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The dualist model of Balaban is used for the enumeiration 
and dis.play of Kelmle struotmres K aind .resooant sextet num­
bers rCG; k) O·f la.rge cata-condenrsed bemmnoi:d hydrncarbons. 

The key steps are: (1) Transfo.rm the berw;enoid graph into 
the corresponding dualist and associate with it a linear-angu­
lar, L-A, sequence, (2) Fragment the dualist into subgraphs 
after each L-A pair. The resulting subgraphs are called frag­
ment graiphs. (3) Colour each fragment graph, containing v 
veritices, v + 1 times such ·that each co1ourin.g contaiins a.t mo&t 
on black vertex (the rest being white). ( 4) Re-assemble the 
coloured fragments into theiir initial geometry, preserved in the 
dual'ist, to produce a set o.f c10l0>ured dua!ists such that no 
coloured dualist has more than one black vertex in each li­
near segment. The number of such coloured duali:sts is K, the 
Kek•ule count. By convention, each blac.k dualist vertex cor­
responds to a propex resona,nt sextet. This, plus the fac.t that 
a lineair segment can have at most one resonant sexteit , com­
pletely defines all o.f the individual VB Kekule structures and 
their resonant sextets. The method is an illustration o.f data 
reduction schemes and is quite suited for large benzenoid hy­
drocarbons. 

A numbe•r O<f fo:rlIIlllllae for com,putiing the number of Kekule 
striuctures of vairious families of cata-condensed benzenoid 
hydrocarbons are derived. In addition, the abnve apprnach 
is applicable to large benzenoid systems consisting 0if c.ata­
-condensed f.ra,gments and thin peri-condensed fragments. 
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INTRODUCTION 

In th'is work we wish to introduce the use of the dualist model1 
for the enUIIlleration and display of Kekule structures and the individual 
resonant sextet numbers2 of large cata-condensed benzenold hyd·rocarbons, 
BH's (cata-fusenes).3 

The problem of enumeration (i.e. producing the total number) and 
display (i.e. construct'ing an the perfect matchings) of Kekule struc­
tures is continously being discussed in the literature.4- 21 In addition, the 
recent interest in Kelmle structures is related to theiT role in structure­
-resonance theory10

•
22 and in the conjugated circuits model.23

- 26 Finally, 
Kekule structures play one of the key roles in understanding the ma the­
ma tical basis for the intimate connection between Pauling's VB model 
and Htickel's MO model.27-29 

Some years ago Hosoya and Yama;guchi2 introduced the conc·ept of 
a resonant sextet number, r (G; k), for a benzenoid graph (structure), G, 
as the number of ways in which k disconnected, but mutually resonant, 
sextets can be chosen from G. A sextet polyinomial2 is ded:ined as, 

m 
B(G;x) = l: r(G;k) xk, (1) 

k=O 

where r (G;O) is de.fined to be unity, and mis the maximum value of k . The 
sextet polynomial has been shown to possess many interesting proper­
ties2.30-35 and reflects the main features of Clar's sextet theory.36 Clar's 
sextet theory predicts that, of the set of isomeric BH's, the one with 
the largest number of sextets is the most stable isomer. Experimental evi­
dence supports Clar's theory.36 

There are at least three important properties of the sextet polyno­
mial, viz., 

(i) The sum of its coefficients is equal to the number of Kekule struc­
tures, K(G), of cata-fusenes and thin peri-f:usenes2 

m 
B(G;x= l) = l: r(G;k) = K(G). i(2) 

k=O 

Thin peri-fusenes are defined as those peri-coin'd·ensed BH's which de> 
not contain the coronene skeleton as a sUJbstructure.2.32 

(ii) The first derivative with respect to x (at x=l) ls equal to the number 
of r 1 permutations appearing in the structure-resonance theory od: 
Herndon.22 y1 represents the resonance between two Ke:kule structures. 
related by a permutation of three double bonds within a six-mem­
bered ring. 

(iii) When a Kekule structure is transformed into the surbspace of its 
double bonds, a Kekule factor graph F(k), is ohtained37, (originally 
caned a submolecule graph38), e.g. 
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Let m and m indicate respectivelv the maximum and minimum numbers 
of bivalent vertices in an F(k). Furthermore, let a 6 indicate the population 
of F(k)'s containing 0 number of bivalent vertices. It has recently been 
proved33

•
34 that: 

a - . = r(G;j) ; j = 0, 1, ... , m 1(3) 
m-J 

for a non1branched-all-benzenoid hydrocal'lbon, and 
a +· = r(G;j) ; j = 0, 1, ... , m (4) 

'!.' J 

for a nonbranched non-all-benzenoid hydrocarbon containing two linear 
acene fragments (e.g., pentaphene, etc.). 

DEFINITIONS 

(I) The Dualist, D(G) 

The dualist (dualist.ic graph1
•
39 charateristic graiph40

) is the tnner 
(internal) dual graph which preserves information about the · angles bet­
ween the branches of a BH. The inner dual graph is the dual graph 
without the vertex representtng the outer part of a pl1ane.41 A dualist .is 
not a graph in the strict graph-theoretica'l sense, that is, a set of vertices 
arnd a set of edges. We understand the structure of the dualist as a weigh­
ted graph with two-valued weights (L =linear and A = angular) of ver­
tices. Angular weights correspond to kink or branched points in the 
skeleton. 

The duiallst model has been developed to ~wknowledge the strucitural 
differences between the isomeric cata-condensed BH's for which the inner 
dual gmphs are the same. The dualist and inner dual graphs of anthracene 
arnd iphenanthrene are shown in Fi:gure 1. 

Benzenoid gra;ph 

II 

Inner dua:l graph 

Dualist o----/ 
\KINK 

Fi,gure 1 
The dualists and inner dual gra,phs of anthracene (I) and phenanthrene (II) 

The carbon skeletons of the BH's in Figure 1 are depicted by ben­
zenoid graphs.31

•
42 A benzenoid graph is a bipartite planar graph which 

can be constructed in the plane by assembling R regular hexagons in 
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such a way that two hexagons have exactly one common edge or are 
disjoint. The inner dual graph is obtained by linking the centers of the 
individual benzene rings of a BH through the bond that is common to 
two hexagons. The dualist preserves the geometric information of ring 
annelation. We denote a dualist by D(G). 

(II) Modes of Ring Annelation 

We make use of the two modes of ring annelation, viz., linear mode, 
L, angular mode, A. These are shown below 

L-mode A-mode 

(III) The L-A Sequence, S(G) 

Every non-branched cata-fusene containing R hexagons generrutes a 
so called L -A sequence31 g1ven by 

{S1 S2 ••••• Sa_1 SR} 

where, 1by cornventiOIIl, 

(5) 

S1 =SR= L; Si= A or L; 1 < i < R (6) 

depending on the mode of ring annelation. 
As an illustration we give a ca ta-condensed BH G' and its L - A 

sequence 

G' 

~(G ' J 
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(IV) Fragment Graphs, f(G) 
Each L -A sequence is divided into several subsequences, the frag­

mentation of the sequence being after each LA pair (or after each AA 
pair, if there is a series of more than two A's). E.g. S ( G') is di vid.ed 
in subsequences as follows 

. . 

S(G') = {LA: LLA : ALL} (13) 

The pictorial rerpresentatLons of the subsequences are fragment graphs, 
/(G)'s. Thus, the a!bove sequence S(G') is represented as 

;()(G'l o \ \ ~ o-o-->} (14) 

The branched systems are dissolved into a set of /(G)'s in several 
steps depending on the nwnber of branched vertices in D(G). 

'Dhe most important property of these fragment graphs (subsequences) 
is that each f(G) contains at most one resonant sextet.34 

(V) Proper and Improper Sextets32 

These are sc'hematicany represented below 

* * proper improper 
sextet sextet 

Clar's representation of a given Kekule structure is defined as a 
simultaneous substitution of all proper sextets by circles and replacing all 
double honds ,by single bonds.32 The a1bove concepts are mu1s.trated in Fi­
gure 2. 
Ke.kule structure Clar"s Re.presentation D(G) r(G; k) 

oco ©CO • 0 0 r CG; 1 l 
a 

coo 00:) 0 • 0 r( G;I) 
b 

cco a)QJ ~ r (G;IJ 
c 

(XX) CXD ~ r (G;O) 
d 

F.ig!ure 2 
B (ainth!racene; x) = 1 + 3x 
B' (anthracene; x = 1) = ny1 = 3 
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(VI) Colouring the Fragment Graphs 

Each fragment graph is coloured by two colours, black and white, in 
such a way that at most one vertex is blac:k. This produces v + 1 co­
lourings (vis the number of vertices in f(G)). BY convention, a black ·ver­
tex corresponds to the hexagon containing th•e proper sextet, i.e. the 
hexagon with the circle in Clar's formal'ism. 

(VII) .4.ssembling the Coloured Fragment Graphs 

The coloured f(G)'s are re-asem.bled in their initial L-A sequence 
such that none of the resulting coloUTed D(G)'s contain linear segments 
with more than one black vertex. 

GENERATION OF KEKULE STRUCTURES AND RESONANT 
SEXTET NUMBERS OF CATA-FUSENES 

To obtain aH allowed colourings of D(G') we first obtain those of 
D(G") given below, 

L~ 
AJ L L L 

.'~(G"J 

and ·then cornJbine them with those of 

In order to obta'in all poss'ible coloarings of D(G") we combine the 
following fragment graphs 

\ ~ 0-----<lO...____,o 

The fragment graiph o--.---0 has three colourings shown below. 

• 0 

0 • 

0 0 

The fragment graph 0-----0---0 has fouT colourings and these are 
shown in Figure 2. 
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The colour:ings of D(G") a-re given below. 

\_. 00 ~ = r(G,2) ---(a) 1 

\_~ - ~ - r (G,2) 
(b) 2 

\_ C>-<>-4 --- ~ - r.( G,2) 
(cl 3 

\_ 0-o-o - ~ - r ( G, 1) 
(d) 4 

\_.-o-o ----<:> Forbidden 

\_ ~ ----<> Forbidden 

\_ o--<>--. --c> Forbidden 

\_ o-<>-o ----c:> ~ - r ( G, 1 l 
5 

\ ___ G-0-o ~ - r (G,I) 
---<> 6 

\ ..... 0--.-0 ---<> \o. 0 

7 - r ( G,I) 

\_ 0-0--. ---c> ~ - r( G,I) 
s 

\_ 0-0-0 ---c> ~ :r(G,0) 
9 
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Dualists 1-9 correspond, of course, to benzo[a] tetracene, G", 
for which we may now immediately write the sextet polynomial: 

G" 

B 0 .. (x) = 1 + 5x + 3x2
, K'(G") = 9; nr1 = 5 + 6 = 11 (11) 

where nr1 is the number of r 1 permutations = B'G" (x = 1). Interaction 
between colourings 1-9 and those of 0-0--0, i.e. a, b, c, d (in 
Fi·gure 2), leads to a 4 X 9 counting matrix, shown in Fi·gure 3. 

a b c d 

1 ~ -._r -._r ~ 
r (G;3) r (G;J) r(G;3) r(G;2) 

2 ~ ~ ~ ~ 
r(G;3) r(G ; 3) r(G;3) r(G;2) 

3 0 ~ 'Lr ~ 
r (G;3) r (G;3) r (G;2) 

4 Lr Lr Lr ~ 
r(G;2) r(G;2) r(G;2) r(G;l) 

5 ~ ~ ~ ~ 
r(G ;2) r (G;2) r (G;2) r(G;l) 

6 ~ ~ \...o.r ~ 
r(G;2) r (G;2) r( G;2) r(G ;1) 

·7 ~ ~ ~ ~ 
r(G;2) r(G;2) r(G ;2) r(G;I) 

8 0 ~ ~ ~ 
r(G;2) r(G;2) r(G;l) 

9 ~ ~ Lr ~ 
r(G;I) r(G;l) r(C3;1 l r(c,;;O) 

Fi~ure 3 
Countinig matrix for constl'IUction of an allowed colours (and thus all Keikule 
structiures and indiv.1dual resonant numbers) of G'. 
BG, (x) = 1+Bx+17x2 + 8x3 ; K(G') = 34 
B'G, (X = 1) = nri = 8 + 34 + 24 = 66 
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Only two combinations are forbidden, viz., (3a) and (8a), so we have 

K(G') = 4 X 9-2 = 34 (16) 
and 

B(G'; x) = 1 + Bx + 17x2 + 8x3 (17) 

nr1(G') = B' (G'; x = 1) = 8 + 2 x 17 + 3 x 8 = 66 (18) 

The imlivtdual Kekule structures can easily be generated, because 
colourtng one vertex per < g1 > fixes the whole Kekule structure. As ain 
example we consider colouring (7d) from the counting matrix, 

\ 0 

0 . I 
(7d) 

which transfoNns to 

The remammg double bonds must be assigned in such a way that 
none of the remaining hexagons possess proper sextets. 

This restriction ·results in only one perfect match, viz., 

k7- d 

To summarize the procedure consists of the foHowmg steps: 
(1) TrMlsform the cata-ifusene graph into the corresponding dualist and 

associate with it on L -A sequence. 
(2) Divide the dualist into fragment graphs. 
(3) Colour each fragment graph. v + 1 colourinigs should be obtained. 

Each colouring should contain at most one black vertex, the ·rest being 
white. 

(4) Re-unite the coloured fragment graphs into their init1al geometry, 
preserved in the dualist, to produce a set of coloured dualists. No co­
loured dualist should have more than one black vertex in each linear 
segment. 

(5) Trans.form the coloured dualists into Kekule strnctures of the initial 
cata-fusene. Note that by convention every black vertex in the dualist 
corresponds to a proper resOIIlant sextet. Th'is convention and the 
·fact that each linear segment can have at most one resonMlt sextet, 
completely defines all of the individual Kekuie structures and their 
resonant sextets of a given cata-fusene. 
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The method desribed is inferior to the Gordon-Davison procedure6
, 

or any other enumerative scheme,8
•
9 if we are only afte·r the enumeration 

of the Kekule structures for cata-fusenes. However, if we need to display 
the Kekules' structures then our procedure competes we11 with the Randie 
procedure11 and the procedure based on the reduced graph modeI.11

•
18 Ho­

wever, our procedure has one advantage over all these methods; it also ge­
nerates resonant sextet numbers of caita-fusenes. Besides, it allows deri­
vation of compact formulae for computation of the number of KekU'Ie 
structures for various sub-classes of cata-condensed benzeno1d hydro­
carbons. In addition it reveals the intimate relationship that exists between 
Kekule structur-es and resonant sextet numbers of cata-fusenes. 

(I) 

SOME EXPERESSIONS FOR K(G) BASED ON THE DUALIST MODEL 

We consider sevem,l general types of dualist graphs. 
(a) Non-.branched cata-fusenes 

To calculate K(G)r we fragment D(I) as follows: 

~ .,, l n 

Therefore, K(G1}:: K(o--f4--o). K((of:->)-0 (19) 
m n 

where D is the number of forbidden combinations between fragments 

o--f<>t:--o and ( ( ~) m n 
Since 

K.(~) = m+3 (20) 
and 

K((ot,,<>):: n+2 (21) 
a:nd since D is simpJy the number of times the junction vertex (denoted 
by an asterisk) becomes black, that is (n + 1) times, we may write: 

K(G1 ) = (m + 3). (n + 2) - (n + 1) 
E.g. m = 3, n = 4 correspoodls 'to rthe fdllowin;g BH 

Thus 

(22) 
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K = (3 + 3) . (4 + 2) - (4 + 1) = 31 
Of course, for n = m = 0 one is dealing with phenanthrene for which 
K = . (3) · (2) - 1 = 5. 

~ n 
(II) 

1J (II) 

Using similar arguments and eq. (22), we arrive at the following expression 
for K(Gu): 
K(Gu) = [(m + 3) (n + 2) - (n + 1] • ·(P' + 2) - [(p + 1) (m + 2)] (23) 

E.g. m = p = 0, n = 3 

which .corresponds to 

for which K = [(3) (5) - (4)]. (2)-2 = 20. 

q 
(III) 

t> (!Ill 
Using eq. (23) and the fact that the junction ver.tex becomes coloured 
black (m + n + 3) times we write: 

K(Gm) = [ (m + 3) (n + 2) - (n + 1)] . (p + 2) -
[ (p + 1) (m + 2)] · (q + 2) - [ (q + 1) (m + n + 3)] (24) 

It is evident that more compli.cated expressions can be der.ived from 
simpl'er ones, si!llce eq. (24) is based on eq. (23), and the latter on eq. (22). 

(:b) Brancihed cata-lfulsenes 
We cam. ea:stly adaipt t he technique useid for non-branJChed calta­

-fusenes to branched cata-fusenes. Instead of an L-A sequence we have 
an L-A tree. We can either choose one terminal vertex as the root and 
continue to make fragments according to IV (in previous section, see 
page 343), then carry out the colouring process and reassemble them, or 
take a path from one terminal point to another and calculate the other 
branches separately and then combine them as in the following cases: 

(IV) 

,,!){!V) 
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From eq. (22) we know the value of and knowing 

that the jrunction vertex becomes black only once we can immediately 
write : 

K{G1v) = [ (m + 3) . (n + 2) - (n + 1)] . (p + 2) - (p + 1) (25) 
Naturally for m = n = p = o D(IV) is D(triphenylene); for which 

K = (6 - 1) (2 - 1 = 9. 
We now consider another type of branched dualist graph: 

(V) 
n 

iJ (V) 

From eq. (23) and tihe fact that there are (m + 3) colourings m which the 
junction vertex (denoted by an asterisk) is black (the dashed line indi­
cates partitionill1g), we conclude that the number of forbidden comlbilna­
ti:ons is (m + 3) (q + 1) and thus we have: 

K(Gv) = {[(m + 3). (n + 2) - (n + l)]. (p + 2)-

[(p + 1). (m + 2)]}. (q + 2) - (m + 3). (q + 1) (26) 

EXTENSION OF THE APPROACH TO LAROE BENZENOID 
HYDROCARBONS CONSISTING OF CATA-FUSENE AND 

THIN PERI-FUSENE PARTS 

The aibove approach leads to a variety of expressions for (KG)'s of 
various general types, and in principle every cata-fusened benzenoid hyd­
rocarbon can be assigned an appropriate D(G). A corresponding value of 
K(G) can thus be computed. The procedure can be extended to include 
large BH's consisting of cata-fusene fragments and thiln-perl!fusene frag­
ments. As an il'lustrative example we will demonstrate the extension of the 
a;b-Ove procedure for the composite benzenoid hydrocarbons possessing the 
general structure shown below. 
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The corresponding duall.iSt is the fohlowing structure. 

~!Vll 

We know by investigating all Kekule structures of pyrene that the hexagon 
denoted by * assumes a proper sextet twic·e while that denoted by ** assu­
mes a proper sextet just once, aind hence the expression for K is: 

K(Gv1) = 6(m + 3) -3(m + 2) (27) 

E.g. m = 3, 

3:) (VII l 

The corresponding BH is 

for which K = 6(3 + 3) - 3(3 + 2) = 2.1. This result agrees with indepen­
dent computation from the graph spectrum of Gvrr·44 
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SAzETAK 

Primjena dualisticnog modela. 
Generiranje Kekuleovih struktura i rezonancijskih seksteta 

benzenoidnih ugljikovodika 

s. El-Basil, P. Krivka i N. Trinajstic 

Balabanoiv dua:Hst'icni model upotr.ije>bljen je za prebrojavanje i prikazivanae 
Kekuleovih valootnih struMura i reZ-Onancijstkih seksteta velikih kata-kondenzi­
ranih boozenoidnih :Ugljikovodika. Iz;vedene su formule za izraoomwanje broja 
Kekuleovih strutktura nekih klasa kata-kondenziranih boozenoidnih ugljikoivo­
dika. DuaUsti16ni je model takoder upotrijebljen za prebrojavanje Kelmleoivih 
struktura nekih ben1zenoidnih ugljikovodika koji su slozeni od ka.ta-kondenz.iira­
nog fragmenta i l)ta.nko·g« per.i-kondenziranog fragmenta. 




