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The dualist model of Balaban is used for the enumeration
and display of Kekulé structures K and resonant sextet num-
bers r(G; k) of large cata-condensed benzenoid hydrocarbons.

The key steps are: (1) Transform the benzenoid graph into
the corresponding dualist and associate with it a linear-angu-
lar, L—A, sequence, (2) Fragment the dualist into subgraphs
after each L—A pair. The resulting subgraphs are called frag-
ment graphs. (3) Colour each fragment graph, containing v
vertices, v + 1 times such that each colouring contains at most
on black vertex (the rest being white). (4) Re-assemble the
coloured fragments into their initial geometry, preserved in the
dualist, to produce a set of coloured dualists such that no
coloured dualist has more than one black vertex in each li-
near segment. The number of such coloured dualists is K, the
Kekulé count. By convention, each black dualist vertex cor-
responds to a proper resonant sextet. This, plus the fact that
a linear segment can have at most one resonant sextet, com-
pletely defines all of the individual VB Kekulé structures and
their resonant sextets. The method is an illustration of data
reduction schemes and is quite suited for large benzenoid hy-
drocarbons.

A number of formulae for computing the number of Kekulé
structures of various families of cata-condensed benzenoid
hydrocarbons are derived. In addition, the above approach
is applicable to large benzenoid systems consisting of cata-
-condensed fragments and thin peri-condensed fragments.
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INTRODUCTION

In this work we wish to introduce the use of the dualist model!
for the enumeration and display of Kekulé structures and the individual
resonant sextet numbers? of large cata-condensed benzenoid hydrocarbons,
BH’s (cata-fusenes).?

The problem of enumeration (i.e. producing the total number) and
display (i.e. constructing all the perfect matchings) of Kekulé struc-
tures is continously being discussed in the literature.** In addition, the
recent interest in Kekulé structures is related to their role in structure-
-resonance theory'%* and in the conjugated circuits model.?* Finally,
Kekulé structures play one of the key roles in understanding the mathe-
matical basis for the intimate conmection between Pauling’s VB model
and Hiickel’s MO model.**

Some years ago Hosoya and Yamaguchi’? introduced the concept of
a resonant sextet number, r (G, k), for a benzenoid graph (structure), G,
as the number of ways in which k disconnected, but mutually resonant,
sextets can be chosen from G. A sextet polynomial® is defined as,

m
B(G,z) = X 1(G;k) z¥, 1)
k=0
where r (G,0) is defined to be unity, and m is the maximum value of k. The
sextet polynomial has been shown to possess many interesting proper-
ties?**% and reflects the main features of Clar’s sextet theory.*® Clar’s
sextet theory predicts that, of the set of isomeric BH’s, the one with
the largest number of sextets is the most stable isomer. Experimental evi-
dence supports Clar’s theory.*
There are at least three important properties of the sextet polyno-
mial, viz.,
(1) The sum of its coefficients is equal to the number of Kekulé struc-
tures, K(G), of cata-fusenes and thin peri-fusenes®

m
B(G;xz=1) = X r(G;k) = K(G). (2)
k=0
Thin peri-fusenes are defined as those peri-condensed BH’s which do

not contain the coronene skeleton as a substructure.3?

(ii) The first derivative with respect to x (at x=1) is equal to the number
of y, permutations appearing in the structure-resonance theory of
Herndon.% y, represents the resonance between two Kekulé structures
related by a permutation of three double bonds within a six-mem-
bered ring.

(iii) When a Kekulé structure is transformed into the subspace of its
double bonds, a Kekulé factor graph F(k), is obtained®, (originally
called a submolecule graph®), e.g.

OO‘ —

Flky)
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Let m and m indicate respectively the maximum and minimum numbers
of bivalent vertices in an F(k). Furthermore, let ay indicate the population
of F(k)’s containing 0 number of bivalent vertices. It has recently been
proved®3 that:

a- ;= 7(G;j) ; j=01...,m i(3)
for a nonbranched-all-benzenoid hydrocarbon, and
a.., = 1Gji); i=201..,m (4)

for a monbranched non-all-benzenoid hydrocarbon containing two linear
acene fragments (e.g., pentaphene, etc.).

DEFINITIONS

(I) The Dualist, D(G)

The dualist (dualistic graph'®® charateristic graph®) is the inner
(internal) dual graph which preserves information about the angles bet-
ween the branches of a BH. The inner dual graph is the dual graph
without the vertex representing the outer part of a plane.** A dualist is
not a graph in the strict graph-theoretical sense, that is, a set of vertices
and a set of edges. We understand the structure of the dualist as a weigh-
ted graph with two-valued weights (L = linear and 4 = angular) of ver-
tices. Angular weights correspond to kink or branched points in the
skeleton.

The dualist model has been developed to acknowledge the structural
differences between the isomeric cata-condensed BH’s for which the inner
dual graphs are the same. The dualist and inner dual graphs of anthracene
and phenanthrene are shown in Figure 1.

Benzenoid graph [:(:O OiS)
[ II

Inner dual graph OO0 o S

Dualist OO o—o/
\

KINK

Figure 1
The dualists and inner dual graphs of anthracene (I) and phenanthrene (II)

The carbon skeletons of the BH’s in Figure 1 are depicted by ben-
zenoid graphs.?®.* A benzenoid graph is a bipartite planar graph which
can be constructed in the plane by assembling R regular hexagons in
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such a way that, two hexagons have exactly one common edge or are
disjoint. The inner dual graph is obtained by linking the centers of the
individual benzene rings of a BH through the bond that is common to
two hexagons. The dualist preserves the geometric information of ring
annelation. We denote a dualist by D(G).

(II) Modes of Ring Annelation

We make use of the two modes of ring annelation, viz., linear mode,
L, angular mode, 4. These are shown below

"o W 0f

L -mode A-mode

(III) The L—A Sequence, S(G)

Every non-branched cata-fusene containing R hexagons generates a
so called L — A sequence® given by

{S: 8 ..... Sgr_1S&} (5)
where, by convention,

S, =Sg=01L; S;=A4 or L; 1<i<R (6)

depending on the mode of ring annelation.
As an illustration we give a cata-condensed BH G’ and its L—A4

sequence
oo -

M Bie
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(IV) Fragment Graphs, f(G)

Each L— A sequence is divided into several subsequences, the frag-
mentation of the sequence being after each LA pair (or after each AA
pair, if there is a series of more than two A’s). E.g. S(G’) is divided
in subsequences as follows

S(@) = {LAELLASALL} (13)

The pictorial répresentatlons of the subsequences are fragment graphs,
f(G)’s. Thus, the above sequence S(G’) is represented as

Bion o | e (1)

The branched systems are dissolved into a set of f(G)’s in several
steps depending on the number of branched vertices in D(G).

The most important property of these fragment graphs (subsequences)
is that each f(G) contains at most one resonant sextet.*

(V) Proper and Improper Sextets®
These are schematically represented below

proper improper
sextet sextet
Clar’s representation of a given Kekulé structure is defined as a
simultaneous substitution of all proper sextets by circles and replacing all
double bonds by single bonds.*? The above concepts are illustrated in Fi-

gure 2.
Kekulé structure Clar’s Representation D(G) r(G; k)

seclNc o0 e o
94® 00 e L
o3 0 S e
CCO 900 —g—  rte0)

Figure 2
B (anthracene; x) = 1 4+ 3x
B’ (anthracene; x=1) =ny; =3
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(VI) Colouring the Fragment Graphs

Each fragment graph is coloured by two colours, black and white, in
such a way that at most one vertex is black. This produces v + 1 co-
lourings (v is the number of vertices in f(G)). By convention, a black ver-
tex corresponds to the hexagon containing the proper sextet, i.e. the
hexagon with the circle in Clar’s formalism.

(VII) Assembling the Coloured Fragment Graphs

The coloured f(G)’s are re-asembled in their initial L—A sequence
such that none of the resulting coloured D(G)’s contain linear segments
with more than one black vertex.

GENERATION OF KEKULE STRUCTURES AND RESONANT
SEXTET NUMBERS OF CATA-FUSENES

To obtain all allowed colourings of D(G’) we first obtain those of
D(G”) given below,

L]

AlL L L
«Aien
and then combine them with those of

o0—0—90

In order to obtain all possible colourings of D(G”) we combine the
following fragment graphs

N e s

The fragment graph o——o0 has three colourings shown below.

o0—0

The fragment graph o—o—o0 has four colourings and these are
shown in Figure 2.
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The colourings of D(G”) are given below.

345

X___. (o) 5 e ‘\>—oi-o—o = r(G,2)
a
%oo—e——o —_— °\>—-O—Q—O z r(G,i)
{b) 2
\0-.-0—0—-0 o \’—0—0—0 ‘E r(G,Z)
(c) 3
\:_.. 0—0—0 e \o—o—o—o = rl(G,1)
(d) 4 ,
X-—.o—-o—o —_— Forbidden
\.._. o—e—0 ——  _Forbidden
c&ﬁ—. o—o0—o —r Forbidden
°\;<—> o—0—0 —= o\b—-o—o—o = r(G,1)
5
XD—-—»@-—Q_Q N - %-Q—SH s r(G,')
%4—»0—.—0 — %—0—;—0 B f(G,')
%—-—-—O—O—O —_— 5890 ET(G,”
0\3-4—» 0—0—0 —_— LO—QO—O - T(G‘O)



346 SHERIF EL-BASIL

Dualists 1—9 correspond, of course, to benzo[a] tetracene, G”,
for which we may now immediately write the sextet polynomial:

Gll

Bgr () =1+ 5z +32% K(G”)=9; nn=5+6=11 (11)
where ny, is the number of v, permutations = B’;” (x = 1). Interaction
between colourings 1—9 and those of O——O0——O, ie.a, b, ¢, d (in

Figure 2), leads to a 4 X 9 counting matrix, shown in Figure 3.

Figure 3

Counting matrix for construction of all allowed colours (and thus all Kekulé
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structures and individual resonant numbers) of G'.

Bg, (X) =1+ 8x + 17x% + 8x%;, K(G’) = 34

By (x=1)=n11=8+34+24 =66
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Only two combinations are forbidden, viz.,, (3a) and (8a), so we have

KG)=4Xx9—2=34 (16)
B(G; ) =1 + 8z + 17x* + 823 17y
ny,(G)=B (G; r=1)=8+2X17T+3 X8 =266 (18)

The individual Kekulé structures can easily be generated, because

colouring one vertex per < g, > fixes the whole Kekulé structure. As an
example we consider colouring (7d) from the counting matrix,

(7d)

which transforms to

The remaining double bonds must be assigned in such a way that

none of the remaining hexagons possess proper sextets.

¢))
2
(3)

4)

(%)

This restriction results in only one perfect match, viz.,

To summarize the procedure consists of the following steps:

Transform the cata-fusene graph into the corresponding dualist and
associate with it on L — A4 sequence.

Divide the dualist into fragment graphs.

Colour each fragment graph. » + 1 colourings should be obtained.
Each colouring should contain at most one black vertex, the rest being
white.

Re-unite the coloured fragment graphs into their initial geometry,
preserved in the dualist, to produce a set of coloured dualists. No co-
loured dualist should have more than one black vertex in each linear
segment.

Transform the coloured dualists into Kekulé structures of the initial
cata-fusene. Note that by convention every black vertex in the dualist
corresponds to a proper resonant sextet. This convention and the
fact that each linear segment can have at most one resonant sextet,
completely defines all of the individual Kekulé structures and their
resonant sextets of a given cata-fusene.



348 SHERIF EL-BASIL

The method desribed is inferior to the Gordon-Davison procedure®,
or any other enumerative scheme,?® if we are only after the enumeration
of the Kekulé structures for cata-fusenes. However, if we need to display
the Kekulés’ structures then our procedure competes well with the Randié
procedure! and the procedure based on the reduced graph model.''* Ho-
wever, our procedure has one advantage over all these methods; it also ge-
nerates resonant sextet numbers of cata-fusenes. Besides, it allows deri-
vation of compact formulae for computation of the mumber of Kekulé
structures for various sub-classes of cata-condensed benzenoid hydro-
carbons. In addition it reveals the intimate relationship that exists between
Kekulé structures and resonant sextet numbers of cata-fusenes.

SOME EXPERESSIONS FOR K(G) BASED ON THE DUALIST MODEL

We consider several general types of dualist graphs.
(a) Non-branched cata-fusenes

D "
)

n

DI

To calculate K(G); we fragment D(I) as follows:

%%o’—‘—:'w—w

H n

Therefore, K(G,) = K(O—(-c»)m—O). K((O}n—.O)- D (19)

where D is the number of forbidden combinations between fragments

o—fo}—o and ((o-—)
Klo—fo}—0) = ms3 (20)

Since

and
K((e}—o)= n+2 (21)

and since D is simply the number of times the junction vertex (denoted
by an asterisk) becomes black, that is (n + 1) times, we may write:

KG)=(m+3)-n+2)—(n+1) (22)
E.g. m = 3, n = 4 corresponds to the following BH

Thus
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K=3+3)-4+4+2)—#4+1) =31
Of course, for n = m = 0 one is dealing with phenanthrene for which
K=(3)-(2)—1=5.

o Q
(I1) ”» !
n
D)
Using similar arguments and eq. (22), we arrive at the following expression

for K(Gy):
KGy) =[(m+3)(n+2)—(n+1]1(p+2)—[(p+1) (m+2)] (23)

Eg.m=p=0, n=3 e\ /

which corresponds to

for which K = [(3) (5) — (4)] - (2) — 2 = 20.
% I

AT

e

(I1I) 7 =
Him)

Using eq. (23) and the fact that the junction vertex becomes coloured
black (m + n + 3) times we write:
K(Gm) =[(m+3) n+2)—m+1D]-(p+2)—
[P+1) (m+2)]1-(@+2)—[(@+1) (m+n+3)] (24)
It is evident that more complicated expressions can be derived from
simpler ones, since eq. (24) is based on eq. (23), and the latter on eq. (22).
(b) Branched cata-fusenes
We can easily adapt the technique used for non-branched cata-
-fusenes to branched cata-fusenes. Instead of an L—A sequence we have
an L—A tree. We can either choose one terminal vertex as the root and
continue to make fragments according to IV (in previous section, see
page 343), then carry out the colouring process and reassemble them, or -
take a path from one terminal point to another and calculate the other
branches separately and then combine them as in the following cases:

(IV)

DY)
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From eq. (22) we know the value of K (W ) and knowing

that the junction vertex becomes black only once we can immediately
write:
K Gw)=[(m+3)-n+2)—(n+1)]-(p+2)—(p+1) (25)
Naturally for m=n=p =0 D(IV) is D(triphenylene); for which
K=(6—1)(2—1=09.
We now consider another type of branched dualist graph:

V)

Div)

From eq. (23) and the fact that there are (m + 3) colourings in which the
junction vertex (denoted by an asterisk) is black (the dashed line indi-
cates partitioning), we conclude that the number of forbidden combina-
tions is (m + 3) (¢ + 1) and thus we have:

K@Gy) ={[(m+3).- n+2)—(m+1]-(p+2)—
[(P+1).-(m+2)]}-(@+2)—(m+3)-(¢g+1) (26)

EXTENSION OF THE APPROACH TO LARGE BENZENOID
HYDROCARBONS CONSISTING OF CATA-FUSENE AND
THIN PERI-FUSENE PARTS

The above approach leads to a variety of expressions for (KG)’s of
various general types, and in principle every cata-fusened benzenoid hyd-
rocarbon can be assigned an appropriate D(G). A corresponding value of
K(G) can thus be computed. The procedure can be extended to include
large BH’s consisting of cata-fusene fragments and thin-perifusene frag-
ments. As an illustrative example we will demonstrate the extension of the
above procedure for the composite benzenoid hydrocarbons possessing the
general structure shown below.

VI
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The corresponding dualist is the following structure.

D)

We know by investigating all Kekulé structures of pyrene that the hexagon
denoted by * assumes a proper sextet twice while that denoted by ** assu-
mes a proper sextet just once, and hence the expression for K is:

K(Gy) =6(m + 3) —3(m + 2) 27)

Eg. m =3,

v

The corresponding BH is

GVII

for which K = 6(3 + 3) — 3(3 + 2) = 21. This result agrees with indepen-
dent computation from the graph spectrum of Gyn.*
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SAZETAK

Primjena dualisticnog modela.
Generiranje Kekuléovih struktura i rezonancijskih seksteta
benzenocidnih ugljikovodika

S. El-Basil, P. Kfivka i N. Trinajsti¢

Balabanov dualisti¢ni model upotrijebljen je za prebrojavanje i prikazivanje
Kekuléovih valentnih struktura i rezonancijskih seksteta velikih kata-kondenzi-
ranih benzenoidnih ugljikovodika. Izvedene su formule za izraéunavanje broja
Kekuléovih struktura nekih klasa kata-kondenziranih benzenoidnih ugljikovo-
dika. Dualisti¢ni je model takoder upotrijebljen za prebrojavanje Kekuléovih
struktura nekih benzenoidnih ugljikovodika koji su sloZzeni od kata-kondenzira-
nog fragmenta i s»tankog« peri-kondenziranog fragmenta.





