th moment may be simply expressed as µn =Tr (Hn). The geometrical inter­
pretation of Tr (Hn) = ~ Hi1 H12 H23 . .. H ni links the n th moment to the number 
of returning walks of length n found in the structure.4- 6 Here the walks refer 
to steps taken from one orbital i to another atomic orbital j. Each such step 
is weighted by the corresponding interaction integral Hii· This weighting is 
particularly simple in the case of n:-bonded networks since all H ii = fJ between 
directly bonded atoms and zero otherwise. So 

(3) 

fJ = H ki (k ~ j). Here Y ni is the number of paths of length n which start at 
orbital CfJi , which progress through the lattice (or molecule) and eventually 
return to the orbital CfJi· Once the moments are known they may be used di­
rectly to construct the energy DOS, a process shown schematically in Figure 2. 

GENERATION OF MOMENTS 

Two examples, one molecular, one crystalline will illustrate the applicat­
ion of equation (3). Figure 3a shows the walks of given order explicitly depicted 
for the case of square cyclobutadiene, using the four prr orbitals as a basis. 
Figure 3b shows a more economical way of deriving the Y n using what w e call 
propagation diagrams. Notice that µ 2 = 4 X 2(32 , the graph theoretical result. 
Since each atom in cyclobutadiene is equivalent by symmetry, fl n = 4 f l 11i. (The 
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Figure 2. Schematic representation of the direct generation of the energy density of 
states using the method of moments. 
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Figure 3. Generation of the number of walks of length n for the levels of cyclo­
butadiene. a) Explicit consideration of the number of walks of length 2 and of 
length 4. Notice that it is impossible in this system to return to the home atom 
after an odd number of steps. As a consequence all odd moments a're equal to zero. 
µ 11' as calculated needs to be multiplied by 4 to get the µ

11 
for the molecule since 

there are four symmetry equivalent orbitals (atoms). b) Use of propagation diagrams 
in generating the moments by seeing how a point of weight unity is propagated on 

W<l'lking around the lattice in equal steps. 

reader may check these numbers by recalling2 that the energy levels, relative 
to a = 0, for cyclobutadiene are 0 (twice) and + 2/J). 

1 shows the technique for counting the walks in an infinite system, that 
of the linear chain.8 If each walk to the right is weighted by x and each to the 

x-1 x 

·• • co • •· 
1 



1196 J. K. BURDETT ET AL. 

left by x-1 we shall only be interested in those walks which end up back at 
the home atom and therefore are weighted by xnl 2 • x-n12 = x 0• Recalling the 
use of the binomial theorem in probability theory the number of such walks 

is simply given by the relevant binomial coefficient(~12 ). These ideas may be 

extended to crystalline solids in general.9 

INVERSION OF THE MOMENTS 

The problem of inversion of the collection of moments to give the density 
of states is an old one.10,11 The method we will use employs the continued 
fraction method11 • Only the barest outline of the approach will be given here 
[Further details are available elsewhere.) 9 We make use of the relationships in 
equations 4 and 5 which link the density of states e (E) to a continued fraction. 

G (z) = J (} (E) dE (4) 
- oo z-E 

(z + b1)-a2 

(z + b2)-a3 

(5) 

The ai and b, coefficients are determined by the { ,un} as we will show below. 
Specifically the problem is to generate (} (E) from G (z) given these coefficients. 
Clearly if the DOS is discrete and Yk is an entry in this eigenvalue spectrum 
then 

(6) 

The Yk and f2 (Yk) are readily extracted from the continued fraction in terms 
of the ai and b,. For a continuous Q (E) there is a problem since the continued 
fraction does not converge on the real axis whenever the value of z is associat ed 
with a nonzero contribution to the density of states. In the case of a continuous 
density of states, (} is obtained by taking the imaginary part of the continued 
fraction G (z) 

(} (z) = Im { G (z)} (7) 

As we noted above the a, and bi coefficients of this continued fraction are 
related to the moments of the DOS. If we define 
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then the a; are defined via the recursion relationship 

L\n = ao al · · · an L\ ,,_1 

1197 

(8) 

(9) 

which l~ads to ao = 1 (by definition) a1 = L\i, a2 = L\2/(L\1)2, a3 = L\1 L\3/ (L\2)2 and 
in general for n ~ 3 an = L\n L\n_2/ (L\ ,,_1)2. The b; are obtained via two relations 
defining a set of polynomials Bp (E). 

(10) 

BP (E) = (bp-1 + E) Bp-l (E) - ap-1 BP_2 (E) (11) 

where B_1 (E) = 0 and Bo (E) = µ 0• Manipulation of these two equations, and 
use of the definition of µn in equation (2) allows ready generation of the b;. 
The first two are 

(12) 

Thus the a; coefficients are determined by the knowledge of µ 0 ••• µ 2; and the 
b; coefficients by the knowledge of ,uo . .. µ 2;+1• For systems where the energy 
levels are symmetrically spread about E = 0 then the b; = 0. This applies to 
bipartite systems (with a = 0) . For many solid state systems the a; and b; series 
converge to a limiting pair of values (a, b) at large enough i. In this case the 
band limits are very simply given12 by - b + 2 y~. 

TWO EXAMPLES 

We may use these results to analytically derive the densities of states for 
the pn: orbitals of the discrete cyclobutadiene case and the continuous linear 
chain example. In Table I we show the values of the relevant parameters we 
need. 
The /-lAi for cyclobutadiene come from Figure 3. We may readily evaluate 

µo µI 
f l1 µz 

µ2 µ3 

µo µI 

µI µ2 

,U2 µ3 

µ3 ,u4 

µ2 

,u3 

µ4 

µ2 

fl3 

µ4 

µ5 

1 

0 

µ3 

/l4 

µ5 

µ6 

~ I 
1 

0 

2 

=2 

0 2 

2 0 =8 

0 8 

1 0 2 0 

0 2 0 8 
=0 

2 0 8 0 

0 8 0 32 

(13) 
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TABLE I 

Parameters for SmaU Rings and the Linear Chainc 

Cyclobutadiene Benzene Cyclooctatetraene Linear Chain 

µ'o ~r ff :r 
lb 

µ '2 2 

µ'4 8 6 

µ'6 32 22 20 20 

µ's 128 88 72 70 

µ'10 512 348 272 252 

Llo 1 1 1 1 

..11 2 2 2 2 

..12 8 4 4 4 

..13 0 16 8 8 

..14 0 0 32 16 

ao 1 1 1 1 

at 2 2 2 2 

a2 2 1 1 1 

a3 0 2 1 1 

a4 0 0 2 1 

• Braces indicffie those moments identical to those of the linear chain. 

b µ n = ( ~/2 ) fl". 
c For notational convenience all the ,un'• ai and L1 i are shown in dimensionless form 

without their associated power of fl . µ 2' for example is 2 fl2 and the units of ..12 are 
fl6• All the ai have units of fJ2. We shall only include a, fl values in our algebra 
where it is necessary to avoid confusion. 

We can quickly see that ..13 = 0 since the second and fourth columns are related 
by a numerical constant (4). So all ..1; (i > 3) are zero too. These values of the 
.1; may then be used to calculate the a;. All b; are of course zero. 

The number of nonzero a; values tells us immediately how many values 
will be represented in the eigenvalue spe.ctrum. For the p1t levels of cyclo­
butadiene there are three (at 0 and + 2(3) ··but for the linear chain, as we see 
below there is an infinite number as befits the continuous spectrum. For cyclo­
butadiene the continued fractions is 

G (z) = -1 

z -2 

z -2 

z-0 

z 

z2 -2 

z (z + 2) (z - 2) 

(14) 

Recall that we are using dimensionless expressions for the a; (Table I) so z 
has units of (3 . Equation (14) may be expressed as a set of partial fractions 

G (z) = ..!__ · ..!__ + 2-(- 1
- ) + 2-(- 1

- ) (15) 
2 z 4 z+ 2 4 z -2 
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The algebra of the previous section tells us that the spectrum entries occur at 
z = 0 + 2. i. e., E = 0, + 2{J. There are three terms in G (z) of equation (15) . 
From Table I we note that a; = L1; = 0 for i > 3. This is a general result. For 
a system with j entries in the eigenvalue spectrum then ai = L1; = 0 for i ;::-:: j. 
Since L1; is determined by the set of moments { µn In :::; 2i} only the moments 
up to and including µ 2 U-ll are needed. The weight of each partial fraction of 
equation (15) gives the relevant density of states at this point. The total density 

E 
-2/3 

2/3 

2 

I p(E ) 2 

of states shown in 2 is simply obtained by m ultiplying by four (the number 
of equivalent orbitals) the weights of equation (15). The weights calculated for 
each spectrum entry is simply the square of the relevant orbital coefficient 
in the LCAO expansion. 3 shows how the values of equation (15) are related 
to the cyclobutadiene :n:-orbital coefficients. 

2/3 0 -2/3 
I I -t -l l -1 I I 202 ~o~ 202 -202 3 
I I ~ -~ I _ J_ 

~ 2 2 2 
wt =_!_ 

4 
wt=~ +~~ ~ wt =* 

The linear chain possesses a continuum of levels. The dispersion of the pn: 
energy band is given by E (k) = a + 2{J cos ka where k , the wavevector, runs 
from 0 to :n:/a. (a is the unit cell length). The top and bottom of the energy 
band then occur at E = a - 2{J (k = :n:l a) and E = a + 2{J (k = 0) respectively. 
The density of states for systems of this type is described by a function pro­
portional to (aE/akr1• Manipulation of the dispersion equation leads to 

1 e (E) ex 
2 {Ja sin ka 

oc 
V 4 {12 - E 2 

(16) 

Notice that this function is complex for [ 2(J I> [ E I and is infinite fo r E = 
= + 2{J. We shall now derive this expression via the moments method. 

The number of walks of length n are simply given by the binomial coef­

ficient(~12) as we suggested earlier. These values of the !-''" and the L1; and a; 
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which they generate, are shown in Table I. For the linear chain the continued 
fraction then becomes 

G (z) = -1 

z-2 

z-l 

z-l 

z-l 

This infinite expression may be simply evaluated by writing 

-1 

where 
f =-1 

G(z)= ----
2 

z- - -
z+f 

-1 
----------- -- - - -
z-l z+f 

z-l 

z-l 

( 17) 

(18) 

(19) 

It should be noted that the above equality is not exactly correct as equation 
(17) does not always converge while equation (18) is defined for all z. 

Rearrangement of equation (18) leads to 

G (z) = cz2 - 4r112 

E 
-2(31-------===--

p(E) 

(20) 

4 

In order to convert G (z) into e (z) we need to use the Stieljes transform which 
for us takes the very simple form 

~ Im (G (z)) /
1

_= = e (t) (21) 
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Hence the density of states is 

1 
(} (z) =-;- ( 4 - z2r112 (22) 

This function is shown in 4. Note that equation (22) is indeed of 'the same form 
as equation (16). 

The progression from cyclic polyene to infinite chain is an in.teresting one 
to follow. Table I shows some relevant µn, a; and L1; values for the pn: 'Orbitals 
of such systems. Notice that for the four-ring (cyclobutadiene) µ 0 and µa, are 
the same as the values for the six-ring (benzene) and eight-ring (cycloocta­
tetraene) and linear chain. In general for a 2m~ring the µn are identical to those 
of the infinite chain for a n :::; 2 (m - 1). As a result the a; for a 2m-ring are 
identical to those of the infinite chain for i :$ 2 (m -1) - 1. Equation {23) 
shows a general expression for the continued fraction when a; = 0 for i > 4 and 
all the b; = 0 

z4-z2 (a2 + a3 + a4) + a2 a4 G(z)= ---- --------------­
~-~~+~+~+~+z~~+~~ + ~~ 

(23) 

Since such a system is bipartite the spectrum entries may be written as + Yi. 
+ Y2 or 'in general as { + y;}. The co1I1tinued fraction then becomes 

z4 - z2 (a2 + a3 + a4) + a2 a4 G (z) = ---- -------
z (z2 -Y12) (z2 -y/) 

z4 - z2 (a2 + a3 + a4) + a2 a4 

Z5 
- Z3 (Y12 + Y/) + z (Y12 Y/) 

(24) 

It is then easy to see that y 1
2 + yz2 = a1 + a2 + a3 + a4• As a general result for 

bipartite systems 

(25) 

Here ai', is the last nonzero a; value and y; is an entry in the eigenvalue spect­
i ' 

rum. In the present examples a; = 1 for 1 < i < i' and a1 = a;· = 2. So ~ a; = 
i= l 

= m + 2 and a general solution of equation (25) becomes 

nj 
Yi = 2 cos - j = 0, 1, 2, .. ., m 

m 
(26) 

This is a result which may also be derived (in an easier way perhaps) via 
examination of the form of the secular determinant.2 

At this stage let us examine approximate ways to solve the problem of 
the crystalline solid, using the one-dimensional chain as an example. Recall 
that the a; values for the cyclic systems form a sequence 

a ; 1, 2, 1, 1, . . ., 2 (27) 
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and for the infinite chain 

a ; l , 2, 1, 1 . .. 1 . . . (28) 

Two approximations immediately present themselves. First we may just 
truncate the a; values of the linear chain with a/ = 1 as 

a; l, 2, 1, 1, .. . 1, . .. (29) 

If all a; = 0 for i > i ' then there will be a total of (i' + 1) spectrum entries. 
Moreover these (i' + 1) entries will have the same moments through flk where 
k = 2 (i' + 1) as those of the linear chain itself. The entries generated in this 
way are identical to those obtained by use of the special points approach.13,14 

Table II shows how the moments associated with special points sets of various 
sizes follow the moments of the infinite system. The special points set which 
generates m levels mimics the moments of the true continuous distribution 
through fi:im · In more than one dimension analogous results are found. For 
example the set of points for the primitive cubic zone generated by the one-

( -
1 , _3 ) -2Jt dimensional pair of points, are (in units of 2n/a) 
8 8 a 

1 1 1 1 
- weight -8, 8' 8 8 " 

3 3 3 1 
- - weight -

s' 8 8 8 

1 3 3 3 
- weight -8, 8 , 8 8 

1 ;j 3 
- - - weight -
s' 8 , 8 8 

These lead to the moments correct through µ 4 for the simple cubic lattice with 
an s orbital located at each node. The three dimensional set of points car-

. . . . 1 3 5 2Jt . 
respondmg to the three one d1mens1onal pomts (-

12 
,-

1
-, - ) - give the mo-
2 12 a 

ments correct through µ6• Analogous results may be shown analytically for 
fee, and bee lattices containing a single s orbital at each node, where the dis­
persion expression may be written in closed form. 

Second we may truncate the a; series for the infinite system with an 
a ;• = 2. This leads to a problem identical to the one associated with cyclic 
systems of Table I. It is then easy to see that this approximation corresponds15 

to the fragment-within-the-solid, or small periodic cluster approach, since all 
we do is approximate the solid by tying the ends of the chain together (5, 6). 

.. . . . . . . . ... . ...... : .. 
5 6 

0 
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If there are m levels then they mimic the moments of the truly continuous 
solid through flnz- z as shown in Table II . Clearly the special points method is 
more accurate in the sense of reproducing the moments of the continuous 
density of states. The fragment-within-the-solid approach has its qualitative 
uses too as we have stressed elsewhere.15 

TABLE II 

Moments for the Infinite Chain and those Obtained via Approx imate M ethods" 

f-lo µz µ4 flo /ls 

infinite chain 1 2 6 20 70 

single special 
Special point at (~1_) ~ 1 0 0 0 0 
points 4 a 
method two specicrl 

points at 1 1-) ~ 1 2 4 8 16 (8, 8 a ------------------

three special 
points at 

1 3 5 2it 1 2 6 18 54 c 12' 12· 12) a- -------- -· ·- ---- ---------------

four special 
points at 

1 3 5 __!__) ~ 1 2 6 20 68 ( 16' 16' 16' 16 a ---------------------------------------- ------

two atom 
Fragment- fragment 1 4 16 64 256 
within- four atom the-solid fragment 1 2 8 32 64 method ------- ----------· 

six atom 
fragment 1 2 6 22 86 

--------------------------------

eight atom 
fragment 1 2 6 20 72 -----------------------------------------------

' • Values underlined are those which are identical with those of the infinite chain. 

OTHER MOLECULAR SY STEMS 

Benzene-1,3,5-trimethylene 

7 shows the DOS plot for the pn levels of this molecule. We will show the 
origin of the interesting degeneracy that occurs in the energy level spectrum 
at E = 0. This has to be an 'accidental' degeneracy since the point symmetry 
of the molecule is not high enough to support a triply degenerate representat­
ion. (This type of degeneracy has also been called16 an 'excessive' degeneracy) . 
In this molecule there are three different types of atoms. We may readily 
count the walks for each type using the technique of Figure 3b. The results 
are shown in Figure 4. Table III shows the values of the LI ; and a; coefficients 
for the three inequivalent atoms. Evaluation of the respective continued fract­
ions leads to the values of the eigenvalue spectrum entries and of the partial 
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-)5{3+----

-)2 (3 +-----

E 

J2 {3+-----..~­

J5{3t==::::,...._~~ 
2 3 

p(E) 

7 

densities of states associated with each orbital type. These are also shown in 
Table III. 

I :& :&., 
7 18 II 39 86 8 

p.6 =11,86 p. 8 =47/3 

II 

III 

Figure 4. Propagation diagrams for the symmetry inequivalent orbitals in tris­
methylene benzene. 

For the orbitals of type I 

z4 -6z2 + 6 
G (z) = z (z2 - 2) (z2 - 5) 

(30) 

_2_ ,_!_+_!_[ 1 + 1 ]+ -1-[ 1 +--1--] 
- 5 z 6 (Z - y 2) (Z + V 2) 30 (Z - V 5) (Z + V 5) 
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TABLE III 

Parameters for Trismethylenebenzene 

Atom I Atom II 

Llo 1 1 

L1, 1 2 

L12 2 8 

L13 4 32 

Lf 4 24 256 

ao 1 1 

a, 1 2 

az 2 2 

a3 1 1 

a4 3 2 

Y1 ± v5 ± v5 

Y2 ±v2 ± v2 

Y3 0 ·O 
(! (y,) 1/30 2/15 

(! (Yz) 1/6 1/6 

(! (Y3) 3/5 2/5 

For the orbitals of type II 

z4 -5z2 + 4 
G (z) = z (z2 - 2) (z2 - 5) 

Atom III 

1 
3 
6 

40 

0 

1 

3 

2/3 

10/3 

0 

±vs 

±v2 

1/6 

1/3 

-~ 1-+1-[ 1 + 1 ]+_!_[ 1 + 1 ] 
- 5 . Z 6 (Z - y 2) (Z + V 5) 15 (Z - V 2) (Z + V 5) 

For the orbitals of type III 

z
3
-4z 1 [ 1 1 ] 1 [ 1 1 ] G (z) - - - + + - + 

- (Z2-2) (z2 -5) - 3 (Z- V5) (Z + V2) 6 (Z- v5) (Z + V2) 

1205 

(31) 

(32) 

Notice that for atom III with four entries in the eigenvalue spectrum, ai = 
= L1; = 0 for i ~ 4. For atoms I and II with five such entries ai = L1; = 0 for 
i > 5. The total density of states picture is shown in Figure 5 and is simply 
the weighted sum of the partial density of states plots. The factors of 3 com­
pared to the numbers of Table III arise simply because there are three atoms 
(orbitals) of each type. 

An interesting observation concerning Figure 5 is associated with the 
location of the partial densities of states as a function of coordination number. 
Notice that the three coordinate atoms (Type III) have the largest density at 
the top and bottom of the band and that the one-coordinate atom (Type I) has 
the least. This of course is in keeping with simple bonding ideas; the greater 
the number of interactions the lower in energy is the most bonding orbital 
and the higher in energy the highest antibonding orbital. Using the language 



1206 

- ,;5{3 

-J2/3 

I 

J2{3 

J5{3 
I p(E) 2 

I 
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II 

1 p(E) 2 
Il 

+ 
III 

I 'ME) 2 2 p(E) 3 

Figure 5. Partial and total densities of states for the pJt orbitals of trismethylene 
benzene 

of moments Type I, atoms have larger fln than Type II or III which is accom­
modated by a spreading out of the spectrum. 

The origin of the triple degeneracy at E = 0 may be viewed in other ways 
of course. Figure 6 shows the assembly of the molecular orbital diagram from 
a six ring plus three 'ligands'. The levels at E = 0 are simply the nonbonding 
orbitals of e and a symmetry which result from a typical three orbital pro­
blem. In this case there are three pairs of e symmetry orbitals and three of a 
symmetry. This degeneracy would be split if second-nearest neighbor inter­
actions were included. Elsewhere7 we show how use of the propagation dia­
grams allows a general analysis of orbital degeneracy problems of this type. 

a ------e =-------= 
a+e a+e -----==== 

=------ e 

-----_9._ 
• 

0 • • 
Figure 6. Assembly of the molecular diagram for the pit orbitals of trismethylene 

benzene from those of benzene and three methylene groups. 
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Cyclopropenyl 

Here in this example we show the effect of a nonbipartite, or nonalternant 
system, where the odd moments and the bi of the continued fraction will not 
necessarily be zero. With a total of three atomic pn orbitals the maximum 
number of entries in the eigenvalue spectrum is three (although we know from 
traditional molecular orbital arguments2 that there is a double degeneracy) 

I I 3 

D D D I 2 I 2 3 

P.t 0 µ. = 2 
2 

µ. = 2 
3 

5 11 21 

D D D 8 

6 5 10 II 22 21 

µ. = 6 
4 

µ.
5
= I 0 ,.,. = 22 

G 

and so the moments through µ 6 are the most that will be needed. Their gene­
ration is shown in 8 and the corresponding Lii, a; and b; shown in Table IV. 
Notice that since a2 = 0 there can only be two entries in the eigenvalue spect-

TABLE IV 

Cyclopropenyl Parameters 

u.! 
' ' L1 i ai b; 

0 1 1 1 0 
1 0 2 2 -1 
2 2 0 0 0 
3 2 0 0 0 

rum. This automatically requires one nondegenerate and one doubly dege­
nerate level. G (z) then becomes 

G (z) = 
1 

2 z- -­
z-1 

z -1 

(Z-2) (Z + 1) 

1 1 2 1 
= -· + -· 

3 (Z - 2) 3 (Z + 1) 

(33) 
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E 

-pi-----

2/3 

Ip E) 2 

9 

and the corresponding density of states is shown in 9. (The factor distinguishing 
equation 33 from 9 arises because three are three equivalent orbitals in the 
molecule). 

DIATOMIC MOLECULES 

The systems described above containing b; = 0 are bipartite but the sym­
metrical level structure is a result of setting all H;; = a = 0. If Ha r= 0 then 
cyclobutadiene (for example) will not have a level pattern symmetrically located 
about E = 0 but one located symmetrically about E = a. As a result of this 
origin shift the odd moments, and the b; may not necessarily be zero. Here we 
examine the ethylene molecule with levels at E = a+ fJ. Now since H u is 
nonzero, in addition to the walks from one orbital to another we need to 
include the effect of 'walking in place' at one center (m) weighted by the cor­
responding element Hmm (= a). So for either of the two atomic orbitals µ 0 = 1, 
f,lt = a (i. e., walking in place just once), µ2 = a2 + /J2 (we have two possibilities 
here, walking in place twice or walking to the other orbital and back) and 
,u3 = a3 + 3afJ. So ..10 = 1, ..11 = (P which gives ao = 1, a1 = (32, b0 = - a and 
b1 =-a. Thus 

1 z-a 
G (Z) = --- ---­p2 

(z -a)--~­
(Z - a) 

(z - a + /3) (Z - a - /3) 

_ J__ [ 1 + 1 ] 
- 2 (z - a + /3) (Z - a - /3) 

and the energy levels occur at E = a ± {3. (10). 

E 

a.- f3r-----

10 

a.+ {31-----

p(E) I 

(34) 
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For the heteronuclear diatomic 11, (representing the n: orbitals of form­
aldehyde for example) for orbital 1 the first few moments are simply µ0 = 1, 

2 • 11 

µ1 = ai, fl2 = a12 + fJ2, fl3 = a13 + fJ2a2 + 2fJ2a1. Since there are only two energy 
levels we will only need the moments through p,v_ to generate the ai and through 
fl3 to generate the bi. L10 = 1 and L11 becomes 

(35) 

which leads to a0 = 1, a1 = fJ2, b0 = - a1 and b1 = a2• G (z) may then be evalu-
ated as · 

G(z) = (36) 
(z-Q+l (z-Q_) 

where 

(37) 

The eigenvalue spectrum entries then occur at E = Q± , a result identical of 
course to that obtained by solution of the secular determinant. A similar result 
applies for orbital 2. Evaluation of the weights in the usual way leads to the 

Q_ 

12 

P(E) 

partial, and total density of states plots of 12. (These have been drawn as­
suming arbitrarily that I a1 J > I a2 I). 

Htl"CKEL AND MtJBIUS SYSTEMS 

Of some interest is the relationship between Hiickel energy levels (e.g ., 
as in the n: type orbitals of cyclobutadiene) where there is either an even or 
zero number of overlap sign changes between adjacent pairs of orbitals (13) 
and those of the Mobius type (e.g. , as in the tangential in-plane orbitals of 
cyclopropenyl) where there is an odd number of sign changes (14).17 In evaluat­
ing the weights of the walks in the Mobius system we will need to reverse 
the sign of the weight of any walk which makes an odd number of complete 
circuits around the ring. A comparison of the weights and hence moments for 
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+ 
~-~ 

13 +I I+ 
~-~ 

14 

+ 
+ 

Hiickel and Mobius cyclobutadiene is shown in Figure 7. A comparison between 
the relevant parameters of the continued fraction is shown in Table V. Note 
that since a2 = 0 for the Mobius system there can only be two entries in the 
eigenvalue spectrum. This implies either two doubly degenerate levels or one 

[J n 0 ~ total 

Hu eke I 2/34 2/3 4 2/3 4 2(3 4 8(34 

Mobius 2(34 2(3 4 -2(34 2/3 4 4/34 

Figure 7. Walks leading to µ4 for Hi.ickel aind Mobius four rings. (Only one walk of 
each type is shown. Each one has a counterclockwise partner). 

triply degenerate and one nondegenerate level. Since all the b; are zero in both 
systems the latter possibility is excluded since mirror symmetry about E = 0 
needs to be maintained. G (z) is readily evaluated as 

Hi.ickel 
Mobius 

G (z) = z 1 [ 1 + 1 ] 
(z- .../2) (z- .../2) = 2 (z- .../2) (z + v 2). 

TABLE V 

Hilckel and Mobius Cyclobutadiene Parameters 

2 
2 

8 
4 

L1o 

1 
1 

2 
2 

8 
0 

1 
1 

2 
2 

The well-known Mobius pattern is shown in 15. 

E 
- J2/3t------

J2/3r-----

p(E) 2 

15 

2 
0 

(38) 
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JAHN-TELLER DISTORTION OF CYCLOBUTADIENE 

The singlet state of cyclobutadiene, with four pre electrons (two pairs) is 
not square but distorted. Here we will view the distortion of the square to 

16 

the rectangle (16). Evaluation of the moments of the pre manifold is a simple 
extension of the result of Figure 3. In general µn = 0 for n = odd as before. 
For n =even 

(39) 

One simplification often used in this problem is to set {J1 + fJ2 = 2fJ. If we put 
{J1 = xfJ + fJ and {J2 = - xfJ + fJ then 

(40) 

and a0 = 1, a1 = 2 (1 + x 2), a2 = 2 (1- x 2) (1 + x2) and a 3 = 8x2 (1 + x 2). Eva­
luation of G (z) leads to 

1[ 1 1 1 ; 1 ] G(z) == ~ --- + --+ + 
4 (z + 1) (z-2) (z + 2x) (z-2x) 

(41) 

a result shown pictorially in 17 after multiplication of these weights by 4. A 
general expression for the energy levels may be obtained by using equation (39), 

as E = fJ1 + {J2, fJ1 - {J2, - fJ1 + {J2, - /31 - /32· 

E 

-2/3 

2/3 

D 

1 p(E) 2 

INFINITE SYSTEMS 

D 

17 

I p(E) 2 

In general the density of states for solid materials has to be generated 
numerically. Few systems lead to simple algebraic expressions such as the 
one we showed for the linear chain. The details are given elsewhere.9 An ap-
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proximate DOS may be generated using the first few moments but often many 
moments are needed to get an accurate picture. (Analogously, using the k-space 
method (Figure 1) we would need to use a large number of k-points to obtain 
similar accuracy). However, we are often interested in, not the DOS themselves, 
but the energy difference between two geometrical arrangements as a function 
of band filling. In another paper9 we describe an extremely powerful algorithm 
for evaluating such energy differences in terms of loops of certain length within 
the basic orbital arrangement.18 

There are two features of the moments approach which we will use in 
this section. First is the ability to selectively examine the contribution to the 
DOS of a particular orbital whether it be in a molecule or in a solid. Second 
is the applicability of the approach to the study 'Of systems without trans­
lational symmetry, such as surfaces, defects, or amorphous materials. We 
will examine here two simple examples (i) the semi-infinite linear chain 
AAA ... AAA .. . , where the first atom in the sequence is the end ('surface') 
atom and is one-coordinate (all the others are 'bulk' and are two-co.ordinate) 
and (ii) the infinite linear chain with an impurity, ... AAABAAA ... 

THE SEMI-INFINITE AAA ... AAA .. . CHAIN 

Exact analytic expressions for the function G (z) in equations (4) and (5) 
can be obtained for atoms throughout the semiinfinite linear chain. For these 
functions, all b; coefficients are zero. The a; coefficients for the first five atoms 
at the end of this semi-infinite chain are given in Table VI. On moving away 
from the end of the chain we can see that increasingly large blocks of unit 
coefficients are interposed between the fractional series of a;'s. Obviously as 
the atom under consideration moves away from the end of the chain, its DOS 
will become increasingly like the bulk and G (z) will approach the expression 
of equation (17). When the DOS of the atoms near the end of the chain are 
generated numerically from the G (z) functions, they form elegant patterns 
shown in Figure 8 for the first five atoms. For the DOS of A(A)AA ... , the 
single node divides the band area in half. For the DOS of AA(A)AA ... , the 
two nodes divide the band area into thirds. For the DOS of AAA(A)AA ... , the 
three nodes divide the band area into fourths etc. 

Such a method is capable of being extended to examine the densities of 
states associated with surfaces and chemisorbed species.19 

THE ... AAA(B)AAA .. . CHAIN 

For the infinite linear chain with a defect atom, we will assume that B 
is more electropositive than A, i.e., as> 0 and aA = 0. In addition linear chains 
of pure A and pure B will have the same bandwith 4 where we will set (J = 1. 
The moments associated with the DOS for the B atom in the chain are shown 
in Table VII for the case where as = 1.0. Notice these are different to those 
for the linear chain itself since walks 'in place' need to be included too . 
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Figure 8. Contributions to the density of 
states from the end and penultimate atoms 
of the semi-infinite linear chain. These 
plots have been computed using a trunc­
ated sequence of a; values, setting all a; 
values after truncation equal to 1. The 
small wiggles riding the otherwise smooth 
curves are artifacts of this approximation. 
(The number of wiggles is equal to the 
number of moments used in the e'Xpans­
ion. This provides a way to cosmetically 
improve these curves by comparison of 
the results obtained using m and n mo­
ments in the expansion. Only the features 

in common are the genuine ones). 
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TABLE VII 

First Five Moments of the B Atom in an Infinite A Chain 

Walks ... A - A - A - A - A - (B) - A - A - A - A - A . . • 

0 
1 
2 

3 
4 
5 1 

1 
5 

1 
1 1 
1 5 
6 7 

.The a; and b; coefficients become: 

a0 = 1 

a1 = 2 

a; = 1 i > 1 

1 
1 
4 
6 

18 

µi 
1 
1 1 
3 1 1 
5 4 1 1 

13 6 1 1 1 
25 18 7 6 5 1 

(42) 

(More generally we can show that b0 = - an, a result analogous to the one 
for the heteronuclear diatomic). Using the substitution technique of equations 
(18) , (19) G (z) may be written in a more tractable form 

G(z) = ~~~-1~--~~~-
z -an-2 

z -1 

z-1 

z 

1 

- aB + (z2 - 4r112 

(43) 

G (z) will be complex for - 2 < z < 2 and hence the partial DOS calculated 
from G (z) will have a continuum of levels within the band - 2 < E < 2. In 
addition G (z) will have a pole at z = (4 + an)1i 2 which corresponds to a discrete 
antibonding level outside of the band (18). To those readers whose experience 

)4+a~ - - IE 

a.-o 18 

with infinite solids is restricted to crystals this state is something of a novelty. 
In crystals it is well known that the energy levels in k-space are always con­
tinuous. Any discrete jump in the energy density of states can only occur when 
an entire energy bands is flat, and so such a feature always represents a finite 
fraction of the DOS for crystalline materials. Here by contrast the discrete 
level corresponds to a single eigenfunction. In the limit where the chain length 
is infinite, this discrete level has no area associated with it at all. 
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CONCLUSIONS 

The aim of this article is to broadly illustrate the use of the m ethod of 
moments in determining the Ruckel energy levels of molecules and solids. 
Since the moments themselves are expressed in terms of walks around the 
molecule or solid, there exists a very direct relationship between the energy 
level structure and the molecular or solid-state topology. This direct relation­
ship is missing in the usual route via the secular determinant. However, 
because ·of the rather indirect relationship between the ,u.11 and the spectrum 
entries, via the LI;, b; and a; the approach may appear more complex. Elsewhere 
we show aspects of the versatility of the method.7•9 
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SAZETAK 

Metoda momenata i energijske razine molekula i cvrstih tijela 

Jeremy K. Burdett, Stephen Lee i William C. Sha 

Izvedeni su izrazi za energijske razine reprezentativne skupine molekula te kri­
stalnih i amorfnih cvrstih tijela primjenom metode momenata. Taj pristup daje 
direktnu vezu izmedu gustoce stanja spektra vlastitih vrijednosti i topologije mole­
kula i cvrstih tij ela. 




