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A potential model for two-valued triatomic surfaces is
reviewed with reference to the ground state potentials of

202(X13e*) and CS:(X!'Xg*). A comparison is made between the
observed J = 0 vibrational spectra and those calculated from
the derived potentials by a variational method. For CO: the
strong Fermi-resonance in the (10°0) and (02°0) vibrational sta-
tes is confirmed for the first time using a full three-dimensional
potential and a complete vibrational hamiltonian.

INTRODUCTION

In a recent publication,! a method was outlined for the construction
of two-valued potential energy functions which represent the adiabatic
ground states of polyatomic molecules whose surfaces intersect and/or
avoid in some regions of coordinate space. In a subsequent publication,?
this method was enhanced by the inclusion of a variational procedure®
which enabled the resulting functions to be refined to the experimental
vibrational spectra of the molecule. In this paper, we use these techniques

to refine ground state potential functions for CO,(X'Z,*) and CS,(X'Z,*).

A ground state polyatomic surface can be considered to be two (or
multi)-valued if there is a crossing of the potential surfaces of two eigen-
states in some configurations but an avoided crossing in others. For exam-
ple, the ground state of linear HOH is !Z* for short OH bond distances
but 77 towards the linear H+OH asymptote. On bending, the 77 surface
splits into A’ and !A”, and the 'A’ component shows an avoided crossing
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with the 'A’ surface arising from !T*. There is a conical intersection of
these 'A’ surfaces in linear configurations.! There is also a crossing at
infinity on the singlet H,O surface. At the O-H, limit spin conservation
requires either the oxygen to be in an excited state, O('D) or the H, to

be in an excited state, Hz(§2u+), The energy of the latter depends on the

H—H distance so the asymptotic limit of the ground state surface pro-
duces either a ground state, O(®P) or excited state, O(*D).

DISSOCIATION SCHEMES OF CO, AND CS,

The topologies of the CO,(X'Z,*) and CSZ(}zlzg*) potential surfaces are
very similar, as are those of their respective dissociation fragments. We
will therefore investigate the nature of these surfaces from an analysis

of the adiabatic dissociation processes for COZ(}NCEE;), and consider first
the dissociation of linear OCO into O+CO along a Ceoy channel. For
(r(CO) ~ r, the lowest-energy fragments that maintain 'X* symmetry
arise for the process

~ C
0CO(XIzZg*) Y. O(D) + CO(X!E*) — O('D) + OGP) + CEP) (1)

The O('D) — O(®P) separation is 1.958 eV, but the lowest-energy triplet
state of CO(a’ll) is some 6 eV higher in energy® than CO(X'Z*) at r,
hence there are no lower energy channels that can give O(°P) for the
initial dissociation.

If we now consider the adiabatic dissociation of OCO into C+O, along
a C,, channel, the lowest energy fragments that maintain !A, symetry’
arise for the process

[ Cav
OCO(X!'A1) =2 CGEGP) 4 0:(X3S¢) — 20(3P) + C(P) 2)

At these are all ground state fragments there are no lower energy
channels. A comparison of (1) and (2) shows that the ground state surface

of OOz(ilzg’f) must be two-valued because there are two sets of atomic
states that can be reached by adiabatic processes.

The minimum energy C o, dissociation process which results in the
formation of the atomic fragments (2) along a 'X* surface is®

Cw

0Co('z*) " OCP) + CO*ID — 20CP) + CCP. (3)
Similarly, the minimum energy C,, dissociation process which results in
the formation of the atomic fragments (1) along a !A, surface is®

Cav
OCO(*A) 225 C(P) + O2(B*Zy™) — O(D) + OCP) + CCP) 4)

The asymptotic two-valued nature of CO, is now completely specified,
and we can write the complete sets of dissociation channels for CO, (and
likewise for CS,) as follows
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O(D) + CO(X!Z*)

i {C(“P) + 0:2(BXu) @)

CO:(*z+, A1) (5)

OCP) + CO(a®
\{ ¢3P) 1D )

C(CP) + 02(X3%g7)

These dissociation channels are in important first step in deriving a
two-valued potential function for polyatomic molecules.! In subsequent
sections we will frequently make reference to these dissociation channels
as (a) or (b), whereby arguments relating to both CO, and CS, will be
implied.

CONSTRUCTION OF THE POTENTIAL ENERGY FUNCTIONS FOR CO, AND CS,

The potential function of a 2-valued surface is given by eigenvalues
of a 2 X 2 potential energy matrix

Vijo =1z (Va + Vo —/+ [(Va— V)2 + 4V} 6)

where V, and V, are diabatic potentials which dissociate according to
schemes (a) and (b), respectively, and V, the mixing term, is particularly
important in regions where the diabatic states intersect. We define the
potential functions as follows

3
Va, Vb = V() 4+ ¥ Vas(@ (Ri) + Vasc® (R, Rz, Ra) N
i=1
Ve = Vasc® (Ra, Rz, Ra) (8)

V@ are atomic energies relative to ground states, V,;® (R,) are two-body
terms for the diatomic fragments appearing in the dissociation schemes
(a) and (b) and V,z.® (R,R,R;) are three-body terms. The off-diagonal
term is necessarily 3-body. We have found the following forms for
Vas@ (R) and V,p:® (R,R,R;) to be particularly useful

3
Vas(®@ (R) = —De (1 + X ajp’) exp (—aip) 9)
=1

where D, is a dissociation energy and p = R—R, is a displacement coor-
dinate measured relative to the equilibrium bond length R,.

3
Vasc®@(R,R,R;) = II [1-tanh(yvp/2)] V(1 + ey +
i=1 i

X CikPipk + .. ... ) (10)
£

where p, = R,— R;° are displacement coordinates measured relative to a
suitable reference R°, and y; are adjustable parameters. In (9) and (10),
the coefficients a;, and V,, C;, Cy, ... are determined from the appropriate
.diatomic and triatomic data, respectively.
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It can be seen from (9) and (10) that if any bond distance R,
becomes infinite, all of the V,5.® (R ,R,R;) in (7) and (8) become zero,
as do those two-body terms V,5 (R;) (one for each of Va and V,) that
are parametric on R;. It follows, from (6), (7) and (8), that V. and Vy
will never intersect, provided that all three bonds are finite, but there
can be intersections, corresponding to the crossings of diatomic potentials,
if the third atom is removed to infinity. A close inspection of the dissoci-
ation processes (1) — (4) suggests that this correctly defines the topology

of CO,(X'3,*) and CS,(X'Z.

Whilst it is a straight-forward matter® to determine the diatomic
coefficients a; in (9), the determination of the coefficients V,.c;cy, ...
in (10) requires some clarification. These coefficients!, appropriate to
V., V, and V., were determined from a least-squares fit to a wide range

of ab initio data for the X'A, and B'A, states of H,O, corresponding to
V. and Vy in (6) respectively. This method leads to globally approximate
potentials for both ground (V;) and excited (Vy) states. They were deter-
mined? from spectroscopic data for stationary points on just V,, the ground

X!A, state of O,, making use of a variational procedure® to refine V. to
the experimental vibrational spectrum of the ground state equilibrium
structure. This method leads to a reliable ground state potential (V.)
only. The coefficients cannot be uniquely determined, however, by either
method, since there are only two equations (V, and Vy in (6)) in three
unknowns (V, V, and V.. We will explain how this problem can be
overcome by describing the second of the above methods for CO, and
CS,, our principle aim being to derive ground state potentials which are
particularly accurate in regions of the equilibrium structures.

If data exist for the states V, and/or V, in regions where their
symmetries differ, V. in (6) is identically zero, and V;, Vy can be repre-
sented by the appropriate potentials V,, V, (depending on their respective
dissociation schemes).! Furthermore, if V; and V, are far enough apart
such that V, has only a minute effect on their energies, then their poten-
tials in such regions can again be approximated by V, and V,. As we
have seen, for CO, and CS, there are no regions in which the symmetry
of V, differs from that of Vy. However, at the equilibrium configuration,

the first excited singlet state lies above the ;i 3, ground state by some
9.7 eV for both CO, and CS," This is a sufficient energy difference to be
able to neglect the effect of V, initially.

If we compare the atomic and diatomic contributions to the energy

in (5) at the equilibrium X'3,* geometry of CO, for schemes (a) and (b),
those for (a) come closest to the true energy by some 9 eV. This might
have been anticipated from valence considerations, and so we can obtain
approximate potentials V, for CO, (and CS,) by fitting the parameters
in (10) to the ground state equilibrium properties. This technique is now
standard to our method, and is explained fully elsewhere.

The equilibrium ?ilAl state of O, was found? to correspond to one
potential (V,, say) and the metastable D, structure to V,, both minima
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lying on the overall adiabatic ground state by virtue of an avoided inter-
section. Initial potentials V, and V, could therefore be obtained from data
for these two minima. In CO, and CS,, we have already seen that there
are no surface intersections in interaction regions of the potential, and
so we must investigate other means of defining V,. The first excited state
has 'B, (1A,) symmetry,” and will, of course, dissociate to the same
asymptotes as the ground state (the C «,, CO + O asymptote in 5 (a) has
1A, I, '3* components, and the C,, O, + C asymptote in 5 (b) has A,
'A,, 'B, components). However, in C, summetry, this will be the closest
state that interacts with the ground state (*A’) and so we have chosen

this A B, state to initially define V,, by fitting to the geometry and
energy of its equilibrium structure.’® A least-squares procedure is now

used to refine V, and re-refine V, and V, such that the X !S,* and A 'B,
data are reproduced by V, and Vy, respectively in (6)..?

One unfortunate aspect of fitting two-valued potentials is that, of
necessity all dissociation channels (a) and (b) must be included, and both
V, and V, must be assigned values, even if this means using data of
doubtful validity. However, in such circumstances, the excited state will
never be intended to be reliable and so, in principle, any data can be

used. Our choice of the A !B, state to define V, does however mean that
the excited state Vy will have some regions of validity, notably around
the excited state equilibrium structure, the exceptions being the dissoci-
ation products. On the other hand, the ground state will be valid over all
space by virtue of channels (a) and (b) for the dissociation limits, the
equilibrium ground state data which defines V,, for short R, and the correct
symmetry of the cross-term V..

REFINEMENT OF THE CO, AND CS, POTENTIALS

The spectroscopic data for the equilibrium configurations of CO,
(;C '$.h) and CS, (3'( z,*) were taken from references [11] and [12],

respectively. The data for the excited A !B, states were taken from refe-
rence [7]. They are summarized in Table I. The atomic energies of O(*D)
and S (‘D) were taken from reference [5], and the diatomic potentials
for all of the dissociation products in (5) and (6) were constructed® from
data taken from reference [6]. These potentials are collected in Table II.

Inserting the initial potentials V, and V, into (6) and choosing some
arbitary values for the parameters in V., (8), (10) (our starting values
were taken to be v; =247, R°=1A, V,=05 eV, ¢, €4 ...=0) the
parameters in the three-body terms of V, and V, were re-refined by a
non-linear least-squares procedure such that V, and V, reproduced all

of the data in Table I for the §12g+ and X‘Bz states, respectively. This
process utilizes only a few select coefficients V,, ¢;, ¢4, ... (10) for Va
and V.10
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TABLE I
Ezxperimental Data for COz and CS:
Xiyg*
CO:[11] CS:[12]
re(CX)/A 1.160 1.553
JAN
2e(XCX) /deg 180.0 180.0
De/eV 16.856 12.070
frr/aJA2 16.032 7.666
fao/ad 0.783 0.569
frr/aJA2 1.250 0.848
A'B;
CO:[7] CS:[7]1
re(CX)/A 1.246 1.660
AN
ae(XCX)/deg 122.0 153.0
De/eV 11.153 6.373
TABLE II

One- and Two-Body Terms in Expression (7) for the Potential Function of CO:
and CS: Corresponding to the Dissociation Channels (5). The Two-Body Terms
are Defined by Equation (9) of the Text.

V) /ev D./eV ai/A-1 az/A-2 as/A-3 Re/A
0o('D) 1.985
CO(XIz+) 11.226 3.897 2.305 1.898 1.128
0:(B3%y™) 0.998 3.802 0.000 0.000 1.604
co(a’rn 5.162 5.671 8.654 6.359 1.206
02(X3%s) 5.213 6.080 11.477 11.003 1.208
S('D) 1.146
CS(X!z+) 7.435 3.445 2.370 1.238 1.535
S2(B3Xy) 1.613 2.579 0.000 0.000 2.170
CS(a1D) 3.991 4.790 6.293 4.111 1.568
S2(X3%¢7) 4414 3.954 4.312 2.332 1.889

A variational procedure® was then used to calculate the J=0 vibratio-

nal spectrum of the }?12; states and a further least-squares procedure
was carried out in order to minimise the errors between calculated and
observed frequencies for CO,”® and CS,'* In this refinement, all of the
parameters (R, Y;, V., €;, Cy, ...) in V, and all of the parameters in
V., with the exception of those coefficients V,, c;, ¢y, required to fit the

)?12,; data were allowed to relax, the polynomials being extended to
quartic in both cases. It was not felt necessary to relax any further

parameters in V, since tkis approximates almost exclusively to the A'B,
state. For every iteration of the variables, the same coefficients in V,
and V, were again re-refined to fit the data in Table I. (A full account
of this technique is given in reference [2]).
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TABLE III

Three-Body Terms, Defined by Equation (10), for the Potential Functions of CO:

and CS:. The Adiabatic Ground State Potentials are Obtained from the Para-

meters in Tables II and III by Substituting the Expressions for Vi, Vv and V.
in (7) and (8) into Vv in Equation (6).

COq CS:2
Va Vb Vc Va Vb Vc
*Cy = Ca/A™! 2.617 5.246 —0.623 2.153 —0.655 0.107
Cs —2.019 7.1752 —0.272 —1.590 0.384 0.031
Cu = Ca/A2 0.627 — —1.539 1.246 — 0.235
Cs3 0.223 — —0.278 0.311 13.042 0.180
Ciz 0.837 — 0.026 3.500 — 0.192
Ci3 = Caz 0.076 — —0.496 0.215 — 0.209
Ci1 = Caze/A3 —0.002 — —0.704 3.212 — 0.363
Ci33 —0.069 — —0.676 —0.900 — 0.339
Cuz = Ciz2 0.076 — —1.723 —0.863 — 0.365
Ci33 = Cas3 0.151 — —0.795 0.658 — 0.336
Cuz = Caz3 0.128 — —0.342 2.634 — 0.197
Cizs 0.076 — —0.838 —0.467 — 0.319
C1n1 = Cagze/A™* —0.038 — —0.822 —0.738 - 0.054
C'3333 0.048 — —0.997 —0.452 — 0.181
C1z = Cize2 0.061 — —0.902 0.061 — 0.187
Ciz33 = Ca3s3 0.110 — —0.523 —0.737 — 0.346
C1113 = Cazzs 0.079 — —0.341 —0.181 — 0.150
Clize 0.058 — —0.656 0.315 — 0.174
Cuss = Cazs3 0.210 — —0.318 —0.528 — 0.170
C1123 = C1223 0.037 — —0.809 0.427 —_ 0.178
Ci233 —0.004 — —0.981 0.395 — 0.282
Vo/eV 4.361 —0.771 —0.261 2.143 1.742 0.640
Y1 = vo/A? 2.357 2.000 2271 2.0 2.0 1.771
Y3 0.959 12.000 1.988 2.0 2.0 2.054
R = R;%/A 1.117 1.246 1.527 1.553 1.660 1.293
R0 2.226 2.180 3.053 3.105 3.228 2.586

* Bond definitions: R1 =R(CX), R; =R(CX’), R; =R(XX")

Finally, the input harmonic force constants in Table I were adjusted
to give added flexibility to the fitting procedure, and the resulting three-
-body terms so obtained are given in Table III. In Table IV, we present
a comparison between the observed and calculated J=0 vibrational spectra
for several isotopes of CO, and CS,. The mean error is 3.7 em~ for the
CO, spectra and 8.8 cm™ for CS,. This suggests that the potential functions
given in Tables II and III are accurate representations of the complete
three-dimensional ground state surfaces, especially at the equilibrium
configurations and at the dissociation limits. They should therefore be
particularly useful in dynamical studies.
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TABLE IV
Comparison Between Experimental and Calculated J =0 Vibrational Spectra of

COx(X'Te") and CS2(X'Te").

COz(X'Ze")

160120160 160120160 160130160
Assign- Ezxpt. Assign- Ezxpt. Assign- Ezxpt.
ment €O [13] ment  CHC (13 ment  CHC (131
(100) 1x 1286 1285 (301)1v 6075 6076 (100) 1 1268 1266
(100)x 1389 1388 (301) 1 6217 6228 (100)1 1369 1370
(200) 11 2550 2548 (3011 6339 6348 (001) 29282 92283
(200) 1x 2667 2671 (301)1 6505 6503 (1011 3528 35928
(200)1 2800 2797 (003) 6970 6973 (101): 3628 3633
(300)1v 3795 3792 (401)v 7284 7284 (201)m 4750 4748
(300)mr 3935 3942 (401)1v 7455 7460 (201) 1t 4880 4887
(300)1x 4095 4064 (401)mx 7585 7594 (201): 4987 4991
(300)1 4229 4224 (401) 1 7729 734 (30D)1v 5954 5952
(002) 4671 4673 (401)1 7924 7921 (301)mx 6113 6120
(400)v 5024 5022¢ (103) 1 8192 8193 (301) 1 6230 6242
(400) 1v 5188 5197 (103)1 8292 8294 (301)1 6361 6364
(400)mx 5315 5329¢ (003) =~ 6777 6780
(400) 11 5470 5476 (401)v 7145 7143¢
(400):x 5672 5668¢ 180OL2C180 . (40D)1v 7329 7333¢
(102) 1 5912 5915 Assign- Cale Ezxpt. (401)m 7473 7482
(102)1 6013 6016 ment (G [131 (401) 1 7592 7600
(202) 11 7132 7134 (100) 1 1229 1230 (401): 7748 7748¢
(202) 11 7251 7260¢ (100)1 1350 1347 (103) 1 7982 7981
(202)1 7377 377 (001) 2312 2314 (103): 8084 8089
(004) 9248 9247 (101 3521 3575

(101)1 3639 3638
(001) 2347 2349 (201)m 4716 4721
(10D 3611 3612 (20 4828 4833
(101): 3713 3715 (201)1 4993 4989
(201)mr 4852 4854 (003) 6866 6870
(201) 11 4970 4978
(201)1 5100 5100
CSz (X 'Zg*)
328120328 328130328
Assignment Calc. Ezxpt. [14] Assignment Calc. Expt. [14]
(100) 660 658 (100) 659 657
(020) 811 802 (020) 786 T76°
(200) 1316 1314
(120) 1459 1447¢ (001) 1471 1485
(040) 1642 1620¢ (101) 2123 2135
(021) 2245 2250
(001) 1521 1535 (201) 27171 2782
(101) 2173 2185 (121) 2884 28817
(021) 2320 2325 (041) 3038 3031¢
(201) 2822 2833 (301) 3415 3425
(121) 2960 2962 (221) 3521 3521¢
(041) 3138 3130 (141) 3669 3659¢
(301) 3467 3478 (061) 3846 3825¢
(221) 3597 3597
(141) 3769 3757
(061) 3972 3948¢
(003) 4559 4566
(103) 5195 5201
(023) 5332 5331¢

¢ caleulated by the authors in references [13] and [14].
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CONCLUDING REMARKS

In this paper, we have attempted to outline in some detail the step
by step analysis of two-valued triatomic potential surfaces; how a two-
-valued surface can be recognised and the procedures required in order
to construct its potential energy function. We have also highlighted the
main areas which are involved in refining the potential to the observed
vibrational spectrum of the molecule.

In this and other work%® we have found that much more accurate
vibrational spectra can be obtained by directly iterating to the observed
spectrum variationally, rather than by more standard perturbation techni-
ques.'® The failure of the perturbation method lies in the truncation both
of the data and of the potential,? whereas in the method described here,
both are infinite expansions. Even at the harmonic level, small differences
in the force constants are to be found. This is illustrated in Table V, where
we give the harmonic force constants predicted for CO, and CS,.

TABLE V

Comparison Between Experimental and Calculated Harmonic Force Constants
for COs (X 'Zg*) and CS: (X '3,*)

CO; (X 13" cs: (X 13,
calc. expt. [11] calc. expt. [121
frr/aJ A2 15.995 16.032 7.781 7.666
foa/ad 0.791 0.783 0.577 0.569
fre/ad A% 1.252 1.250 0.790 0.848

Finally, the use of a variational procedure to calculate the vibrational
spectra produces a means of investigating the extent to which vibrational
states interact. CO, is the classic example of such interactions, known
as Fermi-resonance in the vibrational spectra. For CO,(X'S.*) the two
normal mode vibrations (10°0) and (02°0) are degenerate, as are all
multiples thereof. This results in heavy mixing which make it impossible
to assign the spectrum along conventional normal mode lines (see [3]
and references therein). In Table VI, we give the contributions to the
variational (J=0) vibrational wavefunctions for *C'Q,, calculated from
our potential. In order to investigate the interactions between the vibra-
tional motions, it is most appropriate to use a method of calculation that
employs normal coordinate basis functions,® since these are diagonal (un-
mixed) at the harmonic level. Our analysis appears to be the first time
that such an investigation of the CO, spectrum has been carried out
using the complete vibrational hamiltonian, coupled with a full three-
-dimensional potential.
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TABLE VI

Coefficients of Basis Functions, Corresponding to the Fermi-Resonant Normal
Coordinate Eigenstates, in the Normalised J=0 Vibrational Wavefunctions of

12C160Q, (’I\{' 1y.*). Coefficients are Underlined When There are Larger Single
Contributions Elsewhere in the Wavefunction.

ggggfn' Coefficient of Normal ggﬁ%n' Coefficient of Nor‘ma*l
Assignment Mode basis function® Assignment Mode basis function
*%(100) (020)** (001) **
*%(100);1  -0.75 -0.64 **(001)  -0.98
(100) 1z -0.75 -0.64 (101) (021)
(200) (120) (040) (101)1 -0.60 0.75
(200)1 -0.30 0.66 -0.68 (101) 1 0.70 0.65
(200) 11 -0.76 0.20 0.56 = (201) (121) (041)
(20001 -0.49 -0.72 -0.46 (201)1 -0.26 0.63 -0.67
(300) (220) (140) (060) (201) it -0.66 0.17 0.56
(300)1 0.11 -0.40 0.66 -0.60 (201)tr -0.42 -0.70 -0.48
(300) 1 0.48 -0.60 0.04 0.56 (301) (221) (141) (061)
(300)m 069 0.24 -0.40 -0.43 (301): 0.09 -0.36 0.65 -0.59
(300)1v 0.30 0.62 0.62 0.33 (301) 11 0.38 -0.53 0.01 0.56
(002) (301) 1 053 0.25 -0.38 -0.45
(002) 0.94 (301)1v -0.73 -0.58 -0.63 -0.34
(400) (320) (240) (160) (080) (003)
(400): 0.04 020 047 0.64 053 (003) -0.89
(400) 1 022 -0.55 0.49 0.08 -0.56 (401) (321) (241) (161) (081)
(400) 1z 0.57 -0.33 -0.33 0.28 0.42 (401)1 0.03 -0.17 0.44 -0.64 053
(400)rv  -0.51 -0.49 0.09 045 0.34 (401) 11 -0.16 046 -0.44 -0.11 0.56
(400) v 0.17 0.48 0.63 0.48 0.22 (401) 1 0.40 -0.21 -0.35 0.24 0.43
(102) (022) (40D -0.32 -047 0.03 047 0.37
(102)1 -0.52 0.71 (401)v 011 042 063 051 0.23
(102) 11 -0.61 -0.64 (103) (023)
(202) (122) (042) (103)1 -0.44 0.65
(202)1 -0.20 0.57 -0.63 (103) 11 -0.49 -0.64

(202) 0.51 -0.12 -0.56
(202) 1 -0.32 -0.65 -0.49
(004)

(004) -0.83

*u; = symmetric stretch, vz linear angle bend, vs = asymetric stretch
**1 =0 is assumed in the assignments: (nin:n3) =(ninz’ns).

It is obviously impossible to assign the CO, spectrum according to
its normal modes, and in this respect, our potential function appears valid.
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SAZETAK

Analiticke dvovrijednosne potencijalne energijske funkcije
za povrSine temeljnog stanja od 002(§123+) i CS(X'Zg%)

S. Carter i J. N. Murrell

Potencijalni model za dvovrijednosne troatomske povr$ine opisan je s obzirom

na potencijale temeljnog stanja za COZ(§12g+) i CSz(ilz;r). Usporedeni su
zapazeni vibracijski spektri J=0 s onima koji su izra¢unani iz izvedenih poten-
cijala s pomocu varijacijske metode. Po prvi puta je utvrdena jaka Fermijeva
resonancija u vibracijskim stanjima (10°0 i 02°0) upotrebljavajué¢i potpuni tro- -
dimenzijski potencijal i vibracijski hamiltonian.





