CCA-1521

YU ISSN 0011-1643 UDC 541 Original Scientific Paper

Penetration in the CNDO Theory

Alexander Koukoulas and Michael A. Whitehead†

Chemistry Department, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A - 2K6, Canada

Received April 12, 1984

An explicit form for the penetration integrals in CNDO theory is developed and tested on first row diatomic molecules. It is shown that the non-penetration integral theory CNDO/BW is more satisfactory for predicting bond lengths and equilibrium energies because it gives an unstable $^3\Sigma_{\rm u}{}^+$ for H₂, whereas introduction of the penetration integrals makes this state stable.

INTRODUCTION

The CNDO theory should include penetration effects to be used in chemisorption studies. An explicit form for the penetration integrals is derived and incorporated into the CNDO theory.

THEORY

The CNDO Roothaan equations for a closed shell system are1

$$\sum_{l=1}^{n} F_{kl} C_{li} = E_i C_{ki} \quad (k, i = 1, \dots N)$$
(1)

where F_{kl} , the Fock matrix elements, are

$$F_{kk} = H_{kk} - (1/2) P_{kk} (kk \mid kk) + \sum_{r} P_{rr} (kk \mid rr)$$
 (2)

and

$$F_{kl} = H_{kl} - (1/2) P_{kl} (kk \mid ll) \quad k \neq l$$
 (3)

The P_{ii} are the elements of the population matrices. To preserve invariance to orthogonal transformations among atomic orbitals on the same atom, the Coulomb integrals², are assigned a common value γ_{AB} for all φ_k and φ_r on atoms A and B, respectively

$$\gamma_{AB} = (kk \mid rr) \tag{4}$$

The diagonal core Hamiltonian matrix elements, H_{kk} , are

$$H_{kk} = \int \varphi_k^* \left(1 \right) \left(-^{1/2} \ \nabla^2 - V_A \right) \varphi_k \left(1 \right) \, \mathrm{d} \ \tau_1 - \sum_{\mathbf{B} \neq \mathbf{A}} \varphi_k^* \left(1 \right) \, V_{\mathbf{B}} \, \varphi_k \left(1 \right) \, \mathrm{d} \tau_1 = U_{kk} - \sum_{\mathbf{B} \neq \mathbf{A}} V_{AB} \quad (5)$$

 $^{^\}dagger$ Present address 1983—1984, Departément de Chimie Physique, Université de Genève, Suisse.

and represent the kinetic and potential energies of an electron in the $k^{\rm th}$ orbital of an atom A with the field about A and with the core of atom B. The off-diagonal terms are

$$H_{kl} = U_{kl} - \sum_{\mathbf{B} \pm \mathbf{A}} \int \varphi_k^* (1) V_{\mathbf{B}} \varphi_l (1) d\tau_1$$
 (6)

where φ_k is on A and φ_l on B. In CNDO the H_{kl} elements are approximated by

$$H_{kl} = -\beta_{AB} S_{kl} \tag{7}$$

where $eta_{\mathtt{AB}}$ is an empirical parameter and S_{kl} is the overlap matrix

$$S_{kl} = \int \varphi_k^* (1) \varphi_l (1) d\tau_1$$
 (8)

Using the population matrices, equation (1) becomes

$$F_{kk} = U_{kk} + (P_{AA} - \frac{1}{2} P_{kk}) \gamma_{AA} + \sum_{B+A} (P_{BB} \gamma_{AB} - V_{AB})$$
 (9)

and

$$F_{kl} = -\beta_{AB} S_{kl} - \frac{1}{2} P_{kl} \gamma_{AB} \quad k \neq l$$
 (10)

where

$$P_{AA} = \sum_{k}^{A} P_{kk} \tag{11}$$

Equation (9) can be rewritten as

$$F_{kk} = U_{kk} + (P_{\rm AA} - \frac{1}{2} P_{kk}) \ \gamma_{\rm AB} + \sum_{\rm B \neq A} (P_{\rm BB} - Z_{\rm B}) \ \gamma_{\rm AB} + \sum_{\rm B \neq A} (Z_{\rm B} \ \gamma_{\rm AB} - V_{\rm AB}) \ \ (12)$$

where $\sum_{B \neq A} (Z_B \gamma_{AB} - V_{AB})$ is the penetration term which describes the interaction of an electron on atom A with the core of atom B^3 . The parameter γ_{AB} has the following well known constraints:

$$\begin{split} \lim \gamma_{\rm AB} &= \sqrt{\gamma_{\rm AA}}^* \gamma_{\rm BB}^* \; ; \; R_{\rm AB} \to 0 \\ &\lim \gamma_{\rm AB} = 0 \; ; \; R_{\rm AB} \to \infty \end{split} \tag{13}$$

$$\lim \gamma_{\rm AB} &= \frac{V_{\rm AB}}{Z_{\rm B}} \; ; \; \gamma_{ii} \to \infty \end{split}$$

where $R_{\rm AB}$ is the interatomic distance and ${\gamma_{ii}}^*$ is the average electronic repulsion between electrons in orbitals located on atom i. The penetration is set equal to zero (i. e. $V_{\rm AB}=Z_{\rm B}\,\gamma_{\rm AB}$) in CNDO/2 in order to correctly describe the $^3\Sigma_u^+$ state of ${\rm H_2}^4$. The new theory, CNDO/VZ, attempts to re-introduce the penetration term by using new forms for $\gamma_{\rm AB}$ and $V_{\rm AB}$, $\gamma_{\rm AB}$ (VZ) and $V_{\rm AB}$ (VZ); VZ denotes the interaction between atom A of potential V with atom B of nuclear charge Z. $\gamma_{\rm AB}$ (VZ) is in the form of the damped Mataga-Nishimoto Coulomb integral⁵:

$$\gamma_{AB} \text{ (VZ)} = \frac{(1 - e^{-\lambda R_{AB} \gamma_{AA}^*}) (1 - e^{-\lambda R_{AB} \gamma_{BB}^*})}{R_{AB}} + \sqrt{\gamma_{AA}^* \gamma_{BB}^*} e^{-\lambda R_{AB} \gamma_{BB}^*}$$
(14)

 λ is a constant and all other terms have been defined. γ_{AB} (VZ) obeys the same limit conditions as γ_{AB} . V_{AB} (VZ) is given by

$$V_{AB} (VZ) = \frac{Z_B (1 - e^{-\lambda R_{AB} \gamma_{AA}^*})}{R_{AB}}$$
 (15)

with constraints5:

$$\begin{split} &\lim V_{\rm AB} = \lambda \, Z_{\rm B} \, \gamma_{\rm AB} \, ; \, \, R_{\rm BA} \to 0 \\ &\lim V_{\rm AB} = 0 \, ; \, R_{\rm AB} \to \infty \end{split} \tag{16} \\ &\lim V_{\rm AB} = \frac{Z_{\rm B}}{R_{\rm AB}} \quad ; \, \gamma_{ii}{}^* \to \infty \end{split}$$

RESULTS AND DISCUSSION

The CNDO program used is similar to CNDO/2 with the addition of the CNDO/VZ parameters, equations (14) and (15)6. The atomic parameters, γ_{ii} , are evaluated from Hinze and Jaffe valence state data7. The interatomic repulsion parameter, $N_{\rm AB}$, of CNDO/2 is omitted since this interaction is contained within the CNDO/VZ equations.

TABLE I Empirical Parameters λ and β_{AB} used in CNDO/VZ Method

Molecule	λ	β_{AB}	
H_2	2.240	0.149	
Li ₂	1.10	0.403	
N_2	2.40	0.311	
O_2	5.00	0.341	
BH	1.60	0.158	
-OH	3.01	0.607	
FH	2.12	0.390	
ClH	1.64	0.285	

TABLE II

Comparison of the Calculated Bond Distances and Binding Energies as Obtained by CNDO/VZ Method with CNDO/BW Results and Experimental Findings

	Internuclear Distance/Å			Binding Energy/eV		
Molecule	Calculated	CNDO/BW	Exptl.	Calculated	CNDO/BW	Exptl.
H_2	0.740	0.741	0.741	4.752	4.751	4.751
Li_2	2.492	2.672	2.672	4.279	1.050	1.050
N_2	1.035	1.098	1.098	9.904	9.903	9.903
O_2	1.199	1.207	1.2074	5.232	5.213	5.213
BH	1.262	1.212	1.233	3.578	4.493	3.577
OH	0.972	0.952	0.971	4.635	5.025	4.628
FH	0.972	0.917	0.917	6.110	6.110	6.110
ClH	1.261	1.275	1.275	4.612	4.615	4.615

The λ and β_{AB} parameter pairs of CNDO/VZ were generated to match experimentally obtained binding energies and bond lengths (Table I). CNDO/VZ gives bond lentghs and binding energies for diatomics H_2 , N_2 , O_2 , OH, FH and CIH which are in good agreement with experiment and CNDO/BW⁸; Li² is the exception in its binding energy (Table II). However, CNDO/VZ predicts a stable $^3\Sigma_u^+$ state of H_2 (Figure 1).

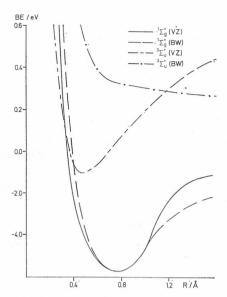


Figure 1: Binding Energies (BE) as a function of the internuclear distance (R) for the $^1\Sigma_g^+$ and $^3\Sigma_u^+$ states of H₂ using CNDO/VZ and CNDO/BW.

The CNDO/BW parametrization of the CNDO theory, which successfully predicts experimental bond lengths and binding energies for a variety of systems, uses the Ohno 9 form of γ_{AB}

$$\gamma_{\rm AB} = (R_{\rm AB}^2 + a^2)^{-1/2} \tag{17}$$

where

$$a = 2 \left(\gamma_{AB}^* + \gamma_{BB}^* \right)^{-1/2} \tag{18}$$

with constraints

$$\lim \gamma_{AB} = \frac{\gamma_{AA}^* + \gamma_{BB}^*}{2}; R_{AB} \to 0$$

$$\lim \gamma_{AB} = 0; R_{AB} \to \infty$$

$$\lim \gamma_{AB} = \frac{1}{R_{AB}}; \gamma_{ii}^* \to \infty$$
(19)

It was therefore decided to see the effect of constraining γ_{AB} (VZ) and V_{AB} (VZ) to the CNDO/BW limits. This also gave a stable $^3\Sigma_u^+$ state of H₂, and no other change in results.

CONCLUSION

The attempt to include penetration integrals in the CNDO theory is unsuccessful. The damped Mataga-Nishimoto form⁵ of γ_{AB} (VZ) and V_{AB} (VZ) do not properly describe the $^3\Sigma_u^+$ state of H₂: it appears a fundamental error in the form and not due to the limit conditions.

CDNO/BW correctly describes the ${}^{3}\Sigma_{u}^{+}$ state of H₂ as well as the properties of most first row diatomics and a variety of larger systems using the

 $V_{\rm AB}=Z_{\rm B}\,\gamma_{\rm AB}$ approximation. Although theoretically unjustified this is numerically a good approximation because the additional parametrization of CNDO/BW of the core repulsion energy $N_{\rm AB}$, compensates for the error from neglecting the penetration integrals.

Recent $\mathrm{Li^{10,11}}$ cluster calculations using CNDO/BW describe effects for which the penetration term should be important. This suggests that future cluster studies as well as chemisorption¹² studies may be undertaken using CNDO/BW.

Acknowledgements. — This research was supported by the NSERC (CANADA). The computer Centre at McGill University provided computing facilities on their Amdahl — V7 computer.

REFERENCES

- 1. C. C. J. Roothaan, Rev. Mod. Phys. 23 (1951) 69.
- 2. J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys. 43 (1965) S129.
- 3. Approximate Molecular Orbital Theory, J. A. Pople and D. L. Beveridge, McGraw-Hill, New York, 1970.
- 4. J. A. Pople and G. A. Segal, J. Chem. Phys. 44 (1968) 3289.
- 5. D. E. Parry and M. A. Whitehead, J. Comput. Chem. 3 (1982) 265.
- 6. R. J. Boyd, Ph. D. thesis, McGill University 1970, p. 257.
- 7. J. M. Sichel and M. A. Whitehead, Theor. Chim. Acta 7 (1967) 32.
- 8. R. J. Boyd and M. A. Whitehead, J. Chem. Soc. A (1970) 2469.
- 9. K. Ohno, Theor. Chim. Acta 2 (1967) 219.
- 10. L. Skála, Phys. Status Solidi B 107 (1981) 351.
- 11. L. Skála, Phys. Status Solidi B 109 (1982) 733.
- 12. D. E. Parry and M. A. Whitehead, Solid State Commun. 41 (1982) 605

SAŽETAK

O integralima penetracije u CNDO metodi

Alexander A. Koukoulas i Michael A. Whitehead

Razmatran je problem uključivanja penetracijskih integrala, koji opisuju interakciju elektrona jednog atoma s košticom drugog atoma, u semiempirijsku CNDO shemu. Pokazano je da se to ne može uraditi na zadovoljavajući način, jer tada tripletno stanje $^3\Sigma_u^+$ molekule ${\rm H_2}$ postaje stabilno. S druge strane, CNDO/BW shema opisuje stanja dvoatomskih molekula na korektan način, iako su penetracijski integrali zanemareni. To se može objasniti empirijskom parametrizacijom ostalih integrala, koja ublažava nedostatak tih integrala.