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A potential model for two-valued triatomic surfaces is 
reviewed with reference to the ground state potentials O·f 

:::02(X11;g+) and CS2(X11:g+) . A comparison is made between the 
observed J = O vibrational spectra and those calculated from 
the derived potentia1ls by a variational method. For C02 the 
strong Fermi-resonance in the (10"0) and (02°0) vibrational sta­
tes is confirmed for the first time using a full three-dimensional 
potential and a complete vibrational hamiltonian. 

INTRODUCTION 

Ln a recent pUlbUcation,1 a method was outlined for the constrwction 
of two-valued potential energy functions which represent the adiabatic 
ground states of pOO.yatomic molecules whose surfaces intersect and/ or 
avoid i!Il some regions of coord.inate space. In a subsequent publication,2 

this method was enhanced by the inclusion of a variational procedure3 

which ena1b1'ed the result1ng functions to be refined to the experimental 
vibrational spectra of the molecule. In this paper, we use these techniques 

,.., 
to refine ground st·ate potential functions for 002.(X11:/) and CS2 (X11:/ ). 

A ground state polyatomic surface can be constdered to be two (or 
multi)-valued if there is a crossi!Ilig of the potential surfaces of two eigen­
states in some configurations but an avoided crossing in others. For exam­
ple, the ground stat·e of linear HOH is 11:+ for short OH bond d'istam.ces 
but 1IJ towards the linear H+OH asymptote. On bending, the 1IJ sur·face 
splits into 1A' and 1A", and the 1A' component shows an avoided cross·ing 
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with the 1A' surlface arising from 1:E+. There is a conical irnte~section of 
these 1A' surfaces in linear configurations.4 There is also a crossing at 
infinity on the singlet HP surface. At the O+H2 limit spin conservation 
requires either the ox~gen to be in an excited state, 0(1D) or the H2 to 

be in an excited state, H2 (a3~u+). The energy of the latter depends on the 
H- H dis,tance so the asymptotic limtt of the giround state surface pro­
duces either a ground state, 0(3P) or excilted state, 0(1D). 

DISSOCIATION SCHEMES OF C02 AND CS2 

The topoJog'ies of the 002 (X1:E/) and CS2 (X1Lg+) potential surfaces are 
very similar, as are those of their riespective dissociation fragments. We 
will therefore investtgate the nature of these surfaces from an analys;is 

of the adiabatic dissociaUon processes for C02 (X1:Eg+), and consider first 
the dissociation of linear OCO into 0 +CO along a C oo v. channel. For 
(r(CO) ,_, r., the lowest-energy fragment's that maintain 1:E+ symmetry 
arise for the pl'locess 

Coo 
OCO(X1:Eg+) ____:. 0(1D) + CO(X1:E+)-+ 0(1D) + 0( 3.P) + 0(3P) (1) 

The 0(1D) - 0(3P) separation is 1.958 eV,5 but the lowest-·energy triplet 
state of CO(a3n) is 1some 6 eV higher ·in energy6 than CO(X1:E+) at r. 
hence there are no lower energy channels that can give 0(3P) for the 
initial dissociation. 

If we now consider the adiabatic d'issociation of OCO into C +02 along 
a C2v channel, the lowest enel'lgy fragments that maintain 1A1 symetry7 

arise for the process 

(2) 

At these are all ground state fragments there are no lower energy 
channels. A comparison of (1) and (2) shows that the ground state surface 

,_, 

of 002 (X1:E/) must be two-valued because there are two sets of atomic 
states that can be reached by adiabatic processes. 

The minimum energy C oov dissociation process which results in the 
formation of the atomic fragments (2) along a 1:E+ surface is6 

(3) 

Similarly, the minimum enrergy C2v dissociation process which results irn 
the formation of the atomic fragments (1) along a 1A1 surface is8 

OC0<1A1)~ C(3P) + Oz(:B3:~:u-)-+ 0(1D) + 0<3P) + 0(3P) (4) 

The asymptotic two-valued nature of C02 is now completely specified, 
arnd we can writ·e the complete sets of dissociation channels for 002 (and 
likewise for 082 ) as follows 
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(a) 

(5) 

(b) 

These dissociation channels are in important first step m deriving a 
two-valued potential function for polyatomic molecui.es.1 Iln subsequent 
sections we will frequently ma..ke re.ference to these dissociat'ion channels 
as (a) or {b), whereby arguments relating to both C02 and CS2 will be 
implied. 

CONSTRUCTION OF THE POTENTIAL ENERGY FUNCTIONS FOR C02 AND CS2 

The potentiad fUIIlction of a 2-valued surface is girven by eigenvalues 
of a 2 x 2 pot·ential energy matrix 

(6) 

wh·ere Va and Vb are diabaitlc potent'ials which dissociate according to 
schemes (a) and (b), respectively, and Ve the mixing term, is particula•rly 
important in regions where the diabatic states intersect. We define the 
potential functions as follows 

3 
Va, Vb = V(l) + k VAB(2) (R1) + VABc(3) CR1, Rz, R3) 

1= 1 
(7) 

(8) 

V< 1l are atomi>C energies relative to ground states, VAB(2l(RJ are two-body 
terms for the diatomic fragments appearing in the dissociation schemes 
(a) and {b) and V Asc<3> (R1,R2,R3) are three-body terms. The off-diagonal 
term is necessarily 3-body. We have found the fol1owing forms for 
V AB<2J (R) and V Asc<3l (R1,R2,R3) to be particularly usefUil 

3 
VAB(2) (R) =-De (1 + k aJpl) eX'p <-a1pl 

j = l 
(9) 

where D. is a dissociation energy and p = R-R. is a displacement coor­
dinate measured relative to the equilibrium bond length R •. 

3 
VAac<3l,(R1,R2,R3) = II [l-tanh(y1p/2)] V0 (l + ~CJPJ + 

1= 1 j 

k CikPJPk + · · · · · ) (10) 
J~k 

where p1 = R 1 - Ri0 are displacement coordinates measured relative to a 
suitable reference Ri0

, and Yi are adjustable parameters. In (9) and (10) , 
the coeffidents aJ, and V0 , Ci, CJk• . . . are determined from the appropriate 

. d'ta tomic and triatomic data, respect! vely. 
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It can be seen from (9) an1d (10) ithat if any bond distance Ri 
becomes infinite, all of the V ABc<3> (R1,R2,R3 ) in (7) and (8) become zero, 
as do those two-body terms VAB< 2>(R;) (one for each of Va and Vb) that 
are pariametric on R 1• It follows, from (6), (7) and (8), that VL and Vu 
willl never intersect, provided thalt al:l three bonds are finite, but there 
can be intersections, correspond:ing to t·he crossings of diatomic potentials, 
if the third atom is removed to infinity. A close inspecition of the dissoci­
ation process·es (1) - (4) suggests that this correctly defines the topology 

of c0Jx1~/) and CS2(X1l:/>. 
Whilst it is a straight-forward matter9 to determine the diatomic 

coefficients al in (9), the determination Of the coefficients V0 ,Ci,Cik• ••• 

in (10) requires some clar'1fication. These coefficients1, appropriate to 
Va, Vb and Ve, were determ:i.ned from a lea;st-squares fit :to a wide range 

,..., ,..., 
of a:b initio data for the X 1A1 and B 1A1 states of H20, corresponding to 
VL and Vu in (6) respectively. This method leads to globally approxiimate 
potentials for boith ground (VL) and excited (Vu) states. They were deter­
mined2 from spectroscopic data for sta·tionary point•s on just VL, the ground 
,..., 
X 1A1 state of 0 3, making use oif a var!aitional procedure3 to refine VL to 
the experimental vibrational spectrum of the ground state equiltbrium 
stmcture. This method leads to a reliaible ground stat•e potentia'l (VL) 
only. The coefficients cannot be uniquely determined, however, by either 
method, since there are only two equations (VL and Vu in (6)) in three 
unknowns (Va, Vb and Ve). We wm explain how :this problem can be 
overcome by describing the second of the above methods for C02 and 
CS2 , our principle aim being to derive ground state potentia'ls which are 
particularly accurate in regions of the equiUbrium structures. 

If data exist for the states VL and/or Vu in reg:ions where their 
symmetries dif'fer, Ve in (6) is idenitically zero, and VL, Vu can be repre­
sented by the appropriate potentials Va, Vb (depending on their respective 
dissoc'iation schemes).1 Furthermore, if VL a:nd Vu are far enough apart 
such that Ve has only a mtnute effect on their energies, then their poten­
tials in such regions can again be approximated by Va and Vb. As we 
have seen, for C02 and CS2 there are no regions in which the symmetry 
of VL differs from that of Vu. However, at the equilibrium configuration, 

,..., 
the first excited singlet state lies above the X 1~g + ground state by some 
5.7 eV for both C02 and GS2•

7 This is a su1ffiicieint energy dLfference to be 
ruble to neglect the effect of Ve initially. · 

If we compare the atomLc and diatomic contributions to .the energy 
,..., 

in (5) at the equHi'brium X1~/ geometry of co2 for schemes (a) and (lb), 
those for (a) come closest to the true energy by some 9 eV. This might 
have been anit'icipiated from valence C·Onsiderations, and so we can obtain 
approxima;te potenrtials Va for C02 (and CS2) by ntting the parameters 
in (10) to the ground state equilibrium properties. This technique is n-OIW 
standard to our method, and is e:x:pla:ined fully elsewhere.10 

The equi1ibrium X 1A1 state of 0 3 was fouind2 to correspond to one 
potential (Va, &ay) and the metastable D3h structure to Vb, both minima 
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lying on •the overall adia1ba.ti:c ground state by virtue of an avoided inter­
section. Initial potentials Va and Vb could therefore be obtained f.rom daita 
for these two minima. In C02 a.ind CS2, we have already seen that there 
are no surface intersectio.nS in interiaotion reg,iO!IlS of the potential, and 
so we must lnvestig•ate other means of defining Vb. The first excited state 
has 1B2 (1D.u) symmetry,7 and will, of oourse, d:i1ssociate .to the same 
asymptotes as the ground state (the C <Xl,v CO+ 0 asymptote in 5 (a) h·ais 
1/::,. , 1II, 1~ + components, and the C2v 0 2 + C asymptote in 5 (b) has 1A1, 
1A2, 

1B2 C'Omponents). However, lirl c. summetry, this will be the closest 
state that interacts Wilth the ground state (1A') and so we ha:ve chosel!l 

,....., 
this A 1B2 state to initlia'lly define Vb, by fitting to the geometry and 
energy of its equiUbrium structure.10 A least-squares procedure is now 

,....., ,....., 
used to refine Ve and re-ref'ine Va and Vb such that the X 1~g+ and A 1B2 

data are reproduced by VL alil.d Vu, respectively in (6).1
•
2 

One unfortunate aspect of fitt'ing two-val'Ued potentials is that, of 
necessilty all. dissociation channels (a) and {b) must be included; and both 
Va and Vb mus·t be assigned values, even if this means using data of 
doubtful validity. However, in such circumstances, the excited state will 
never be intended to be reliable and so, in principle, any data can be 

,....., 
used. Our choice of the A 1B2 state to def1ine Vb does however mean that 
the excited state Vu will have some regions of validity, notably aroun'<i 
the excited state eqwiliibrium structure, the excepltions being the dissoci­
ation .products. On the other hand, the ground state will be valid over an 
space by vi:rltue of channels (a) and (b) for the dissoc1iation limits, the 
equilibrium ground state data which defines VL for short R, and the correct 
symmetry of the cross-term V c· 

REFINEMENT OF THE C02 AND CS2 POTENTIALS 

The sipectro.scopic data for the equilibrium confi:gurations of C02 ,....., 
(X 1~/) an'd CS2 (X 11:/) were itak:el!l from references [11] and [12], 

,....., 
respectively. The data for the exctted A 1B2 states were taken from refe­
rence [7]. They am summarized in 'Tu.ble I. The atomic energies of 0(1D) 
and S (1D) were takel!l from reference [5], and the diatomic potentials 
for all of the dissociation prodUClts in (5) and (6) were constructed9 from 
data taken from reference [6]. These potentials are conected in Ta1bie II. 

Inserting the initial potentials Va and Vb into (6) alil.d choos'ing some 
arbitary values for the ;parameters in Ve (8), (10) (OUT starting values 
were taken to 1be Yi = 2A-1

, Ri0 = lA, V0 = 0.5 eV, . cJ, cik• ... = 0) the 
parameters in the three-body terms of Va alil.d Vb were re-refined by a 
non-linear least-squares procedure such that VL and Vu reproduced au 

,....., 
of the data Jm Table I for the X 1~g + and A 1B2 states, respectively. This 
process utilizes only a few select coeM'icients V0 , cJ, cJk• ... (10) .for Va 
and vb.

10 
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TABLE I 

Experimental Data for C02 and CS2 

x1:Eg+ 

C02[1l] CS2[12J 

Te(CX)/A 1.160 1.553 
/\ 

ae(XCX) /deg 180.0 180.0 
De/eV 16.856 12.070 
frr/aJA-2 16.032 7.666 
la o./aJ 0.783 0.569 
/rr•/aJA-2 1.250 0.848 

A1B2 

C02[7] CS2[7] 

r.'(CX)/A 1.246 1.660 
/\ 

153.0 a.(XCX)/deg 122.0 
D./eV 11.153 6.373 

TABLE II 

One- and Two-Body Terms in Expression (7 J for the Potential Function of C02 
and CS2 Corresponding to the Dissociation Channels (5). The Two-Body Terms 

Off'e Defined by Equation (9) of the Text. 

0(1D) 
OQ(X1:E+) 
02<B3:Eu-) 
CO(a3fl) 
02(X3l;g-) 

S(1D) 
CS(X1:E+) 
S2<B3:Eu-) 
CS(a3fl) 
S2(X3l;g-) 

V(1l/eV 

1.985 

L146 

D./e.V 

11.226 
0.998 
5.162 
5.213 

7.435 
1.613 
3.991 
4.414 

ai1A-1 

3.897 
3.802 
5.671 
6.080 

3.445 
2.579 
4.790 
3.954 

a21A-2 a3/A-3 R.!A 

2.305 1.89,8 1.128 
0.000 0.000 1.604 
8.654 6.359 1.206 

11.477 11.003 1.208 

2.370 1.238 1.535 
0.000 0.000 2.170 
6.293 4.111 1.568 
4.312 2.332 1.889 

A v:ar'i.a·tional procedure3 was then us·ed to calculate the J=O vLbratio-
,..., 

nal spectrum of the X 1l":8 + staltes and a further least-squares procedlll:'e 
was carried out in order to minimise the errors between ca:lculated. and 
observed frequencies for 00/3 and CS2•

14 In this refinement, all of the 
pal'ametern (R;°, y1, V0 , ci, cJk• ... ) in V0 and all of the parameiters in 
Va, with the except1ion o! tho!Se coe!f.icients V0 , ci, cJk• requtred to fit the 
,..., 
X 1l°:g + data were allorwed to relax, the polynomials beilllg exitended to 
quartic in both cases. It was not felt necessary to relax any further 

parameters in Vb since tliis approxtmaites almost exclusively to the A 1B2 

state. For every iteration of the variables, the same coefficients in Va 
and Vb were again re-refined to fit the data in Table I. (A fuill account 
of this technique is given in reference [2]). 
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TABLE III 

Three-Body Terms, Defined by Equation (10), for the Potential Functions of C02 
and CS2. The Adiabatic Ground State Potentials are Obtained from the Para-
meters in Tables II and III by Substituting the Expressions for Va, Vb and Ve 

in (7) and (8) into VL in Equation (6) . 

C02 CS2 

Va Vb Ve v. vb Ve 

+c1 = C2/A-1 2.617 5.246 -0.623 2.753 -0.655 0.107 
C3 -2.019 7.752 -0.272 -1.590 0.384 0.031 

Cu= C22/A-2 0.627 -1.539 1.246 0.235 
Caa 0.223 -0.278 0.311 13.042 0.180 
C12 0.837 0.026 3.500 o.rn2 
C1a = C23 0.076 -0.496 0 .. 215 0.209 

Cm = C222/ A-3 -0.002 -0.704 3.212 0.363 
C333 -0.069 -0.676 -0.900 0.339 
C112 = C122 0.076 -1.723 ~0.863 0.3,65 
C1aa = C23a 0.151 -0.795 0.658 0.336 
C113 = C22a 0.128 -0.342 2.634 0.197 
C12a 0.076 -0.'838 -0.467 0.319 

Cun = C2222/ A-4 -0.038 -0.822 -0.738 0.054 
Ca333 0.048 -0.997 -0.452 0.181 
C1112 = C1222 0.061 -0.902 0.061 0.187 
C1333 = C2aa3 0.110 -0.523 -0.737 0.346 
C111a = C222a 0.079 -0.341 -0.181 0.150 
C1122 0.058 -0.656 0.315 0.174 
Cuaa = C22a3 0.210 -0.318 -0.528 0.170 
C112a = C122a 0.037 -0.809 0.427 0.178 
C1233 -0.004 -0.9'81 0.395 0.282 

Vo/eV 4.361 -0.771 -0.26'1 2.143 1.742 0.640 
Y1 = y2/A-1 2.357 2.000 2.271 2.0 2.0 1.771 
Ya 0.959 12.000 1.988 2.0 2.0 2.054 
R1° = R2°/ A 1.117 1.246 1.527 1.553 1.660 1.293 
R a0 2.226 2.180 3.053 3.105 3.228 2.586 

+ Bo.nd defin~ti<ons: R1 =R(CX), R2 :=R(CX') , R3 :=R(XX') 

Finally, the i!!l.put harmonic f.orce constants in Taibl1e I were adjust,ed 
to give added flexLbrility ito the fitting procedure, and the resulting three­
-body terms so obta1iined are given in Table III. In Table IV, we present 
a comparison between the observed and calculated J=O vtbrational spectra 
for several isotopes aif C02 and GS2• The mean error is 3.7 cm-1 for the 
C02 specitra and 8.8 cm-1 for CS2• This suggests that the potential functions 
given in Tables II and III are accurate representations of the complete 
three-dimeinsiona!l. ground state sur!faces, especially at the equilibr.ium 
configurations and at the d'issociation limits. They should therefore be 
particularly useful 1n dynamical studies. 
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TABLE IV 

CompariSon Between Experimental and Calculated J = 0 Vibrational Spectra of 
~ 

C02(X1:Eg+) and CS2(X1:Eg+). 

CO:i(X1:Eg+) 

i50uc1so i601.zc1so 1so13c1so 

Assign- Cale. 
Expt. Assign- Cale. 

Expt. Assign- Cale. Expt. 
ment [13] ment [13] ment [13] 

(100) II 1286 128<5 (30l)rv 6075 6076 (100)r1 1268 1266 
(100)r 1389 1388 (301)m 6217 6228 (100)r 1369 1370 
(200hn 2550 2548 (301h1 6339 6348 (001) 2282 2283 
(200)n 2667 2671 (301)r 6505 6503 (10lh1 3528 3528 
(200)r 2800 2797 (003) 6970 6973 (101)1 362·8 3633 
(300)rv 3795 3792 (401)v 7284 7284 (201) III 4750 4748 
(300)m 3935 3942 (401)rv 7455 7460 (201)n 4880 4887 
(300)u 4095 4064 (401)m 7585 7594 (20l)r 4987 4991 
(300)r 4229 4224 (40Dn 7729 7734 (301)rv 5954 5952 
(002) 4671 4673 (401)r 7924 7921 (301)m 6113 6120 
(400)v 5024 5022° (103h1 8192 S.19·3 (301)n 6230 6242 
(400)rv 5188 5197 (103)r 8292 8294 (30lh 6361 6364 
(400)m 5315 5329° (003) 6777 6780 
(400)n 5470 5476 (401)v 7145 7tl43C 
(400)r 5672 5668° 18Q12C18Q ( 401hv 7329 7333° 
(102)u 5912 5915 Assign- Cale. Expt. (401)m 7473 7482 
(102)r 6013 6016 ment [13] (401)n 7592 7600 
(202)m 7132 7134 (lOOh1 1229 1230 ( 401 )r 7748 7748° 
(202)n 7251 7260C (100)r 1350 1347 (103)n 7982 7981 
(202)r 7377 7377 (001) 2312 2314 (103)r 8084 8089 
(004) 9248 9247 (101)u 3521 3575 

(101)1 3639 3638 
(001) 2347 2349 (201)m 4716 4721 
(101)u 3611 3612 (201)n 4828 4833 
(101)r 3713 3715 (201)r 4993 4989 
(201)m 4852 4854 (003) 6866 6870 
(20lh1 4970 4978 
(201)r 5100 5100 ,..., 

CS2 (X 1:Eg+) 
3231zc·32S 32s13c323 

Assignment Cale. Expt. [14] Assignment Cale. Expt. [14] 

(100) 660 658 (100) 659 657 
(020) 811 802 (020) 786 776C 
(200) 1316 1314 
(120) 1459 1447° (001) 1471 1485 
(040) 1642 1620C (1(}1) 2123 2135 

(021) 2245 2250 
(001) 1521 1535 (201) 2771 2782 
(101) 2173 2185 (121) 2884 2887 
(021) 2320 2325 (041) 3038 3031° 
(201) 2822 2833 (301) 3415 3425 
(121) 2960 2962 (221) 352·1 3521" 
(041) 3138 3130 (141) 3669 3.659° 
(301) 3467 3478 (061) 3846 3825° 
(221) 3597 3597 
(141) 3769 3757 
(061) 3972 3948° 
(003) 4559 4566 
(103) 5195 5201 
(023) 5332 533.lc 
c caloulated by the authors in Te:fe!rences [13] and [14]. 
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CONCLUDING REMARKS 

In this paper, we have attempted to outline in some detail the step 
by step analysis of two-valued triatomic potential surfaces; how a two­
-valued surfaioe can be reeognis·ed and the procedures required in order 
to construct its potential energy function. We have also highliigihted the 
main areas which are involved in refi:ning the potential to the observed 
vibrational &pect·ru.m of the molecule. 

In this and other work2
•
15 we have found that much more accurate 

vibrational speDtra can be obtained by directly iterating to the observed 
spectrum vaf'iiatiionally, rather than by more standard perturbation techni­
ques.16 The failure of the pertur:bation method lies in the :truncation both 
of the data and of the potential,2 whereas in the method described here, 
both are infinite expansions. Even at the harmonic level, small diil'ferences 
in the force oonstanrts are to be found. This is :illustrated in T1arble V, where 
we give the harmonic force constants predicted for C02 and 082 • 

TABLE V 

Comparison Between Experimental and Calculated Harmonic Force Constants 
,...., ,...., 

for C02 ( X 11:g+) and CS2 ( X 1~a +) 

,...., 
C02 (X 11;g+ ) CS2 (X 1~a+) 

calc. expt. [11] calc. expt. [12] 

frr/aJ A- 2 15.995 16.032 7.781 7.666 
fuafaJ 0.791 0.783 0.577 0.569 
frr•/aJ A2- 1.252 1.250 0.790 0.848 

Finally, the use of a variational procedure to calculate the vibriational 
spectra produces a means of investigating the extent to which vibrational 
states inteoo.ot. C02 :is the classic example of such interact!ions, known 
as Fermi-resonance in the vibrational spectra. For C02 {X1~/) the itwo 
normal mode vilbrartions (10°0) aind (0-2°0) are degenerate, ais are all 
multiples thereof. This resu!lts in heavy mixing which make lit imposs'Lble 
to assign ithe spectrum along c·onventional normal mode lines (see [3] 
and references therein). In Table VI, we give the contr1bllitions to the 
vari-ational (J =0) vibrat'ional wavefunctions for 12C160 2, calculiated from 
our potential. In order to investtg•a·te the interactions between the vibra­
tional motiions, i·t is mos.t appropriate to use a method of cal.iculaition that 
employs normail coordinate bars.is functions,3 since these are dlagonal (un­
mixed) at the h!armonic level. Our analysis appears to be the first time 
thart such an in vestlga ti on of the C02 spectrum has been carried out 
using the oomplete vibcr:at1onal hamiltonian, coupled with a full three­
-d'imensional potential. 
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TABLE VI 

coefficients of Basis Functions, Corresponding to the Fermi-Resonant Normal 
Coordinate Eigenstates, in the Normalised J = O Vibrational Wave/unctions of 

12C160 2 (X 1L g+) . Coefficients are Underlined When There are Larger Single 
Contributions Elsewhere in the Wave/unction. 

G_onven- Coefficient of Normal 
twnal M d b . I t . • Assignment o e asis unc wn 

** (100) (020) ** 
** (lOO )r -0.75 -0.64 
(100) rr -0.75 -0.64 

(200h 
(200) II 
(200)m 

(300h 
(300) n 
(300) III 
(300) rv 

(002 ) 

(400h 
(400) u 
( 400) III 
( 400) rv 
(400)v 

(102 h 
(102hr 

(202 )r 
(202) u 
(202) m 

(004) 

(200) (120) (040) 
-0.30 0.66 -0.68 
-0.76 0.20 0.56 
-0.49 -0.72 -0.46 

(300) (220) (140) (060) 
0.11 -0.40 0.66 -0.60 
0.48 -0.60 0.04 0.56 
0.69 0.24 -0.40 -0.43 
o.3o o:62 0.62 o.33 

(002) 
0.94 

(400) (320) (240) { 160) (080) 
0.04 0.20 0.47 0.64 0.53 
0.22 -0.55 0.49 0.08 -0.56 
0.57 -0.33 -0.33 0.28 0.42 

-0.51 -0.49 0.09 0.45 0.34 
0.17 0.48 0.63 0.48 0.22 

(102) (022) 
-0.52 0.71 
-0.61 -0.64 
(202) (122) (042) 
-0.20 0.57 -0.63 
0.51 -0.12 -0.56 

-0.32 -0.65 -0.49 
(004) 
-0.83 

c_onven- Coefficient of Normal 
twnal M d b . I t. • Assignment o e asis unc ion 

(001) ** 
•• (001) -0.98 

(101) (021) 
(101h -0.60 0.75 
(lOl)rr 0.70 0.65 

~ (201) (121) (041) 
(2-0l)r -0.26 0.63 -0.67 
(201) II - 0.66 0.17 0.56 
(201) III -0.42 -0. 70 -0.48 

(301) (221) (141) (061 ) 
(301)r 0.09 -0.36 0.65 - 0.59 
(301)u 
(301)m 
(301)rv 

(003) 

( 401)r 
(401)u 
( 401) III 
(401hv 
(401)v 

(103)r 
(103)u 

0.38 -0.53 0.01 0.56 
0.53 0.25 -0.38 - 0.45 

-0.73 -0.58 -0.63 -0.34 
(003) 
-0.89 
(401) (321) (241) (161) (081) 

0.03 -0.17 0.44 -0:64 0.53 
-0.16 0.46 -0.44 -0.11 0.56 
0.40 -0.21 -0.35 0.24 0.43 

-0.32 -0.47 0.03 0.47 0.37 
0.11 0.42 0.63 0.51 0.23 

(103) (023) 
-0.44 0.65 
-0.49 -0.64 

•u1 = symmetric stretch, u2 linear a ngle bend, U3 = asymetric stretch 
••z = 0 is assUJliled in the assignments : Cn1n2n3) = (n1in2°n3) . 

It is obviously impossible to assign the C02 spectrum according to 
its normal modes, and in this respect, our potientfal function apl)ears valid. 
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SAzETAK 

Analiticke dvovrijednosne potencijalne energijske funkcije 
,.., 

za povrsine temeljnog stanja od C02 (X1I;g+) i CS2(X1I;g+) 

S. Carter i J. N. Murrell 

Pot enciija:lni model za dvo1vrijednosne troatoms:ke po,vrsine opisan je s obzlrom 

na potencijale teme:ljnoig stanja za C02CX1I;g+) i CS2CX1~,,+) . Usporedeni su 
zapazeni vibracijski spektrl J=O s onima lmji su izracunani i'Z izvedenih poiten­
cijala s pomocu varijacijs:ke metode. Po prvi puta je utvrdena jaka Fermijeva 
resonancija u vibracijs1kim stanj ima (10°0 i 02°0) upotrebljavajuci potpuni tro­
dimenzij;ski potencijal i v~braci1jski hamiltonian. 




