CROATICA CHEMICA ACTA

CCA-1468

YU ISSN 0011—1643 UDC 546.32;74 Original Scientific Paper

Eine Bemerkung über K2[NiO2]^{1,2*}

Bernd Nowitzki und Rudolf Hoppe

Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Giessen

Eingegangen am 23. Oktobar 1983.

K₂[NiO₂] wurde erneut in einkristalliner Form [Farbe der quaderförmingen Einkristalle: rot-violett/grün (Dichroismus)] durch Reaktion von überschüssigem KO_{0,74} mit der Gefäßwand ('Ni--Bömbchen') bei der Darstellung von Oxogermanaten mit 'gemischten' Kationen des Typs A_{4-x}A_x'GeO₄ (A = Alkalimetall) erhalten (650 °C, 7d) und die Struktur verfeinert: 114 I₀(hkl), Vierkreisdiffraktometer PW 1100, ω -scan, MoK_a, $R = 4,46^{0/6}$, $R_{\rm w} = 3,60^{0/6}$, tetragonal, I 4/mmm, a = 395,28(13) c = 1283,84(65) pm, $d_{\rm rö} = 2,79_6$ g · cm⁻³, Z = 2. Die Bindungsabstände und der Madelunganteil der Gitterenergie, MAPLE, wurden berechnet und diskutiert.

In connection with the preparation of oxogermanates with 'mixed' cations (typ: $A_{4-x}A_x$ 'GeO₄ with A = alkalimetals) single crystals [square shape, red-violet/green (dichroism)] of [K₂NiO₂] have been obtained anew by reaction of a surplus KO_{0,74} with the sidewall of Ni-cylinders [650 °C, 7d].

The structure of K₂[NiO₂] has been refined: 114 I₀(hkl), four cycle diffractometer PW 1100, ω -scan, MoK_a, R = 4,46%, R_w = = 3,60%, tetragonal, I 4/mmm, a = 395,28(13) c = 1283,84(65) pm, $d_{r\ddot{o}} = 2,79_6$ g · cm⁻³, Z = 2. The interatomic distances and the Madelung Part of Lattice Energy, MAPLE, are calculated and discussed.

Wie die fabelle I zeigt, haben die der Zusammensetzung nach ähnlichen Oxide K₂ [BeO₂]³, K₂ [ZnO₂]⁴ und K₂ [NiO₂] sehr unterschiedlichen Aufbau. Im ersten Fall liegen zweikernige Anionen vor, die charakteristische Koordinationszahl ist 3. Im Zincat liegen SiS₂-analoge, unendliche Tetraederketten vor, und bei K₂[NiO₂] liegt, wie zuvor nur bei den Oxomercuraten A₂[HgO₂] mit A = Li—Cs⁵ gefunden, eine 'aufgefüllte Molekülstruktur' des XeF₂-Typs⁶⁻⁸ vor. Rb₂ [NiO₂] und Cs₂ [NiO₂] schließen sich im Aufbau K₂ [NiO₂] an⁹.

Unerwartet ist nicht nur der Aufbau von K_2 [NiO₂], sondern auch die Kürze des Abstandes d (Ni—O) = 1,68₁ Å.

Nun konnten wir seinerzeit nur Zweikreisdiffraktometerdaten auswerten. Da zudem der Madelunganteil der Gitterenergie, MAPLE, unbefriedigend mit

^{*} Herrn Professor Dr. Drago Grdenić zum 65. Geburtstag gewidmet.

TABELLE I

Motive der gegenseitigen Zuordnung bei $K_2 [BeO_2]^3$, $K_2 [ZnO_2]^4$ und $K_2 [NiO_2]$ $K_4 [Be_2O_4]$:

ouer	1 0	$1 \stackrel{2}{0}$	C.N.	
1 Be	1/1 + 1/1	1/1	3	
1 1 K	1/1 + 1/1	1/1	3 Sensition of Solid	
1 K	1/1 + 1/1	1/1 + 1/1 + 1/1	5	
C. N.	6	auto sato 5 realto a	Anorgenirelie and Analytic	

 K_2 [ZnO₂]:

	C.N.
1 Zn	$\frac{1}{1}$
2 K	1/1 + 1/1 + 1/1 + 2/2 5
C. N.	Nuter (30° C. 76) and dia chronic verticines 3 111 Transfel Vierlandstraction in 207 1100. op cant. Mark. R. 12 - 4 44
K ₂ [NiC	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 Ni	the 1/2 months 2 or to not show that the contract of
2 K	12 1/1 + 4/4 is 5 is $=$ A (10 - 0.000 A, 0.000 evolves inexim)
C. N.	arystate (square coupet red- osciator - coursedant of KEND, with

der Summe der MAPLE-Werte der binären Komponenten übereinstimmte $(\Delta = -1,9^{0}/_{0})$, erschien eine Verfeinerung der Struktur von K₂ [NiO₂] dringend geboten.

Vor längerer Zeit haben wir bei der Umsetzung von Na [NiO₂] mit K₂O beobachtet, daß sich neben K₃ [Ni₂O₄]¹⁰ durch Reaktion mit der Wand des 'Ag-Bömbchens', aus dieser herauswachsend, schöne Einkristalle von Na₃ [AgO₂]¹¹ bilden. Auch KAgO¹² konnte durch Reaktion von K₂O mit der Gefäßwand ('Ag-Bömbchen') in einkristalliner Form dargestellt werden¹³. In der Zwischenzeit haben wir festgestellt, daß es sich um eine Beobachtung handelt, die man bei vielen derartigen Austauschreaktionen und auch dann findent, wenn man z. B. 'überoxidiertes Kaliumoxid' (KO_x mit x > 0,5) schnell im z. B. 'Ni-Bömbchen' erhitzt (hier: z. B. Bildung von K₂ [NiO₂]¹).

Die hier untersuchten Einkristalle entstanden bei Versuchen, die zur Darstellung von Oxogermanaten mit 'gemischten' Kationen des Typs $A_{4-x}A_x$ 'GeO₄ (A = Alkalimetall) vorgenommen wurden¹⁴.

I. Darstellung und Eigenschaften der Präparate

Die Einkristalle wurden auf zwei verschiedenen Wegen erhalten:

a) Erhitzt man innige Gemenge von $KO_{0,74}$, $NaO_{0,50}$ und GeO_2 in verschlossenen 'Ni-Bömbchen', so entstand gemäß:

K₂[NiO₂]

$5KO_{0.74} + Na_{0.50} + GeO_2 + Ni = 'K_3NaGeO_4' + K_2NiO_2 + 'O, 1O_2'$

neben einem neuen Oxogermanat, mit dessen Untersuchung wir beschäftig sind, eine Reihe gut gewachsener Einkristalle von K_2NiO_2 (Ni-Bömbchen, Ni-Stopfen; 600—650 °C; 7d). Wichtig ist dabei die Aufheizrate, sie sollte bei 150 °C/h liegen.

b) Weniger gute Einkristalle entstanden auch dann, wenn man $KO_{1,88}$ (typischer Ansatz: 250 mg) im kleinen 'Ni-Bömbchen' analog tempert. Diese eigneten sich für die Datensammlung nicht.

Die quaderförmigen Einkristalle (ϕ = bis 0,4 mm) zeigten den bereits beschriebenen Dichroismus (rot-violett/grün). Ihre Beständigkeit gegen Luft ist gering, es trat sehr schnell Zersetzung unter Bildung einer zunächst schwarzen, später 'hell-grünen Substanz' ein.

II. Röntgenographische Untersuchungen

Die Gitterkonstanten wurden über Guinier-Sinon-Aufnahmen (CuK_a-Strahlung, Eichung mit T-Quarz: a = 491,304 c = 540,463 pm), vgl. Tabelle II, erneut bestimmt:

a = 395,28(13) c = 1283,84(65) pm $c/a = 3,24_8$

Sie stimmen mit unseren älteren Werten ($\alpha = 395_{,3}$ $c = 1285_{,3}$ pm)² gut überein.

Die Einkristalle wurden unter mit Na-Draht getrocknetem Paraffinöl mithilfe eines Polarisationsmikroskopes ausgesucht und mit üblichen Filmmethoden (Drehkristall-(hier um [100])und Weissenberg-(Okl, 1kl) Aufnahmen) voruntersucht. Der geeignetste (Nr. 3) wurde für die Datensammlung auf dem Vierkreisdiffraktometer verwendet.

TABELLE II

Auswertung einer Guinier-Simon-Aufnahme von $K_2[NiO_2]/(^2K_3NaGeO_4')[+)$, diese Reflexe von K_2NiO_2 fallen mit Reflexen von ' K_3NaGeO_4' zusammen], CuK_a -Strahlung $(\lambda = 154,178 \text{ pm})$, Eichung mit T-Quarz (a = 491,304 c = 540,463 pm)

\overline{h}	k	l	an ang ang ang ang ang ang ang ang ang a	$10^5 \sin^2 \Theta_{ m o}$	$10^5 \sin^2 \Theta_{ m c}$		Io	/19/161/979 Ic
0	0	2	al stagnis	1452	1442		0,5	54,4
1	0	1		4171	4164		1+)	eich reb in 175, 7
0	0	4		5793 0.0	5769		2+)	30,6
1	0	3		7066	7048		10+)	918,6
1	1	0		7615	7607		6	1000,0
1	1	2			9049		-	22,5
1	0	5		seen ber \mathbf{K}_{i} NG,	12817		2. <u> </u>	12,1
0	0	6		12960	12980		$2^{+)}$	151,7
1	1	4		13415	13376		1+)	28,8
2	0	0	C2	15198	15214	5.	3	348,0
2	0	2		15)55.0.0	16656			9,8
2	1	1		19381	19378		0,5	34,0
1	1	6		20578	20586		2	293,0
2	0	4		20968	20982		1+)	12,1
1	0	7			21470		ia) <u>q</u> orsial	4,3

TABELLE III

K₂NiO₂ — Kristallographische und röntgenographische Daten

Kristallsystem	tetragonal
Raumgruppe	17 I 4/mmm — D ₄ h
Gitterkonstanten (Guinier-Simon-Daten, pm)	a = 395,28(13) c = 1283,84(65)
Kristallform, -farbe, -größe	quaderförmig, rot-violett/grün (Dichroismus), $\emptyset = 0.4$ mm
Dichte (röntgenographisch, g/cm³)	2,796
Zahl der Formeleinheiten pro Elementarzelle	2 no de la seconda de la s
Molvolumen (röntgenographisch, cm³/Mol)	$60,40_5$
Molvolumen (Summe der binären Oxide, cm³/Mol)	51,05
F(000)	156,0
Linearer Absorptionskoeffizient (MoK_a , cm^{-1})	54,50
Diffraktometer	Vierkreis (PW 1100)
Strahlung, Monochromator	MoK_{a} , Graphit
Korrekturen	Polarisations-, Lorentzfaktor
Meßbereich	$3^\circ \le \Theta \le 30^\circ$
Abtastung	ω-scan
Anzahl der symmetrieunabhängigen Reflexe	114
Löseverfahren	ref. 2
Parameterverfeinerung	'full-matrix' least squares, 'anisotrope' Temperaturfakto- ren
Anzahl der freien Parameter	10
$R = \Sigma / / F_o / - / F_c / / / \Sigma / F_o /$	0,0466
$R_w = \Sigma \sqrt{w} / / F_o / - / F_c / / / \Sigma \sqrt{w} / F_o /$	0,0360

TABELLE IV

Lageparameter und 'anisotrope' Temperaturfaktoren von K2NiO2, Raumgruppe

[4/mmm, (standardabweich)	ingen in	Einheiten	der l	etzten	Stelle	in	Klammern)
----------------------------	----------	-----------	-------	--------	--------	----	-----------

	Lage	x	y	z	U ₁₁	U ₃₃
Ni	2a	0	0	0	0,0129(45)	0,0163(11)
K	4e	0	0	0,6574(2)	0,0171(45)	0,0155(15)
0	4e	0	0	0,8686(6)	0,0172(50)	0,0183(29)

Der Temperaturfaktor (anisotrop) hat die Form:

TABELLE	v
---------	---

Ni K 0 Ni 4x 395,3 8x 344.9 2x 168,7 2x 439,8 8x 429.8 K 4x 344.9 4x 367.0 1x 271.1 4x 281,5 1x 439,8 4x 395,3 4x 464.3 1x 404.2 4x 479,3 0 1x 168.7 1x 337.4 1x 271.1 4x 429,8 4x 281,5 4x 395,3 4x 464,3 4x 413,4 4x 479,3

Interatomare Teilchenabstände bis 500 pm bei K₂NiO₂

Bezüglich der Einzelheiten der Untersuchung siehe Tabelle III. Tabelle IV gibt dioe Parameter nach dem Ende der Verfeinerung. In Tabelle V sind die wichtigsten Abstände zusammengestellt. Die Verfeinerung erfolgte, ausgehend von der bekannten Struktur, mithilfe von 'least-squares'-Methoden.

Der damals auffällig kurz erscheinende Abstand d(Ni-O) wird mit hier 1,687 Å (früher: 1,681 Å) prinzipiell bestätigt.

III. Der Madelunganteil der Gitterenergie, MAPLE¹⁶

Wir haben für $K_2[NiO_2]$ MAPLE berechnet und mit den MAPLE-Werten der binären Oxide verglichen, siehe Tabelle VI. Diese zeigt:

TABELLE VI

Der Madelunganteil der Gitterenergie, MAPLE, von K2NiO2 in [kcal/Mol]

		r		ter	rnär	2	∆ te	rbin.	
	Teilchen	Fakto	binär	'alt'²	'neu'+		'alt'²	'neu'+	
- 1 J.	Ni	1	556,4	504,0	501,3				141
	K	2	104,9	118.7	119,0		27,6	28,2	
	0	1	556,4 ^a	469,4	468,3				
	0	1	390,1 ^b	469,4	468,3		79,3	78,2	
	K ₂ NiO ₂	Σ	1712,7	1680,2	1675,9	a-z			
	2. de 1		n (763)				∧ = —1,93%/₀	∧ =2,20⁰/₀	

^a aus NiO, ^b aus K_2O , ⁺ 'neu' = diese Arbeit

a) Die Diskrepanz zwischen der Summe der MAPLE-Werte der binären Oxide und MAPLE(K₂NiO₂) wird bestätigt, diese ist eher noch größer geworden.

b) Diese bemerkenswerte Abweichung geht ganz auf das Konto von Ni^{2+} . So gesehen ist die Kürze des Abstandes d(Ni—O) noch immer nicht ausreichend, den Wechsel von der C.N. 6(NiO) zur C.N. 2 hier auszugleichen.

c) Der Paramagnetismus von $K_2[NiO_2]^2$ zeigt, daß der Verlust an MAPLE nicht durch zusätzliche Kovalenz unter Teilnahme der 3d-Orbitale von Ni²⁺ kompensiert

werden kann, was naturgemäß nicht ausschließt, daß über 4d-Orbitale zusätzlich eine (dann sicher schwächere) Kovalenz ermöglich wird.

d) Es ist bekannt, wie schwierig die Darstellung von formelreinen Präparaten von NiO ist¹⁵. Die Diskrepanz kann aber schwerlich durch die vermutlich nur geringe Unsicherheit bezüglich MAPLE(NiO) erklärt werden.

e) Eher schon könnte der gegenüber den Ausgangsoxiden sicherlich stärkere Einfluß des Entropiegliedes auf (ΔG^{0}_{298} bzw.) ΔG^{0}_{1000} entscheidend sein.

Beim jetzigen Stand unserer Kenntnisse könnte hier die Grenze des 'MAPLE--Konzeptes'¹⁶ überschritten sein. So müßte ja wie sonst üblich gelten:

MAPLE $(K_2NiO_2) = MAPLE (K_2O) + MAPLE (NiO)$

IV. DISKUSSION

Das Ergebnis dieser Überprüfung befriedigt und überrascht:

a) Befriedigend ist nicht nur die gute Übereinstimmung mit den Ergebnissen der älteren Untersuchung mit Zweikreisdiffraktometerdaten (alt: $R = 7,98^{\circ}/_{\circ}$; diese Arbeit: $R = 4,66^{\circ}/_{\circ}/_{\circ}/_{\circ}$ (Ni—O): alt: 1,68₁ Å; diese Arbeit: 1,68₇ Å).

Diese zeigt vielmehr, berücksichtigt man die Isotypie zu den Oxomercuraten, hier also insbesondere K_2 [HgO₂], daß eine tiefgehende Analogie über Schrägbeziehungen im Periodensystem der Elemente von Ni (über Ag?) zum Hg reicht.

b) Überrascht sind wir, daß die Diskrepanz der MAPLE-Werte bestätigt wird. Inzwischen haben wir nämlich KNa₂ [CuO₂]¹⁷ dargestellt. Auch hier liegt, was den [CuO₂]-Teil der Struktur anbelangt, eine 'aufgefüllte' Molekülstruktur vom XeF₂-Typ vor. Ähnlich wie bei K₂ [NiO₂] sind die Abstände d(Cu—O) in der 'Hantel' O—Cu—O kurz (1,73₁ Å bzw. 1,82₄ Å), aber die Übereinstimmung der MAPLE-Werte im Sinne des oben zitierten MAPLE-Konzeptes ist in diesem Fall ausgesprochen gut.

c) Aufregend sind die beim jetzigen Stand unserer Kenntnisse vorhandenen Strukturunterschiede zu den Oxoargentaten(I) der Alkalimetalle, nämlich Na₃ [AgO₂]¹¹ bzw. K₃ [AgO₂]¹⁸. Hier liegen, durch die Ergebnisse zweier Arbeitsgruppen unabhängig bestätigt, keine Derivate der XeF₂-Mutterstruktur vor, sondern Varianten vom 'Na₂O-bzw. K₂O-Typ' dergestalt, daß durch Hinausrücken von Ag⁺ aus den Tetraederlücken die 'Hanteln' O—Ag—O innerhalb des ansonsten zum Anti-CaF₂-Typs gehörenden Kolektivs gebildet werden.

d) Abschießend sei noch einmal auf die gravierenden Unterschiede der Kristallstrukturen, vgl. Tabelle I, so ähnlich zusammengesetzter und letzthin verwandter Verbindungen wie $K_2BeO_2 = K_4 [Be_2O_4]$, $K_2 [NiO_2]$ und $K_2ZnO_2 =$ hingewiesen und darauf, daß die Substitution von K⁺ durch Rb⁺ oder Cs⁺ bei $= K_2 [ZnO_{4/2}]$ gemäß A₈ $[Zn_4O_8] = A_8 [OZn_2 ZnO_2 ZnO_2 ZnO]$ mit A = Rb, Cs zu einer weiteren Komplikation führt, in dem hier die Hälfte von Zn²⁺ die ungewöhnliche C. N. 3 gegenüber O²⁻ aufweist¹⁹ und oligomere auftreten. Wir sind bei den vorliegenden Kenntnissen nicht imstande, diese Unterschiede auch nur halbwegs plausibel zu erklären.

V. SCHLUSSBEMERKUNG

Mit der Darstellung weiterer Oxonickelate(II), Versuchen zur Synthese neuer Oxocuprate(I), wie z. B. $K_3CuO_2^{20}$ und schließlich von Oxoargentaten, wie KNa₂ [AgO₂] sind wir beschäftigt. Vielleicht hängen die Diskrepanzen bezüglich

$K_2[NiO_2]$

MAPLE doch mit den Unsicherheiten zusammen, die noch immer über formelreine Einkristalle von NiO bestehen.

Wir danken dem Fonds der Chemie und der Deutschen Forschungsgemeinschaft für die fördernde Unterstützung mit Sachmitteln.

Die Rechnungen erfolgten am HRZ der Justus-Liebig-Universität Giessen.

Die Sammlung der Vierkreisdiffraktometerdaten erfolgt durch Herrn Dr. M. Serafin.

LITERATUR

1. Teil der Dissertation B. Nowitzki, Giessen

- 2. H. Rieck u. R. Hoppe, Z. anorg. allg. Chem. 400 (1973) 311.
- 3. P. Kastner u. R. Hoppe, Naturwissenschaften 61 (1974) 79.
- 4. E. Vielhaber u. R. Hoppe, Z. anorg. allg. Chem. 360 (1968) 7.
- 5. R. Hoppe u. H.-J. Röhrborn, Z. anorg. allg. Chem. 329 (1964) 110.
- 6. R. Hoppe, H. Mattauch, K. M. Rödder u. W. Dähne, Z. anorg. allg. Chem. 324 (1963) 214.
- 7. S. Siegel u. E. Gebert, J. Amer. Chem. Soc. 85 (1963) 240.
- 8. H. A. Levy u. P. A. Agron, J. Amer. Chem. Soc. 85 (1963) 241.
- 9. Teil der Dissertation H. Rieck, Giessen 1973.
- 10. H. Zentgraf, K. Claes u. R. Hoppe, Z. anorg. allg. Chem. 462 (1980) 92.
- 11. H. Klassen u R. Hoppe, Z. anorg. allg. Chem. 485 (1982) 92.
- 12. H. Klassen u. R. Hoppe, Z. anorg. allg. Chem. 485 (1982) 101.
- 13. R. Hoppe, Rev. Chim. Min. 20 (1983) 549.
- 14. B. Nowitzki u. R. Hoppe, noch unveröffentlicht.
- 15. V. Propach, D. Reinen, H. Drenkhahn u. Hk. Müller-Buschbaum, Z. Naturforsch. 33b (1978) 619.
- 16. R. Hoppe, Angew. Chem. 78 (1966) 52.
 - R. Hoppe, Z. anorg. allg. Chem. 283 (1956) 196.
 - R. Hoppe, Adv. Fluorine Chem. 6 (1970) 387.
 - R. Hoppe in: Crystal Structure and Chemical Bonding in Inorganic Chemistry, S. 127-161, Amsterdam (1975).
 - R. Hoppe, Izvještaj Jugoslav. Centr. Krist. 8 (1973) 21.
 - R. Hoppe, Angew. Chem. 82 (1970) 7.
- 17. W. Losert u. R. Hoppe, noch unveröffentlich.
- 18. B. Carriet, M. Devalette u. B. Lecart, Rev. Chim. Min. 14 (1977) 423.
- 19. K.-R. Wambach u. R. Hoppe, Z. anorg. allg. Chem. 444 (1978) 30.
- 20. W. Losert u. R. Hoppe, noch unveröffentlich.

SAŽETAK

Neka zapažanja o K₂[NiO₂]

B. Nowitzki i R. Hoppe

Monokristali K₂[NiO₂] (prizmatski, crveno-ljubičasti/zeleni, dihroizam) nastali su reakcijom viška KO_{0,74} sa stijenkama niklene reakcijske posude za vrijeme priprave (650 °C, 7d) oksogermanata »miješanih« kationa tipa A_{4-x} A_x' GeO₄ (A = alkalijski metal). Struktura je utočnjena na osnovi 114 refleksa, prikupljenih na četverokružnom difræktometru PW 1100 tehnikom ω -skaniranja uz MoK α zračenje, do $R = 4,46^{0}/_{0}$ ($R_{w} = 3,60^{0}/_{0}$). Kristali su tetragonski, prostorna grupa I4/mmm, dimenzija jedinične ćelije a = 395,28(13), c = 1283,84(35) pm, $D_{x} = 2,76_{6}$ g cm⁻³, Z = 2. Izračunani su i prodiskutirani međuatomski razmaci i Madelungov udio u energiji kristalne rešetke (MAPLE).

CROATICA CHEMICA ACTA CCACAA 57 (4) 545-563 (1984)

YU ISSN 0011—1643 UDC 546.81 Original Scientific Paper

Structural Aspects of 2-Thioimidazolidine Coordination in Silver(I) Halide Complexes*

Luigi P. Battaglia, Anna Bonamartini Corradi, and Mario Nardelli**

Istituto di Chimica Generale e Inorganica dell'Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., via M. D'Azeglio 85, 43100 Parma, Italy

Received November 2, 1983

The crystal structures of AgCl \cdot 2etu and AgBr \cdot 2etu [etu = = 2-thioimidazolidine = ethylenethiourea = SC(NHCH₂)₂] have been determined and that of uncomplexed etu itself has been redetermindetermined and that of uncomplexed etu tiself nas been redetermin-ed using MoKa diffractometer data. AgCl · 2etu: $P2_1/c$, a = 11.078(4), b = 14.046(6), c = 7.749(2) Å, $\beta = 103.71(2)$, Z = 4, final R_F (1372) = = 0.0558. AgBr · 2etu: $P2_1/n$, a = 9.050(1), b = 10.557(3), c = 13.191(4)Å, $\beta = 103.38(1)^\circ$, Z = 4, final R_F (1976) = 0.0379. Etu: $P2_1/c$, a == 5.801(3), b = 14.540(5), c = 5.774(3) Å, $\beta = 101.3(1)^\circ$, Z = 4, final R_F (506) = 0.0235. Metal coordination is distorted tetrahedral in R_F (506) = 0.0235. Metal coordination is distorted tetrahedral in both complexes, but the structure of AgCl · 2etu is polymeric with one etu ligand terminal [Ag—S = 2.512(3) Å] and one bridging through sulphur [Ag—S = 2.551(3), 2.655(4) Å], while the structure of AgBr · 2etu is built by centrosymmetric dimers with the two etu ligands terminal [Ag—S = 2.482(2), 2.489(2) Å] and bromine acting as a bridge [Ag—Br = 2.817(1), 2.847(1) Å]. Relevant para-meters for uncomplexed etu are: S—C (sp²) = 1.694(3), N—C (sp²) = -1.349(3) av N—C (sp³) = 1.469(3) av C (sp³) = C (sp³) = 1.561(5) = 1.349(3) av., N—C (sp³) = 1.460(3) av., C (sp³)—C (sp³) = 1.561(5) Å (values corrected for thermal motion), N—C—N = 108.4(2)°, C—N—C = 113.3(2)° av., N—C—C = 102.5(3)° av.. Metal coordination seems to influence the S—C—N angles: that on the side of the lone pair interacting with metal is always larger $[126.6(3)^{\circ} \text{ av.}]$ than that on the other side $[124.3(2)^{\circ} \text{ av.}]$, while the thioureic moiety of the ligand maintains its planarity. The librational thermal motion of ethylenethiourea in the crystals when uncomplexed and in silver--complexes is quite similar.

1. INTRODUCTION

It is well recognized that thiourea $[SC(NH_2)_2 = tu]$ and ethylenethiourea $[SC(NHCH_2)_2 = 2$ -thioimidazolidine = etu] behave as monodentate ligands through the sulphur atom which can coordinate to a single metal centre or, as a bridge, to adjacent metal atoms. No case has been found of crystal structures where the nitrogen atoms of the ligand are involved in coordination to metal. The interactions between sulphur and a metal centre are influenced by the nature of the other ligands and of the metal atom, and by the ratio metal/ligands.

^{*} Dedicated to Professor D. Grdenić on occasion of his 65th birthday.

^{**} To whom correspondence should be addressed

546 SAC-ARE (A) TRACE P. BATTAGLIA ET AL. THE HO A OTTAOTO

Our research investigates these effects further. Two complexes formed by AgCl and AgBr with ethylenethiourea have been considered and a new accurate analysis of the crystal structure of ethylenethiourea itself has been carried out. In the present paper the results of crystal structure analyses of these compounds are reported and show that the two complexes exhibit quite different structures, even if their stoichiometry and metal coordination are the same. This could not be foreseen simply on the basis of the different size of the anions. Moreover, comparison with the uncomplexed ethylenethiourea shows that coordination to metal affects the S-C-N angles, the variations of the other structural parameters, if any, not being detectable with certainty at the level of the attained accuracy.

2. EXPERIMENTAL

Crystals of $AgX \cdot 2etu$ (X = Cl, Br) were obtained, together with crystals of $AgX \cdot 3etu$, by slow cooling of hot aqueous solutions containing the silver halide and ethylenethiourea in excess, as described by Morgan and Burstall¹ for the preparation of AgCl · 3etu and AgBr · 2etu. The crystal of uncomplexed etu used for the structure analysis was from a commercial sample recrystallized from ethanol.

The relevant data concerning the crystal structure analyses are summarized in Table I. Crystal data and starting coordinates for the refinement of the etu crystal structure were taken from the analysis of Wheatley², assuming the standard $P_{21/c}$ orientation. The agreement index for merged reflections was R = 0.0202.

The intensity data of etu were not corrected for absorption, while two refinements were carried out for both silver complexes, one with no absorption correction3, the other with the empirical correction for absorption and extinction proposed by Walker and Stuart⁴. This correction not only reduced the residuals (the conventional R index improved from 0.0630 to 0.0558 for AgCl · 2etu and from 0.0600 to 0.0379 for AgBr · 2etu), but also gave the following effects: (a) in AgCl \cdot 2etu:

- the differences between the S-C distances in the two ligands are reduced by 0.015 Å,

- the differences between the N—C (sp²) distances are reduced by 0.023 Å both in each ligand and in the two ligands,

- the N-H distances increase by 0.06 Å av., and the difference between the maximum and minimum value decreases from 0.22 to 0.17 Å,

- the average C—H distance practically does not change, but the difference between the minimum and maximum value reduces from 0.50 to 0.45 Å,

— on average, the isotropic equivalent thermal parameters show a $10^{0/6}$ increase and the anisotropy, as indicated by the ratio between the maximum and minimum values of the mean squares displacements of the thermal ellipsoids, is reduced by 12%.

(b) in AgBr · 2etu:

- the S-C distances practically do not change,

— the average of the N-C (sp²) distances decreases becoming equal to the same average for AgCl \cdot 2etu, and the same can be said for the N-H distances,

- also, the mean C-H distance becomes equal to the same mean for AgCl \cdot 2etu, - on average, the isotropic equivalent thermal parameters do not change, while the anisotropy reduces by $20^{\circ}/_{\circ}$.

For both complexes the absorption correction gave no significant variation in distances and angles involving the heaviest atoms.

All the structures were refined by full-matrix least-squares using the SHELX-76 program⁵. The hydrogen atoms were located from difference Fourier syntheses and refined isotropically for the two metal-complexes and anisotropically for the uncomplexed etu. The 040 reflection was omitted in the refinement of the last compound as its intensity appeared to be affected by measurement errors. The atomic scattering factors and the anomalous dispersion coefficients were from International Tables for X-Ray Crystallography⁶.

TABLE I

Compound	etu	AgCl · 2etu	AgBr · 2etu
Formula	C ₂ H ₆ N ₂ S	AgCl(CoHeNoS)	AgBr(CoHeNoS)
F. W.	102 15	347 6	302 1
Space Group	P2./c	P2./c	D9.10
a/Å	5 801/2)	11 079(4)	0.050(1)
h/h	0.001(0)	11.070(4)	9.000(1)
-18	14.040(0)	14.046(6)	10.557(3)
	5.774(3)	7.749(2)	13.191(4)
$\beta \gamma^{\circ}$	101.3(1)	103.71(2)	103.38(1)
V/A^3	477.6(4)	1171.4(7)	1226.1(5)
Z	4	141042666	4
$D_{\rm m}/{\rm Mg}~{\rm m}^{-3}$ (flotation)	1.45	1.96	2.00
$D_c/Mg m^{-3}$	1.421	1.971	2.124
reflections for (number		22	22
lattice parameters $ \Theta$ -range		7° -21.5°	9°-24°
radiation	- 253	Mo-Ka1	Mo-Ka1
wavelength/Å	- <u>-</u> 564	0.709300	0.709300
F(000)	216	688	760
temperature/K	293(1)	293(1)	293(1)
crystal size/mm ³	$0.16 \times 0.24 \times 0.33$	$0.11 \times 0.18 \times 0.26$	$0.27 \times 0.39 \times 0.27$
diffractometer	SIEMENS-AED	Philips PW1100	Philips PW1100
μ/mm^{-1}	0.490	2.247	5.156
absorption correction			
(min-max)		0.732-1.258	0.823 - 1.211
extinction correction			
(min-max)		0.863 - 1.008	0.909-1.019
Θ -range	3° — 23°	3° — 30°	3°—30°
h-range	6-6	0-16	13-13
k-range	15-15	0—20	0—15
<i>l</i> -range	06	11-11	0—18
standard reflection	141	291	114
intensity variation	none	none	none
scan speed/degr s ⁻¹	0.010.04	0.05	0.05
scan width/°	$120 \pm 0.33 \tan \Theta$	0.60 ± 0.20 tan Θ	0.60 ± 0.20 tan Θ
no, of measured reflections	1461	3702	3875
condition for observed	1101	0101	0010
reflections	$I > 3\sigma$ (I)	$I > 3\sigma$ (I)	$I > 3\sigma$ (I)
no. of unique reflections	506	1372	1976
method for solving the			
structure	<u></u>	Patterson-Fourier	Patterson-Fourier
anisotropic least-squares on F	full matrix	full matrix	full matrix
max. least-squares shift to	0.014	0.24	0.25
max/min height in final		253.5665.51	1.5 I I I I I I I I I I I I I I I I I I I
difference synthesis	0.069/-0.060	0.28/-0.33	0.18/-0.34
no. of refined parameters	109	175	175
R =	0.0235	0.0558	0.0379
$R_{\rm w} =$	0.0284	0.0619	0.0442
S =	0.6873	1.7278	1.3166
$k, q (w = k/[\sigma^2 (F_0) + qF_0^2])$	0.6405. 0.000378	2.5895, 0.000113	1.3484. 0.000323

Experimental Data for the Crystallographic Analyses

The final atomic coordinates with the mean-square displacements along the principal axes of the thermal ellipsoids, the equivalent isotropic thermal parameters, B_{eq} ⁸, and the ratios of the maximum and minimum principal axes of the thermal ellipsoids are quoted in Table II. The results for the two metal-complexes correspond to the refinements with absorption corrected data. Observed and calculated structure factors with anisotropic thermal parameters have been deposited with the Editor.

Frac	stional	Atomic	Coor	dinates	3, Prine	cipal .	Axes of Th	termal El	lipso	ids (r1,	r2, r;	$3, \times 10^{4}$ Å	Å ²), B _{eq} /À	A ² and 1	Ratios 1	max/rmin	
d	noni mart	x		G. G. G.	у	0 r 81	8	5 -13 -13 -15 -18	0,1	rı	(14	T.2	<i>r</i> 3	マ(三 (そ)4) (王) (王)	Beq	$r_{ m max}/r_{ m min}$	
·	2etu	8. 184	1 0,0	ni Mala	10819 M (11)	1 < 1 91	11 0. 10 10 10 10		-80E -	6.3 -6.6	945 - 45 - 7 - 5 - 7	95 1460- 0.700 1	194 - 194 194 - 194 194 - 194	10.5 13.11 108.1	84 . 89 56.8		
are used in Table 11. The relation for the two meldinistics		25043(8) 1698(3) 4825(3) 4825(3) 4248(10) 6026(10) 6026(10) 6026(10) 6165(13) 6165(13) 6165(13) 6165(13) 6165(13) 6165(13) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 653(11) 853		$\begin{array}{c} 0.17\\ -0.016\\ 0.016\\ 0.023\\ 0.000\\ 0.023\\ 0.$	1195(7) 114(2) 229(2) 229(2) 229(2) 229(1) 2	1 > 3a C (13 h.m.) a c (13 h.m.) ique relievinge (15 h.m.)	0.05211(13) 0.1366(5) 0.1366(5) 0.1366(5) 0.2571(14) 0.256(15) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(14) 0.0773(15) 0.024(20) 0.024(15) 0.0266(16) 0.2261(15) 0.026(16) 0.2261(15) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.026(16) 0.039(15) 0.039(15) 0.039(15) 0.036(250(4))		an orme 13 m · · · · · · · · · · · · · · · · · ·	23(8) 23(27) 23(27)	육 ଊ ଊ ଊ 육 ୲広 ਲ ቒ ιດ ਲ ሲ ሲ ሲ ՝ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	66(8) 86(24) 86(24) 86(25) 86(20) 86(20) 86(20) 86(20) 86(20) 86(20) 88(20)	333(6) 348(21) 324(17) 324(17) 324(17) 324(18) 324(18) 224(18) 226(61)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	88(3) 88(3) 61(8) 61(8) 114(8) 114(8) 115(32) 115(32) 119(43) 110(43) 110($\begin{array}{c} 2.10\\ 2.10\\ 2.12\\$	
	000	03226(7) 3471(2) 3753(2)		0.16	068(6) 35(2) 26(2)	nu la u	0.06768(5) 0.2198(1) -0.0534(1)		0 1 2	00(6) 39(12) 70(11)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	36(15) 81(11) 64(14)	285(11) 310(11) 298(11)	N N N	95(2) 76(5) 50(5)	1.76 2.38 2.25	

548

L. P. BATTAGLIA ET AL.

$r_{\rm max}/r_{\rm min}$	2.84	4.30	3.78	3.03	1.54	2.09	2.77	1.92	2.83	3.40	-							1			1				1.78	2.37	3.15	1.50	2.08	1.62			1	1	1	1	
$B_{\rm eq}$	4.27(18)	3.99(17)	4.95(22)	4.02(19)	2.93(15)	4.43(25)	4.63(25)	2.63(15)	5.32(27)	5.23(26)	10.9(17)	5.8(17)	5.1(17)	7.4(17)	8 4(17)	(41)0 4	(11)0.1	Q.3(1.1)	(1.1)	6.4(17)	8.6(18)	8.9(17)	7.1(17)		3.36(2)	3.30(7)	3.85(8)	2.51(7)	3.30(9)	3.31(9)	3.7(9)	3.6(9)	6.4(13)	5.8(13)	4.3(9)	4.2(11)	
r3	324(34)	212(34)	311(53)	288(44)	282(33)	403(61)	343(60)	215(37)	401(67)	322(42)	1	1	1	1				12	1	l	I	1	Ĩ		290(6)	269(17)	261(19)	255(19)	274(20)	330(20)	1	I	I	1		1	
T2	378(46)	392(43)	394(32)	364(33)	396(42)	438(52)	467(62)	372(35)	485(48)	573(69)	1	1		1	11				- - 2.8	1	0				471(35)	346(15)	382(16)	317(21)	410(17)	394(29)	Ì		1		1	1	
5 1 1	921(47)	912(40)	1175(51)	874(39)	434(48)	844(47)	951(50)	412(39)	1134(70)	1094(67)	1				3 12 13			1		1	1		4		516(30)	637(20)	822(19)	382(16)	571(24)	534(24)	ĺ	4	1	5.4 	1	10.1	Annual Contraction
gin															io ai-																						
N	0.4185(4)	0.3137(4)	-0.2407(5)	-0.1660(4)	0.3202(5)	0.4866(6)	0.4157(6)	-0.1558(5)	-0.3168(7)	-0.2619(7)	0.433(5)	0.265(5)	-0.248(5)	-0.125(6)	0.546(6)	0 505(5)	0.405(5)	0.405(0)	0.427(0)	-0.381(6)	-0.319(5)	-0.250(6)	-0.301(6)		0.04402(12)	0.45723(45)	0.30619(49)	0.27493(40)	0.62830(59)	0.51937(59)	0.4623(43)	0.6400(46)	0.7893(46)	0.6333(51)	0.4802(45)	0.2061(46)	e W
Ŋ	-0.0665(6)	0.0618(6)	0.2405(7)	0.2048(6)	-0.0300(5)	-0.0031(7)	0.0962(8)	0.1929(5)	0.2865(10)	0.2633(10)	-0.128(7)	0.104(7)	0.234(7)	0.178(6)	0.044(6)	0.01110.0	(1)=00.0	(1)0000	(1)181.0	0.239(7)	0.378(7)	0.331(7)	0.218(7)		0.61408(5)	0.67651(17)	0.56776(20)	0.61934(15)	0.66697(23)	0.59067(23)	0.7207(19)	0.7233(20)	0.6493(20)	0.5364(21)	0.6117(20)	0.5260(20)	
8	0.3288(7)	0.1809(7)	0.2803(7)	0.0976(6)	0.2829(7)	0.2488(10)	0.1585(10)	0.2444(6)	0.1462(9)	0.0227(8)	0.370(8)	0.148(8)	0.388(8)	0.046(8)	0.397(8)	0 189(8)	(0)70100	(0)9900	0.184(8)	0.138(8)	0.173(8)	-0.041(8)	0.050(8)		0.22603(11)	0.47157(42)	0.64730(50)	0.45464(39)	0.69043(56)	0.81572(60)	0.3720(42)	0.7683(41)	0.6479(58)	0.8533(55)	0.9638(48)	0.6709(50)	
Atom	N21	N11	N22	N12	C11	C31	C21	C12	C32	C22	H21	H11	H22	H12	H61	H51	1011	1611	141	H62	H52	H32	H42	etu	U,	N2	INI	CI	C3	C2	H2	H5	H6	H4	H3	HI	

SILVER(I) COMPLEXES

The calculations were carried out on the CYBER 76 computer of the Consorzio per la gestione del Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord--Orientale (CINECA, Casalecchio, Bologna), with the financial support of the University of Parma, and the GOULD-SEL 32/77 computer of the »Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma)«. In addition to the quoted SHELX program, LQPARM⁹, ASSORB¹⁰, PARST¹¹, XANADU¹², ORTEP¹³ programs have been used.

Through all the paper an average value, $\langle x \rangle$, is a weighted mean and the corresponding e.s.d., σ , is the larger of the values of σ_e and σ_i^{14} given by the formulae:

$$\langle \mathbf{x} \rangle = \Sigma_{s} \mathbf{w}_{s} \mathbf{x}_{s} / \Sigma_{s} \mathbf{w}_{s}$$

$$\sigma_{e} = \left\{ \left(\frac{\Sigma_{s} \mathbf{w}_{s} \mathbf{x}_{s}^{2}}{\Sigma_{s} \mathbf{w}_{s}} - \langle \mathbf{x} \rangle^{2} \right) / (\mathbf{N} - 1) \right\}^{1/2}$$

$$\sigma_{i} = (\Sigma_{s} \mathbf{w}_{s})^{-1/2}$$

$$\mathbf{w}_{e} = 1 / \sigma_{e}^{2}$$

When two values, x_1 and x_2 , are compared, the ratio $\Delta/\sigma = |x_1 - x_2|/(\sigma_1^2 + \sigma_2^2)^{1/2}$ is considered, where σ_1 and σ_2 are the e.s.d.'s of x_1 and x_2 respectively.

3. DISCUSSION

3.1. Thermal Motion

The three structure analyses are accurate enough (particularly that of uncomplexed ethylene thiourea) to allow some discussion of thermal motion and to allow the use of thermal parameters to analyze the motion of the etu molecules in terms of rigid body libration.

From the B_{eq} 's and the root mean square displacements along the principal axes of the thermal ellipsoids quoted in Table 2 and from Figure 1 and 2, it

Figure 1. Chains of coordination polyhedra in AgCl · 2etu. Thermal ellipsoids at 50% probability (ORTEP).

Figure 2. Dimers in AgBr \cdot 2etu. Thermal ellipsoids at 50% probability (ORTEP),

can be inferred that the thermal motion of the silver and halogen atoms is a little higher in the chlorine than in the bromine derivative, and this may be related not only to the difference of the mass of the halogen atoms, but also to the bonds the silver atom forms with them and sulphur. In fact, the two Ag—Br distances, 2.817(1) and 2.847(1) Å, are only 0.052(3) and 0.082(3) Å longer than the Ag—Cl = 2.765(3) Å distance, and these differences are both relatively shorter than the difference, 0.15 Å, between the covalent (or ionic) radii of the two halogen atoms. Moreover, the two Ag—S distances in the bromine complex, 2.482(2) and 2.489(2) Å, are both shorter than all the Ag—S distances in the chlorine complex [2.512(3), 2.551(3), 2.655(4) Å].

Concerning the anisotropy of motion, it can be observed that, while the anisotropy is a little higher for Ag and Cl in the chlorine derivative, if compared with Ag and Br in the bromine derivative, the sulphur atoms show a little larger anisotropy in the bromine than in the chlorine derivative.

Comparing the thermal motion of the etu ligands in the two complexes with that in uncomplexed etu (Table III), it is seen that the average motion (not considering hydrogens) shows a small increase from etu $(B_{av.} = 3.3(1) \text{ Å}^2)$ to AgCl · 2etu $(B_{av.} = 3.5(1) \text{ Å}^2)$ and to AgBr · 2etu $(B_{av.} = 3.7(1) \text{ Å}^2)$. The results of the rigid body libration analysis¹⁵, quoted in Table III, show that the model is quite satisfactory particularly for uncomplexed etu, confirming also the general accuracy of these structural determinations and the reliability of the corrections of bond distances deduced by the analysis. In Table III are also quoted the results of the analysis of the rigid body librational motion of

Qi	0.0504 0.2724 0.2026	0.4046 0.8996 0.1643	$\begin{array}{c} 0.3829 \\ 0.2155 \\ 0.8983 \end{array}$		0.2384 0.1798 -0.1429	0.7163 0.5013
lic	nd $2 - 6(21)$ 22(36) - 9(24) 5(25) 15(18)	eigenvectors 0.3385 0.0195 0.9408	-0.9136 0.2321 0.3338	4(6)°)857 gand 2	$\begin{array}{c} 13(19) \\ -1(18) \\ -3(17) \\ -3(17) \\ 6(9) \\ 6(9) \\ -2(16) \end{array}$	eigenvectors 0.3916 0.2871
<i>į</i> į.т.	liga 368(25) 13(22) 45(30) 384(30) -60(27) 248(39)	$\begin{array}{c} 0.8495 \\ -0.4362 \\ 0.2966 \end{array}$	0.1366 0.9485 0.2858	.6 0.0 3II	275(17) -33(17) 33(15) 326(29) 18(21) 331(20)	0.5776 0.8162
L_{ij}	sCl · 2etu 204(43) -69(24) -69(24) 57(26) -33(16) 74(21)	eigenvalues 0.0270(39) 0.0036(29) 0.0030(27)	0.0407(32) 0.0381(30) 0.0211(40)	Br - 2etu	$\begin{array}{c} 235(26) \\95(16) \\ 175(16) \\ 1111(16) \\145(16) \\ 296(24) \end{array}$	eigenvalues 0.0516(25) 0.0094(25)
Qi	At 0.5003 0.2274 0.2274	$\begin{array}{c} 0.4001 \\ 0.9109 \\ 0.1015 \end{array}$	$\begin{array}{c} 0.7984 \\ 0.5889 \\ 0.1254 \end{array}$	et P 2arc hier there drive the	0.2735 0.0153 0.3365	0.8978 0.4316
S_{ij}	hd 1 16(18) 1(17) 34(12) 20(26) 4(30) 4(18)	eigenvectors 0.9025 0.3722 0.2169	0.4480 0.7202 0.5297	0)° 77 1 1 bt	20(11) 4(9) -3(11) -12(12) 21(12) -8(16)	eigenvectors 0.3244 —0.7824
T_{ij}	317(34) 317(34) 33(28) 36(36) 335(30) 34(35) 34(35) 388(58)	$\begin{array}{c} 0.1598 \\ -0.1784 \\ 0.9709 \end{array}$	-0.4022 0.3667 0.8389	9.8(1 0.110 0.110	353(30) 26(28) 19(18) 269(28) 36(17) 36(17) 367(17)	
L_{ij}	38(20) 38(20) 39(25) 14(16) 247(66) 87(27) 87(27)	eigenvalues 0.0293(62) 0.0048(32) 0.0031(22)	$\begin{array}{c} 0.0425(51) \\ 0.0324(45) \\ 0.0291(36) \end{array}$		$\begin{array}{c} 74(16) \\57(14) \\107(19) \\ 99(17) \\ 111(19) \\ 383(42) \end{array}$	eigenvalues 0.0459(36) 0.0071(22)
ij	11 11 12 12 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	$L_1 L_2 L_3 L_3$	${T_1 \atop T_3} T_3$	LLA R (U)	$1112 \\ 112 \\ 222 \\ 233 \\ 333 \\ 332$	L_1 L_2

552

L. P. BATTAGLIA ET AL.

LA POL	Qi	0.8855 0.2497 0.3919		0.1491 0.6224 0.6039	0.0847 0.9956 0.0412 0.0728 0.9576 0.2789		ata siter int oli Gisspan i Signes 5-1		
	Sij	0.4113 	and 2	3(5) 15(eigenvectors 0.5541 0.0814 0.8285 0.0247 0.2812 0.9593	3.1(3)°).0509			
	T_{ij}	0.2161 0.5253 -0.8230 1	li	$\begin{array}{c} 249(11) \\ 3(11) \\ 5(8) \\ 155(12) \\ - 9(9) \\ 184(9) \end{array}$	-0.8281 0.0474 0.5585 0.9970 -0.0629 -0.0442				
	L_{ij}	$\begin{array}{c} 0.0347(23)\\ 0.0342(24)\\ 0.0243(22)\end{array} \end{array}$	etu	$\begin{array}{c} 141(15)\\ -85(10)\\ -12(7)\\ 71(11)\\ 7(5)\\ 36(6)\end{array}$	eigenvalues 0.0199(14) 0.0035(6) 0.0014(13) 0.014(13) 0.0186(9) 0.0186(9) 0.0152(12)			•	
			AgSCN • 2						
	Oi	$\begin{array}{c} 0.7717\\ 0.5775\\ 0.2665\end{array}$		$0.6891 \\ 0.0212 \\ 0.1140$	$\begin{array}{c} 0.9312\\ 0.2800\\ 0.2335\\ 0.0085\\ 0.9904\\ 0.1383\end{array}$		0.5484 0.6269 0.3885	0.5870 0.0554 0.8077 0.2131 0.6586 0.7217	
	S_{ij}	0.3305 0.0062 0.9438 50°	ind 1	5(6) 7(5) 2(5) 1(6) 4(8) 4(8)	eigenvectors -0.3646 0.57164 0.5949 -0.2265 -0.1328 0.9649	(4)° 315	u 466 5(7) 7(4) 6(6)	eigenvectors 	(2)° (02
	$T_{ij} =$	0.5434 0.8164 0.1956 12.3(liga	$216(13) \\ 12(12) \\ 1(10) \\ 167(14) \\ -5(9) \\ 200(9)$	-0.0007 -0.6391 0.7691 -0.9740 0.0395 -0.232	9.1(0.05	ef 309(10) 29(11) 23(10) 268(14) 12(13) 253(12)	$\begin{array}{c} 0.8094\\ -0.0613\\ -0.5841\\ 0.8940\\ 0.1666\\ 0.1666\end{array}$	11.6(0.04
	L_{ij}	0.0396(24) 0.0340(27) 0.0253(27)		26(6) 20(5) 8(9) 63(8) 74(10) 223(21)	eigenvalues 0.0252(20) 0.0052(8) 0.0008(8) 0.0219(14) 0.0201(9) 0.0164(14)		$\begin{array}{c} 278(18) \\ -5(7) \\ 179(12) \\ 35(5) \\ -4(7) \\ 161(14) \end{array}$	eigenvalues 0.0408(17) 0.0035(5) 0.0031(15) 0.0031(15) 0.0327(12) 0.0272(16) 0.0231(15)	
	ij	T ₁ T ₂ LLA R (11)		11 12 22 33 33	Н 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	LLA R (U)	11 12 23 33 33	${ m H}_{ m 3}^{ m 2}{ m L}_{ m 3}^{ m 2}{ m L}_{ m 3}{ $	LLA R (U)

SILVER(I) COMPLEXES

etu in AgSCN · 2etu after further refinement (R = 0.0410) of the data published by Belicchi Ferrari, Gasparri Fava and Vidoni Tani¹⁶. From the data quoted in that table and Figure 3 it appears that the etu molecules undergo the same kind of motion in these compounds with the largest librational amplitude ranging from 8° to 13° along the axis of the minimum moment of inertia.

3.2. Description of the Structures of the Complexes

As shown in Figure 1 and 2, silver coordination is distorted tetrahedral in both compounds with bridging ligand atoms, but, in the case of the chlorine derivative, the structure is polymeric and bridging involves the sulphur atom of an etu ligand, while in the bromine complex it is the halogen atom that bridges two silver atoms giving rise to a centrosymmetric dimeric compound. The deformations of the coordination tetrahedra can be inferred from the data quoted in Table IV and more clearly from the projections of Figure 4 which shows also the orientation of the S—C bonds with respect to the coordination polyhedra.

TABLE IV

AgBr · 2etu AgCl · 2etu 2.765(3) Å Ag-Br Ag-Cl 2.817(1) Å 2.512(3) Ag-S1 Ag-Br' 2.847(1) Ag—S1 Ag-S2 2.655(4)2.482(2)Ag-S2 Ag-S2' 2.551(3)2.489(2)4.452(2)Ag...Ag' 4.070(1)Ag...Ag' Cl-Ag-S1 102.5(1)° Br-Ag-Br' 88.13(3)° Cl-Ag-S2 Br-Ag-S1 114.19(6) 102.8(1)Cl-Ag-S2' Br-Ag-S2 109.1(1) 110.19(5) S1-Ag-S2 117.1(1) S1-Ag-S2 123.53(7) S1-Ag-S2' 123.0(1) S1-Ag-Br' 105.31(5) S2-Ag-S2' 100.7(1)S2-Ag-Br' 109.32(6) Ag-S1-C11 Ag-S1-C11 105.9(4)109.1(2)Ag'-S2-C12 Ag-S2-C12 105.8(2) 106.5(4)Ag-S1-C11-N21 174.8(10) Ag-S1-C11-N21 -177.6(5)-167.9(5)Ag'-S2-C12-N22 -166.2(9)Ag-S2-C12-N22 $(Ag - S - C) av. = 107.8(9)^{\circ}$ $(Ag-S-C-N) av = 172.2(3)^{\circ}$ CI [2.765(3)] CI [2.765(3)] 33.0(4) C11[1.688(12)] 96.1(4)° 78.6(4)° -156.0(4)° S 2 [2.655(4)] S1 [2.512(3)] C12 [1.709(10)] Ag Aa 16.6(4) S1 38.3(2 S 2 [2.655(4)] 521 [2.551(3)] [2.512(3)] S 2' [2.551(3)] Ag'[2.551(3)] (b)(a)Br [2.817(1)] -17.4(3)° Br [2.817(1)] C11 [1.710 (7)] 40.5(2) C12[1.712(6)] 121.3(2) 112.3(2) 54.8(2)° 2 2.489(2)] S1 [2.482(2)] Br' Ag Ag Br'[2.847(1)] [2.847(1)] 79.4(2)° S 2 [2.489(2)] S1 [2.482(2)] (C) (d)

Bond Distances and Angles of the Metal Environments

Figure 4. Newman projections showing the reciprocal orientation of the ligands about the metal centres: (a) along S1—Ag, (b) along S2—Ag in AgCl · 2etu; (c) along S1—Ag, (d) along S2—Ag in AgBr · 2etu. The values in square brackets are the distances of the atoms from silver or sulphur.

*	1.353 1.353 1.460 1.460 1.561 1.561
ett	$\begin{array}{c}$
2 *	$\begin{array}{c} 1.712 \\ 1.338 \\ 1.440 \\ 1.479 \\ 1.527 \\$
r • 2etu ligand	$\begin{array}{c} 1.701(6)\\ 1.310(8)\\ 1.310(8)\\ 1.467(10)\\ 1.467(10)\\ 1.487(13)\\ 0.85(8)\\ 0.95(7)\\ 0.95(7)\\ 0.97(7)\\ 0.97(7)\\ 0.97(7)\\ 0.97(7)\\ 0.97(8)\\ 1.00(8)\\ 1.00(8)\\ 1.00(8)\\ 1.26(5)\\ 112.2(6)$
l 1 *	1.710 1.452 1.452 1.452 1.550
ligand	$\begin{array}{c} 1.702(7)\\ 1.702(7)\\ 1.328(9)\\ 1.452(11)\\ 1.445(11)\\ 1.513(11)\\ 0.778(7)\\ 0.778(7)\\ 0.78(7)\\ 0.76(7)\\ 1.05(7)\\ 0.92(7)\\ 1.05(7)\\ 1.05(7)\\ 1.05(7)\\ 1.05(7)\\ 1.05(7)\\ 1.05(7)\\ 1.05(7)\\ 1.023(6)\\ 111.6(6)\\ 112.7(6$
5 *	1.709 1.331 1.468 1.468 1.529 1.529
2etu ligand	$\begin{array}{c} 1.703(10)\\ 1.324(15)\\ 1.324(15)\\ 1.324(15)\\ 1.457(17)\\ 1.457(17)\\ 1.457(17)\\ 1.457(20)\\ 0.80(11)\\ 0.80(11)\\ 0.80(11)\\ 0.90(13)\\ 0.74(14)\\ 0.93(12)\\ 0.93(12)\\ 0.93(12)\\ 1.127(11)\\ 112.7(11)\\ 112.7(11)\\ 112.8(9)\\ 112.8(9)\\ 112.8(9)\\ 112.8(10)\\ 111.8(10)\\ 111.$
1 AgCI ·	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
ligand	$\begin{array}{c} 1.682(12)\\ 1.334(16)\\ 1.337(15)\\ 1.327(15)\\ 1.465(18)\\ 1.465(18)\\ 1.465(18)\\ 1.526(21)\\ 0.93(12)\\ 0.97(13)\\ 0.97(13)\\ 0.97(13)\\ 1.03(13)\\ 1.03(13)\\ 1.03(13)\\ 1.03(13)\\ 1.03(13)\\ 1.03(13)\\ 1.03(1)\\ 1.02.8(11)\\ 1.02.8(11)\\ 1.02.8(11)\\ 1.02.8(11)\\ 1.02.8(11)\\ 1.02.8(11)\\ 1.02.8(11)\\ 1.03(7)\\ 1.03(7)\\ 1.05(6)\\ 1.0$
	S_{-C1} C_{-N1} C_{-N1} C_{-N1} C_{-N1} C_{-N1} C_{-N1} C_{-N1} C_{-N1} C_{-1

556

L. P. BATTAGLIA ET AL.

Even if a rigorous discussion of the nature of the bonds in terms of MO theory could be attempted only on the basis of observed, and calculated deformed electron density distributions, nevertheless, something could be deduced from the geometrical situation of the etu ligands in these complexes. Indeed, the values of the torsion angles Ag—S—C—N [172.2(3)° av.] indicate that in both complexes the metal atom shows a tendency to be coplanar with the etu molecule, and the bond angles Ag—S—C [107.8(9)° av.] strongly suggest that the bond is due to an interaction involving a sulphur (sp²?) lone pair and a suitable sp³ silver orbital. The bridging character of S2 in the chlorine derivative could be explained by an additional d— π interaction involving a metal d-orbital and a ligand π -orbital, as indicated by the angle Ag—S2— $-C12 = 99.4(4)^\circ$.

From the data of Tables V and VI it appears that, if exception is made for the S—C—N angles, no significant variations are observed for the geometry of the etu molecules, acting as terminal or bridging ligands, compared with uncoordinated etu. Comparison, of course, must be made on data corrected for librational motion and the averaging for the values quoted in Table VI appears justified. The two angles S—C—N and S—C—N' are significantly different ($\Delta/\sigma = 3.54$) in uncomplexed etu and this deformation may be due to the asymmetry of the contacts the N—H groups form with sulphur atoms of adjacent molecules. The difference between these two S—C—N angles is systematic and much larger in the case of the complexes: the S—C—N angle on the side of the lone pair interacting with metal is always significantly larger than the S—C—N' angle on the other side, and this seems to be a peculiar character of the etu metal complexes (Table VII).

TABLE VI

Comparison of Averaged Bond Distances and Angles in Ethylenethiourea. Bond Distances are Corrected for the Rigid Body Librational Motion

STOLE -	STATE OF T	10 0 1 L L L L L L L L	Colored in
10 10 11 11	Ag complexes (*	uncomplexed) etu	Δ/σ
$S - C(sp^2)$	1.699(4)Å	1.694(3)Å	1.00
$N - C(sp^2)$	1.342(2)	1.349(3)	1.94
$N - C(sp^3)$	1.459(3)	1.460(3)	0.24
$C(sp^3) - C(sp^3)$	1.531(6)	1.561(5)	3.84
$S - C(sp^2) - N$	126.6(3)	126.3(2)	0.83
$S - C(sp^2) - N'$	124.3(2)	125.3(2)	3.54
$N - C(sp^2) - N'$	109.1(2)	108.4(2)	2.48
$C(sp^2) \longrightarrow N \longrightarrow C(sp^3)$	112.3(1)	113.3(2)	4.47
$N - C(sp^3) - C(sp^3)$	102.8(1)	102.5(3)	0.95
Σ_1 (01)0.911	360.0(4)	360.0(3)	
Σ_2	539.3(3)	540.0(5)	
Σ_1 sum of the angles	around C(sp ²)		
Σ_2 sum of the endocy	clic angles		

(*) In the averages the values from AgSCN · 2etu are also considered.

OM to among his short on the TABLE VII

Comparison of the Angles About the C (sp²) Carbon Atom in etu-Complexes

Compound	R	S-C-N	S-C-N'	N—C—N'	References
o solbor (V) (C) -		1997 - 1997 - 19	519110 I.G.S.	11	en de la junició
AgCl · 2etu	0.056	126.1(9)°	124.1(9) [°]	109.7(10)°	present study
		126.6(9)	124.8(9)	108.6(10)	reelinee aste suit
AgBr · 2etu	0.038	126.5(5)	124.1(5)	109.3(6)	present study
angé and burn Calla		128.4(5)	123.2(5)	108.4(6)	10 4 1043 (0121) (0111) *
AgSCN · 2etu#	0.041	126.5(3)	124.9(3)	108.6(3)	(16)
and a failer of		126.2(3)	124.1(3)	109.7(3)	
Te(ClO ₄) _a · 3etu	0.053	130.0(8)	125.7(8)	104.3(9)	(17)
10(0104)2 0000	0.000	128 5(8)	120 3(8)	110 9(9)	(21)
		120.0(0) 129.0(7)	121.1(7)	109.9(8)	
TeoCla · 4etu	0.056	127.2(9)	121.9(9)	110.9(10)	(18)
102014 1010	0.000	127 5(9)	120.8(8)	111.6(10)	(10)
ToCL . Actu . 2H-O*	0.030	194 8(8)	124.8(0)	110.5(10)	(19)
16012 · 4610 · 21120	0.035	125.5(0)	122.0(0)	110.6(10)	(10)
		120.0(0)	120.0(0)	100.0(10)	
		120.1(0)	122.0(9) 191 0(10)	109.3(10) 100.2(10)	
T-D- Asta	0.049	120.0(9)	121.9(10)	112 0(0)	(20)
orthorhombic	0.043	120.4(8)	2 120.0(7)	113.0(9)	(20)
$TeBr_2 \cdot 4etu$	0.032	126.6(5)	122.0(5)	111.4(6)	(20)
monoclinic		128.0(4)	120.4(4)	111.6(5)	
$AuCl \cdot 2etu \cdot H_2O$	0.084	126.9(17)	121.9(14)	111.1(18)	(21)
		127.4(19)	122.0(16)	110.5(19)	
CeH=TeCl · etu	0.024	125.5(2)	123.2(2)	111.3(2)	(22)
$C_6H_5TeBr \cdot etu$	0.028	127.6(3)	122.1(3)	110.3(3)	(23)
C_6H_5TeBr · etu	0.033	126.1(3)	123.4(3)	110.4(4)	(23)
orange red	0.00	100 1 (4)	100 0(4)	111.0(5)	(0.4)
C_6H_5 Tel·etu	0.037	128.1(4)	120.6(4)	111.3(3)	(24)
$Te(CH_3S_2O_2)_2 \cdot 2etu$ triclinic	0.091	124.0(13)	121.5(17)	114.0(18)	(25)
$Te(CH_3S_2O_2)_2 \cdot 2etu$ monoclinic	0.068	125.6(15)	124.9(16)	109.5(16)	(25)
Te(CeH_S_O_) · 2etu	0.081	124,9(13)	122.1(10)	113.0(14)	(26)
$Te(SCN)_2 \cdot 2etu*$	0.070	$126.9(^+)$	123.1(+)	110.0(+)	(27)
Te(SeCN) · 2etu*	0.065	124 5(+)	123 8(+)	111.5(+)	(27)
$C_0(CH_0COO)_0 \cdot 2etu$	0.061	129 3(8)	125.3(8)	105 4(9)	(28)
NiCla · 4etu	0.066	124.1(13)	124 8(14)	111 1(16)	(29)
triclinic	0.000	1261(13)	124.0(14) 124.4(14)	109.3(15)	(20)
NiCla · 4etu*	0.088	120.1(10) 128.7(16)	1221.1(11)	107 9(19)	(20)
monoclinic	0.000	120.1(10) 122.6(21)	194 4(91)	112 9(23)	(20)
Ni(NCS) · 2etu	0.116	122.0(21) 126 1(14)	124.4(21) 193 $4(15)$	112.3(25) 110.4(17)	(30)
$C_{11}(NO_{0})_{2}$ · 4etu	0.085	120.1(14)	120.4(10)	110.4(11) 110.7(6)	(30)
Cu(1103)2 Heru	0.005	120.7(0)	122.7(0)	100.7(0)	(31)
		120.9(0)	125.2(0)	109.0(1)	in the second
		120.0(7)	123.0(0)	109.3(0)	
	0.004	124.7(8)	124.7(8)	110.0(7)	(01)
$Cu_2Cl_2 \cdot 4etu$	0.094	128.0(9)	122.0(8)	108.8(9)	(31)
		123.7(9)	123.0(10)	113.3(11)	
		125.7(9)	124.1(8)	110.2(9)	
58.0	(0)0.200	125.7(10)	124.1(9)	110.2(9)	10.01
$B_1Cl_3 \cdot 2etu$	0.049	127.0(10)	120.0(10)	112.0(10)	(32)
av.		126.7(2)	123.1(2)	110.3(2)	

* Values calculated from published atomic coordinates. The sub-locates of

(*) The e.s.d.'s of the atomic coordinates are missing in the original paper, so these data are not considered in the averages. # After further refinement.

The mutual orientation of the two independent etu ligands in both complexes is quite similar (Figure 1), as indicated also by the dihedral angles their mean planes form: $46.5(4)^{\circ}$ and $45.6(2)^{\circ}$ for the chlorine and bromine derivative respectively.

3.3. The Structure of the etu Molecule

While thiourea has been the subject of several structural investigations³³⁻⁴¹, only one crystal structure analysis has been published on ethylenethiourea². This analysis, based on visually estimated photographic data and on the use of Booth's differential synthesis⁴² for isotropic refinement, is a classical example of the best that could be obtained from very accurate work at that time. The necessity for data of higher accuracy, such as those obtainable by more modern experimental and computing techniques, to compare the structure of the uncomplexed molecule with that of the complexed one, prompted us to collect a new set of diffractometer data and to refine the structure by anisotropic least-squares. The experimental conditions are summarized in Table I and the results of the conventional free-atom model all-data refinement are given in Tables II, III and V together with those of the described complexes. As already observed, coordination to metal does not seem to influence in a detectable way the geometry of the ligands, if exception is made for the S—C—N angles.

It is interesting to compare the thiourea moiety of the molecule with thiourea itself. Assuming the results of the free-atom model high angle refinement for thiourea at 123 K,⁴¹ the distances (corrected for rigid body librational motion) and the angle quoted in Table VIII are obtained, which show that, going from tu to etu, the N—C—N angle becomes relevantly narrower $[\Delta = 9.4(2)^{\circ}]$ as a consequence of ring formation. This brings about a decrease in the π -delocalization in the SCN₂ system, consequently the double bond character increases in the S—C bond and decreases in each C—N bond. A valence bond description, based on the use of Pauling's formula⁴³ relating bond distance to bond order and the values: S—C 1.81, S=C 1.59, N—C 1.48, N=C 1.275 Å, gives the percentages of double bond character (DB⁰/₀) quoted in Table VIII.

TABLE VIII

	tu*	DAR RELIGION D	et	u	
- n.S. turn, King	d	DB%/0	d	DBº/0	Δ/σ
S—C calc.	1.724(1)Å 1.725	17.4	1.694(3)Å 1.694	27.0	9.5
N—C calc.	1.342(1) 1.341	41.3	1.349(3) 1.350	36.5	2.2
N—C—N	117.8(1)°	Gripatullograp nu 149⊽	108.4(2)°	rantional Tab Kyrno <mark>ch</mark> Pre	42.0

Comparison of Bond Distances, d, VB Percentages of Double Bond Character, DB⁰/o, and Angles for Uncomplexed tu and etu

(*) Averages of two independent molecules.

L. P. BATTAGLIA ET AL.

Another relevant aspect concerning the structure of etu is its lack of planarity which is confirmed by the present analysis. From the data quoted in Table IX, it appears that, considering only the non-hydrogen atoms, the thiourea part of the molecule is strictly planar and the two methylene carbon atoms are significantly displaced from this plane. The hypothesis that the

TABLE IX

Perpendicular Displacements of the Atoms from the Mean SCNN Planes and Total Puckering Amplitudes⁴⁴, Q, of the Rings in Complexed and Uncomplexed etu

	AgCl	• 2etu	AgH	Br · 2etu	AgS	CN · 2etu	etu
	ligand 1	ligand 2	ligand 1	ligand 2	ligand 1	ligand 2	gi, che pes 600 chi la
s	—0.001(3) Å	0.000(3) Å	0.000(2) Å	0.000(2) Å	0.000(2) Å	0.000(2) Å	0.000(1) Å
C1	0.020(11)	0.004(11)		0.010(6)	0.002(4)	0.004(4)	0.000(2)
N1	-0.006(10)		0.000(6)	0.004(6)		0.001(4)	0.000(3)
N2	-0.007(11)	-0.001(11)	0.000(7)			0.000(2)	0.000(3)
C2	0.210(14)	0.059(16)					0.042(4)
C3	0.076(15)	-0.087(15)	0.091(9)	0.003(10)	0.062(5)		0.025(4)
Ag	0.286(1)			0.539(1)		0.181(1)	V
Q	0.104(13)	0.085(14)	0.090(8)	0.020(9)	0.079(5)	0.080(4)	0.015(3)

distortion is due to a bending of the C—S bond out of the plane of the ring does not seem to be confirmed. Comparing the puckering of the different etu rings in complexes, no regular trends can be deduced, suggesting that these distortions are probably due to crystal forces arising from the asymmetry of the surroundings.

3.4 Hydrogen Bonding and Packing Contacts

All contacts shorter than the sum of the van der Waals radii can be interpreted as due to hydrogen bonding interactions as shown in Table X. All these bonds involve the N—H groups and the halogens in the case of the metal complexes and sulphur in uncomplexed etu.

REFERENCES

1. G. T. Morgan and F. H. Burstall, J. Chem. Soc. (1928), 143.

- 2. P. J. Wheatley, Acta Cryst. 6 (1953) 369.
- 3. A. Bonamartini Corradi and M. Nardelli, God. Jugosl. cent. Kristalogr. Supplement to Vol. 17 Zagreb, 1982, p. 123.
- 4. N. Walker and D. Stuart, Acta Cryst. A39 (1983), 158.
- 5. SHELX. Program for Crystal Structure Determination, G. M. Sheldrick, Univ. of Cambridge, England, 1976.
- 6. International Tables for X-Ray Crystallography. Vol. 4, Birmingham, England, The Kynoch Press, 1974, p. 99 and 149.
- 7. Thermal Vibrations in Crystallography, B. T. M. Willis and A. W. Prior, Cambridge University Press, 1975.

		TAB	LE X				
	4 140 150 150 150 150	Possible Hydrogen	h Bonding Con	tacts			
AgCI • 2etu							
$\begin{array}{l} \text{N11} - \text{H11} = 0.93(13) \ \text{Å} \\ \text{N21} - \text{H21} = 0.76(13) \\ \text{N12} - \text{H12} = 0.81(11) \\ \text{N22} - \text{H22} = 0.83(12) \end{array}$	$\begin{array}{c} N11\ldots C1\\ N21\ldots C1\\ N12\ldots C1^{11}\\ N22\ldots C1^{11}\\ N22\ldots C1^{11}\end{array}$	$= 3.237(10) \text{ Å} \\= 3.269(13) \\= 3.227(10) \\= 3.242(11)$	$\begin{array}{c} H11\ldots CI\\ H21\ldots CI^{1}\\ H12\ldots CI^{1}\\ H12\ldots CI^{1}\\ H22\ldots CI^{11}\end{array}$	$= 2.62(11) \text{ A} \\= 2.63(13) \\= 2.43(11) \\= 2.46(12)$	N11—H11Cl N21—H21Cl N12—H12Cl ^u N22—H22Cl ^u	$= 124(9)^{\circ} \\ = 143(11) \\ = 173(11) \\ = 158(11)$	
AgBr • 2etu							
$\begin{array}{l} \text{N21} - \text{H21} = 0.75(7) \ \text{\AA} \\ \text{N11} - \text{H11} = 0.78(7) \\ \text{N22} - \text{H22} = 1.00(8) \\ \text{N12} - \text{H12} = 0.85(8) \end{array}$	$\begin{array}{c} N21\ldots Br^{iv}\\ N11\ldots Br\\ N22\ldots Br^{v}\\ N12\ldots Br\\ N12\ldots Br\end{array}$	$= 3.400(7) \text{ Å} \\= 3.528(5) \\= 3.513(7) \\= 3.574(6)$	$\begin{array}{c} H21 \ldots Br^{lv} \\ H11 \ldots Br \\ H22 \ldots Br^{v} \\ H12 \ldots Br \end{array}$	$= 2.67(7) \text{ Å} \\= 2.80(6) \\= 2.91(7) \\= 2.79(8)$	$\begin{array}{c} N21-H21\ldots Br^{\rm lv}\\ N11-H11\ldots Br\\ N22-H22\ldots Br^{\rm v}\\ N12-H12\ldots Br\\ \end{array}$	$= 164(7)^{\circ}$ = 156(7) = 120(6) = 154(7)	
etu							
$\begin{array}{rcl} N2-H2 &= 0.87(3) \ \text{\AA} \\ N1-H1 &= 0.87(3) \end{array}$	$\frac{N2\ldots S^{\prime l}}{N1\ldots S^{\prime ll}}$	$= 3.440(3) \text{ Å} \\ = 3.493(3)$	$\begin{array}{c} H2 \dots S^{v1} \\ H1 \dots S^{v11} \end{array}$	$= 2.62(3) \text{ Å} \\ = 2.63(3)$	$N2-H2S^{v1}$ $N1-H1S^{v11}$	$= 158(2)^{\circ}$ = 172(2)	
Symmetry codes:							
$i = 1 - x, \frac{1}{y}, \frac{1}{z}$	i = x, 1/2 - y, 1/2	$\begin{array}{cc} +z & iii = \overline{x}, \ \overline{y}, \ \overline{z} \\ \overline{z} \\ \overline{z} \end{array}$	iv = 1/2 - x,	y - 1/2, 1/2 - z	v = 1/2 + x, 1/2 -	- y, z — 1/2	
VI = 2, 3/2 - y, 1/2 7 2	$v^{ii} = 1 - x, 1 - y,$	2				1.01	
							50
							-

SILVER(I) COMPLEXES

- 8. W. C. Hamilton, Acta Cryst. 12 (1959) 609.
- 9. LQPARM: a Program for Least-Squares Refinement of Lattice Parameters, M. Nardelli, Univ. of Parma, Italy, 1978.
- 10. ASSORB: a Program for Walker and Stuart's absorption correction, F. Ugozzoli, Univ. of Parma, Italy, 1983.
- 11. PARST: a System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis, M. Nardelli, Univ. of Parma. Italy, 1980; Computers & Chemistry 7 (1983) 95.
- XANADU, G. M. Sheldrick, Univ. of Cambridge, England, 1976.
 ORTEP, C. K. Johnson, Oak Ridge National Laboratory Report ORNL-3794, 1965.
- 14. Errors of Observation and Their Treatment, J. Topping, London, Chapman and Hall Ltd., 1960, p. 87 and 91.
- 15. V. Schomaker and K. N. Trueblood, Acta Cryst. B24 (1968), 63.
- 16. M. Belicchi Ferrari, G. Gasparri Fava, and M. E. Vidoni Tani, Cryst. Struct. Comm. 10 (1981) 571.
- 17. A. S. Foust, Inorg. Chem. 19 (1980) 1050.
- 18. H. K. Ault and S. Husebye, Acta Chem. Scand. A32 (1978) 157.
- 19. R. C. Elder, T. Marcuso, and P. Boolchand, Inorg. Chem. 16 (1977), 2700.
- 20. P. Herland, M. Luneland, and K. Marøy, Acta Chem. Scand. A30 (1976) 719.
- 21. P. G. Jones, J. J. Guy, and G. M. Sheldrick, Acta Cryst. B32 (1976) 3321.
- 22. O. Vikane, Acta Chem. Scand. 29 (1975) 763.
- 23. O. Vikane, Acta Chem. Scand. 29 (1975) 738.
- O. Vikane, Acta Chem. Scand. 29 (1975) 787.
 O. Foss, N. Lyssandtrae, K. Maartmann-Moe, and M. Tysseland, Acta Chem. Scand. 27 (1973) 218.
- 26. K. Åse, K. Maartmann-Moe, and J. O. Solheim, Acta Chem. Scand. 25 (1971) 2467.
- 27. K. Åse, K. Bøyum, O. Foss, and K. Marøy, Acta Chem. Scand. 25 (1971) 2457.
- 28. E. M. Holt, S. L. Holt, and K. J. Watson, J. Amer. Chem. Soc. 92 (1970) 2721.
- 29. W. T. Robinson, S. L. Holt Jr., and G. B. Carpenter, Inorg. Chem. 6 (1967) 605.
- 30. M. Nardelli, G. Fava Gasparri, A. Musatti, and A. Manfredotti, Acta Cryst. 21 (1966), 910.
- 31. L. P. Battaglia, A. Bonamartini Corradi, M. Nardelli, and M. E. Vidoni Tani, J. Chem. Soc. Dalton Trans. (1976) 143.
- 32. L. P. Battaglia, A. Bonamartini Corradi, M. Nardelli, and M. E. Vidoni Tani, J. Chem. Soc. Dalton Trans. (1978), 583.
- 33. N. R. Kunchur and M. R. Truter, J. Chem. Soc. (1958), 2551.
- 34. J. W. Emsley and J. A. S. Smith, Trans. Faraday Soc. 57 (1961), 1233.
- 35. V. F. Dvoryankin and B. K. Vainshtein, Kristallografia 5 (1960), 589.
- 36. G. J. Goldsmith and J. G. White, J. Chem. Phys. 31 (1959) 1175.
- 37. M. R. Truter, Acta Cryst. 22 (1967) 556.
- 38. M. M. Elcombe and J. C. Taylor, Acta Cryst. A24 (1968) 410.
- 39. D. Mullen and E. Hellner, Acta Cryst. B34 (1978) 2789.
- 40. D. Mullen, Acta Cryst. B38 (1982), 2620.
- 41. A. Kutoglu, C. Scheringer, H. Meyer, and A. Schweig, Acta Cryst. B38 (1982) 2626
- 42. Fourier Technique in X-ray Organic Structure Analysis, A. D. Booth, Cambridge, University Press, 1948.
- 43. The Nature of the Chemical Bond, L. Pauling, Ithaca, Cornell University Press, 1960.
- 44. D. Cremer and J. A. Pople, J. Amer. Chem. Soc. 97 (1975) 1354.

SILVER(I) COMPLEXES

SAŽETAK

Strukturni aspekti 2-tioimidazolidin koordinacije u srebro(I) halidnim kompleksima

L. P. Battaglia, A. Bonamartini Corradi i M. Nardelli

Iz MoKa difraktometarskih podataka određene su kristalne strukture AgCl · 2etu i AgBr · 2etu (etu = tioimidazolidin = etilentiourea = SC(NHCH₂)₂) i ponovno je određena struktura samog etu. AgCl · 2etu: $P2_1/c$, a = 11,078(4) b = 14,046(6), c = 7,749 (2) Å, $\beta = 103,71(2)^{\circ}$, Z = 4, konačni $R_{\rm F}$ (1372) = 0,0558. AgBr · 2etu: $P2_1/n$, a = 9,050(1), b = 10,557(3), c = 13,191(4) Å, $\beta = 103,38(1)^{\circ}$, Z = 4, konačni $R_{\rm F}$ (1976) = 0,0379. Etu: $P2_1/c$, a = 5,801(3), b = 14,540(5), c = 5.774(3) Å, $\beta = 101,3(1)^{\circ}$, Z = 4, konačni $R_{\rm F}$ (506) = = 0,0235.

Srebro ima iskrivljenu tetraedarsku koordinaciju u oba kompleksa. Struktura AgCl · 2etu jest polimerna, s jednim terminalnim (Ag—S = 2,512(3) Å) etu-ligandom i jednim premošćujućim preko sumpora (Ag—S = 2,551(3), 2,655(4) Å). Struktura AgBr · 2etu sastoji se od centrosimetričnih dimera s dva terminalna etu-liganda (Ag—S = 2,482(2), 2,489(2) Å) i bromom u mostu (Ag—Br = 2,817(1), 2,847(1) Å).

Karakteristični parametri za nekompleksirani etu jesu: S—C (sp²) = 1,694(3), N—C (sp²) = 1,349(3) prosjek, N—C (sp³) = 1,460(3) prosjek, C (sp³)—C (sp³) = 1,561(5) Å (vrijednosti korigirane za termalno gibanje), N—C—N=108,4(2)°, C—N—C=113.3(2)° prosjek, N—C—C = 102,5(3)° prosjek. Čini se da koordiniranje na metal utječe na kuteve S—C—N: onaj na strani slobodnog elektronskog para uvijek je veći (126,6(3)° prosjek), nego onaj na drugoj strani (124,3(2)° prosjek), dok tiouretski dio liganda zadržava svoju planarnost. Termalno titranje etilentiouree u kristalima prilično je slično, bez obzira da li je kompleksirana ili ne.