Analytical Two-valued Potential Energy Functions for the Ground State Surfaces of \(\text{CO}_2(\tilde{X}^1\Sigma_g^+) \) and \(\text{CS}_2(\tilde{X}^1\Sigma_g^+) \)

S. Carter
Department of Chemistry
University of Reading
Reading RG6 2AD
England

and

J. N. Murrell
School of Molecular Sciences
University of Sussex
Brighton BN1 9QJ
England

Received December 13, 1983

A potential model for two-valued triatomic surfaces is reviewed with reference to the ground state potentials of \(\text{CO}_2(\tilde{X}^1\Sigma_g^+) \) and \(\text{CS}_2(\tilde{X}^1\Sigma_g^+) \). A comparison is made between the observed \(J = 0 \) vibrational spectra and those calculated from the derived potentials by a variational method. For \(\text{CO}_2 \) the strong Fermi-resonance in the \((10^10) \) and \((02^00) \) vibrational states is confirmed for the first time using a full three-dimensional potential and a complete vibrational Hamiltonian.

INTRODUCTION

In a recent publication,\(^1\) a method was outlined for the construction of two-valued potential energy functions which represent the adiabatic ground states of polyatomic molecules whose surfaces intersect and/or avoid in some regions of coordinate space. In a subsequent publication,\(^2\) this method was enhanced by the inclusion of a variational procedure\(^3\) which enabled the resulting functions to be refined to the experimental vibrational spectra of the molecule. In this paper, we use these techniques to refine ground state potential functions for \(\text{CO}_2(\tilde{X}^1\Sigma_g^+) \) and \(\text{CS}_2(\tilde{X}^1\Sigma_g^+) \).

A ground state polyatomic surface can be considered to be two (or multi)-valued if there is a crossing of the potential surfaces of two eigenstates in some configurations but an avoided crossing in others. For example, the ground state of linear HOH is \(^1\Sigma^+\) for short OH bond distances but \(^3\Pi\) towards the linear \(H^+\text{OH} \) asymptote. On bending, the \(^1\Pi\) surface splits into \(^1\text{A}'\) and \(^1\text{A}''\), and the \(^1\text{A}'\) component shows an avoided crossing.
with the 1A' surface arising from 1Σ+. There is a conical intersection of these 1A' surfaces in linear configurations. There is also a crossing at infinity on the singlet H₂O surface. At the O+H₂ limit spin conservation requires either the oxygen to be in an excited state, O(1D) or the H₂ to be in an excited state, H₂(a³Σ_u^+). The energy of the latter depends on the H—H distance so the asymptotic limit of the ground state surface produces either a ground state, O(3P) or excited state, O(1D).

Dissociation Schemes of CO₂ and CS₂

The topologies of the CO₂(Ξ¹Σ_g^+) and CS₂(Ξ¹Σ_g^+) potential surfaces are very similar, as are those of their respective dissociation fragments. We will therefore investigate the nature of these surfaces from an analysis of the adiabatic dissociation processes for CO₂(Ξ¹Σ_g^+), and consider first the dissociation of linear OCO into O+CO along a C∞v channel. For (r(CO) ~ r_c, the lowest-energy fragments that maintain 1Σ+ symmetry arise for the process

\[
\text{OCO}(\Xi¹Σ_g^+) \xrightarrow{\text{C}_{\infty v}} \text{O}(1D) + \text{CO}(X¹Σ_g^+) \rightarrow \text{O}(1D) + \text{O}(3P) + C(3P) \quad (1)
\]

The O(1D) — O(3P) separation is 1.958 eV, but the lowest-energy triplet state of CO(a³Π) is some 6 eV higher in energy than CO(X¹Σ_g^+) at r_c hence there are no lower energy channels that can give O(3P) for the initial dissociation.

If we now consider the adiabatic dissociation of OCO into C+O₂ along a C₂v channel, the lowest energy fragments that maintain 1A₁ symmetry arise for the process

\[
\text{OCO}(\Xi¹Σ_g^+) \xrightarrow{\text{C}_{2v}} \text{O}(3P) + \text{O}_2(X^³Σ_g^-) \rightarrow 2\text{O}(3P) + C(3P) \quad (2)
\]

At these are all ground state fragments there are no lower energy channels. A comparison of (1) and (2) shows that the ground state surface of CO₂(Ξ¹Σ_g^+) must be two-valued because there are two sets of atomic states that can be reached by adiabatic processes.

The minimum energy C∞v dissociation process which results in the formation of the atomic fragments (2) along a 1Σ+ surface is

\[
\text{OCO}(1Σ^+) \xrightarrow{\text{C}_{\infty v}} \text{O}(3P) + \text{CO}(a²Π) \rightarrow 2\text{O}(3P) + C(3P) \quad (3)
\]

Similarly, the minimum energy C₂v dissociation process which results in the formation of the atomic fragments (1) along a 1A₁ surface is

\[
\text{OCO}(1A₁) \xrightarrow{\text{C}_{2v}} \text{C}(3P) + \text{O}_2(B^³Σ_u^-) \rightarrow \text{O}(1D) + \text{O}(3P) + C(3P) \quad (4)
\]

The asymptotic two-valued nature of CO₂ is now completely specified, and we can write the complete sets of dissociation channels for CO₂ (and likewise for CS₂) as follows
These dissociation channels are in important first step in deriving a two-valued potential function for polyatomic molecules. In subsequent sections we will frequently make reference to these dissociation channels as (a) or (b), whereby arguments relating to both CO₂ and CS₂ will be implied.

CONSTRUCTION OF THE POTENTIAL ENERGY FUNCTIONS FOR CO₂ AND CS₂

The potential function of a 2-valued surface is given by eigenvalues of a 2 x 2 potential energy matrix

\[V_{d/u} = \pm \left(V_a + V_b - \sqrt{(V_a - V_b)^2 + 4V_{sc}^2} \right) \]

where \(V_a \) and \(V_b \) are diabatic potentials which dissociate according to schemes (a) and (b), respectively, and \(V_c \) the mixing term, is particularly important in regions where the diabatic states intersect. We define the potential functions as follows

\[V_a, V_b = V^{(1)} + \sum_{i=1}^{3} V_{AB}^{(2)}(R_i) + V_{ABC}^{(3)}(R_1, R_2, R_3) \]

\[V_c = V_{ABC}^{(3)}(R_a, R_b, R_c) \]

\(V^{(1)} \) are atomic energies relative to ground states, \(V_{AB}^{(2)}(R_i) \) are two-body terms for the diatomic fragments appearing in the dissociation schemes (a) and (b) and \(V_{ABC}^{(3)}(R_1, R_2, R_3) \) are three-body terms. The off-diagonal term is necessarily 3-body. We have found the following forms for \(V_{AB}^{(2)}(R) \) and \(V_{ABC}^{(3)}(R_1, R_2, R_3) \) to be particularly useful

\[V_{AB}^{(2)}(R) = -D_e \left(1 + \sum_{i=1}^{3} a_i \rho_i^2 \right) \exp \left(-a_1 \rho \right) \]

\[V_{ABC}^{(3)}(R_1, R_2, R_3) = \prod_{i=1}^{3} \left[1 - \tanh \left(\gamma_i \rho_i / 2 \right) \right] V_0 \left(1 + \sum_{j=1}^{3} c_{ij} \rho_j + \sum_{j<k} c_{ijk} \rho_j \rho_k + \ldots \right) \]

where \(D_e \) is a dissociation energy and \(\rho = R - R_e \) is a displacement coordinate measured relative to the equilibrium bond length \(R_e \).

\(\rho_i = R_i - R_i^0 \) are displacement coordinates measured relative to a suitable reference \(R_i^0 \), and \(\gamma_i \) are adjustable parameters. In (9) and (10), the coefficients \(a_i \) and \(V_0, C_{ij}, C_{ijk}, \ldots \) are determined from the appropriate diatomic and triatomic data, respectively.
It can be seen from (9) and (10) that if any bond distance \(R_i \) becomes infinite, all of the \(V_{ABC}^{(3)}(R_1,R_2,R_3) \) in (7) and (8) become zero, as do those two-body terms \(V_{AB}^{(2)}(R_i) \) (one for each of \(V_a \) and \(V_b \)) that are parametric on \(R_i \). It follows, from (6), (7) and (8), that \(V_L \) and \(V_U \) will never intersect, provided that all three bonds are finite, but there can be intersections, corresponding to the crossings of diatomic potentials, if the third atom is removed to infinity. A close inspection of the dissociation processes (1) — (4) suggests that this correctly defines the topology of \(\text{CO}_2(\tilde{X}'\Sigma^+_g) \) and \(\text{CS}_2(\tilde{X}'\Sigma^+_g) \).

Whilst it is a straightforward matter\(^6\) to determine the diatomic coefficients \(a_i \) in (9), the determination of the coefficients \(V_{ab}, c_{jk}, \ldots \) in (10) requires some clarification. These coefficients\(^1\), appropriate to \(V_a, V_b \) and \(V_c \), were determined from a least-squares fit to a wide range of \(\text{ab initio} \) data for the \(\tilde{X}'A_1 \) and \(\tilde{B}'A_1 \) states of \(\text{H}_2\text{O} \), corresponding to \(V_L \) and \(V_U \) in (6) respectively. This method leads to globally approximate potentials for both ground (\(V_L \)) and excited (\(V_U \)) states. They were determined\(^2\) from spectroscopic data for stationary points on just \(V_L \), the ground \(\tilde{X}'A_1 \) state of \(\text{O}_3 \), making use of a variational procedure\(^3\) to refine \(V_L \) to the experimental vibrational spectrum of the ground state equilibrium structure. This method leads to a reliable ground state potential (\(V_L \)) only. The coefficients cannot be uniquely determined, however, by either method, since there are only two equations (\(V_L \) and \(V_U \) in (6)) in three unknowns (\(V_a, V_b \) and \(V_c \)). We will explain how this problem can be overcome by describing the second of the above methods for \(\text{CO}_2 \) and \(\text{CS}_2 \), our principle aim being to derive ground state potentials which are particularly accurate in regions of the equilibrium structures.

If data exist for the states \(V_L \), and/or \(V_U \) in regions where their symmetries differ, \(V_c \) in (6) is identically zero, and \(V_L, V_U \) can be represented by the appropriate potentials \(V_a, V_b \) (depending on their respective dissociation schemes).\(^1\) Furthermore, if \(V_L \) and \(V_U \) are far enough apart such that \(V_c \) has only a minute effect on their energies, then their potentials in such regions can again be approximated by \(V_a \) and \(V_b \). As we have seen, for \(\text{CO}_2 \) and \(\text{CS}_2 \) there are no regions in which the symmetry of \(V_L \) differs from that of \(V_U \). However, at the equilibrium configuration, the first excited singlet state lies above the \(\tilde{X}'\Sigma^+_g \) ground state by some 5.7 eV for both \(\text{CO}_2 \) and \(\text{CS}_2 \). This is a sufficient energy difference to be able to neglect the effect of \(V_c \) initially.

If we compare the atomic and diatomic contributions to the energy in (5) at the equilibrium \(\tilde{X}'\Sigma^+_g \) geometry of \(\text{CO}_2 \) for schemes (a) and (b), those for (a) come closest to the true energy by some 9 eV. This might have been anticipated from valence considerations, and so we can obtain approximate potentials \(V_a \) for \(\text{CO}_2 \) (and \(\text{CS}_2 \)) by fitting the parameters in (10) to the ground state equilibrium properties. This technique is now standard to our method, and is explained fully elsewhere.\(^10\)

The equilibrium \(\tilde{X}'A_1 \) state of \(\text{O}_3 \) was found\(^2\) to correspond to one potential (\(V_a \), say) and the metastable \(\text{D}_3h \) structure to \(V_b \), both minima
lying on the overall adiabatic ground state by virtue of an avoided intersection. Initial potentials V_a and V_b could therefore be obtained from data for these two minima. In CO_2 and CS_2, we have already seen that there are no surface intersections in interaction regions of the potential, and so we must investigate other means of defining V_b. The first excited state has $^1B_2 (\Delta_n)$ symmetry, and will, of course, dissociate to the same asymptotes as the ground state (the $C_{\infty v} CO + O$ asymptote in 5 (a) has $^1\Delta$, $^1\Pi$, $^1\Sigma^+$ components, and the $C_{av} O_2 + C$ asymptote in 5 (b) has 1A_1, 1A_2, 1B_2 components). However, in C_2 symmetry, this will be the closest state that interacts with the ground state ($^1A'$) and so we have chosen this 1A_2 state to initially define V_b, by fitting to the geometry and energy of its equilibrium structure. A least-squares procedure is now used to refine V_c and re-refine V_a and V_b such that the $\tilde{X}^1\Sigma_g^+$ and \tilde{A}^1B_2 data are reproduced by V_L and V_U, respectively in (6).^10

One unfortunate aspect of fitting two-valued potentials is that, of necessity all dissociation channels (a) and (b) must be included, and both V_a and V_b must be assigned values, even if this means using data of doubtful validity. However, in such circumstances, the excited state will never be intended to be reliable and so, in principle, any data can be used. Our choice of the \tilde{A}^1B_2 state to define V_b does however mean that the excited state V_U will have some regions of validity, notably around the excited state equilibrium structure, the exceptions being the dissociation products. On the other hand, the ground state will be valid over all space by virtue of channels (a) and (b) for the dissociation limits, the equilibrium ground state data which defines V_L for short R, and the correct symmetry of the cross-term V_c.

REFINEMENT OF THE CO$_2$ AND CS$_2$ POTENTIALS

The spectroscopic data for the equilibrium configurations of CO$_2$ ($\tilde{X}^1\Sigma_g^+$) and CS$_2$ ($\tilde{X}^1\Sigma_g^+$) were taken from references [11] and [12], respectively. The data for the excited \tilde{A}^1B_2 states were taken from reference [7]. They are summarized in Table I. The atomic energies of O(1D) and S (1D) were taken from reference [5], and the diatomic potentials for all of the dissociation products in (5) and (6) were constructed from data taken from reference [6]. These potentials are collected in Table II.

Inserting the initial potentials V_a and V_b into (6) and choosing some arbitrary values for the parameters in V_c (8), (10) (our starting values were taken to be $\gamma_1 = 2\tilde{A}^{-1}$, $R_0 = 1\tilde{A}$, $V_0 = 0.5$ eV, c_j, c_{jk}, $\ldots = 0$) the parameters in the three-body terms of V_a and V_b were re-refined by a non-linear least-squares procedure such that V_L and V_U reproduced all of the data in Table I for the $\tilde{X}^1\Sigma_g^+$ and \tilde{A}^1B_2 states, respectively. This process utilizes only a few select coefficients V_o, c_j, c_{jk}, \ldots (10) for V_a and V_b.^10
TABLE I

Experimental Data for CO$_2$ and CS$_2$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r_e(CX)/Å</td>
<td>1.160</td>
<td>1.553</td>
</tr>
<tr>
<td>α_e(XCX)/deg</td>
<td>180.0</td>
<td>180.0</td>
</tr>
<tr>
<td>D_e/eV</td>
<td>16.856</td>
<td>12.070</td>
</tr>
<tr>
<td>f_{tr}/aJÅ$^{-2}$</td>
<td>16.032</td>
<td>7.666</td>
</tr>
<tr>
<td>f_{aa}/aJ</td>
<td>0.783</td>
<td>0.569</td>
</tr>
<tr>
<td>f_{tr}/aJÅ$^{-2}$</td>
<td>1.250</td>
<td>0.848</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1B$_3$</td>
<td></td>
</tr>
<tr>
<td>r_e(CX)/Å</td>
<td>1.246</td>
<td>1.660</td>
</tr>
<tr>
<td>α_e(XCX)/deg</td>
<td>122.0</td>
<td>153.0</td>
</tr>
<tr>
<td>D_e/eV</td>
<td>11.153</td>
<td>6.373</td>
</tr>
</tbody>
</table>

TABLE II

One- and Two-Body Terms in Expression (7) for the Potential Function of CO$_2$ and CS$_2$ Corresponding to the Dissociation Channels (5). The Two-Body Terms are Defined by Equation (9) of the Text.

<table>
<thead>
<tr>
<th></th>
<th>$V^{(1)}$/eV</th>
<th>D_e/eV</th>
<th>a_1/Å$^{-1}$</th>
<th>a_2/Å$^{-2}$</th>
<th>a_3/Å$^{-3}$</th>
<th>R_e/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>O('D)</td>
<td>1.985</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO(X'Σ$^+$)</td>
<td>11.226</td>
<td>3.897</td>
<td>2.305</td>
<td>1.898</td>
<td>1.128</td>
<td></td>
</tr>
<tr>
<td>O$_2$(B3Σ$^-$)</td>
<td>0.998</td>
<td>3.802</td>
<td>0.000</td>
<td>0.000</td>
<td>1.604</td>
<td></td>
</tr>
<tr>
<td>CO(a2I)</td>
<td>5.162</td>
<td>5.671</td>
<td>8.654</td>
<td>6.359</td>
<td>1.206</td>
<td></td>
</tr>
<tr>
<td>O$_2$(X3Σ$^-$)</td>
<td>5.213</td>
<td>6.080</td>
<td>11.477</td>
<td>11.003</td>
<td>1.208</td>
<td></td>
</tr>
<tr>
<td>S('D)</td>
<td>1.146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS(X'Σ$^+$)</td>
<td>7.435</td>
<td>3.445</td>
<td>2.370</td>
<td>1.238</td>
<td>1.535</td>
<td></td>
</tr>
<tr>
<td>S$_2$(B3Σ$^-$)</td>
<td>1.613</td>
<td>2.579</td>
<td>0.000</td>
<td>0.000</td>
<td>2.170</td>
<td></td>
</tr>
<tr>
<td>CS(a2I)</td>
<td>3.991</td>
<td>4.790</td>
<td>6.293</td>
<td>4.111</td>
<td>1.568</td>
<td></td>
</tr>
<tr>
<td>S$_2$(X3Σ$^-$)</td>
<td>4.414</td>
<td>3.954</td>
<td>4.312</td>
<td>2.332</td>
<td>1.889</td>
<td></td>
</tr>
</tbody>
</table>

A variational procedure3 was then used to calculate the $J=0$ vibrational spectrum of the $\tilde{X}{}'\Sigma_g^+$ states and a further least-squares procedure was carried out in order to minimise the errors between calculated and observed frequencies for CO$_2$13 and CS$_2$14. In this refinement, all of the parameters (R_i, γ_i, V_o, c_j, c_{jk}, ...) in V_a and all of the parameters in V_b, with the exception of those coefficients V_o, c_j, c_{jk}, required to fit the $\tilde{X}{}'\Sigma_g^+$ data were allowed to relax, the polynomials being extended to quartic in both cases. It was not felt necessary to relax any further parameters in V_b since this approximates almost exclusively to the $\tilde{A}{}^1$B$_3$ state. For every iteration of the variables, the same coefficients in V_a and V_b were again re-refined to fit the data in Table I. (A full account of this technique is given in reference [2]).
TABLE III

Three-Body Terms, Defined by Equation (10), for the Potential Functions of CO2 and CS2. The Adiabatic Ground State Potentials are Obtained from the Parameters in Tables II and III by Substituting the Expressions for \(V_a, V_b \) and \(V_c \) in (7) and (8) into \(V_L \) in Equation (6).

<table>
<thead>
<tr>
<th></th>
<th>CO2</th>
<th></th>
<th>CS2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_a)</td>
<td>(V_b)</td>
<td>(V_c)</td>
<td>(V_a)</td>
</tr>
<tr>
<td>(^1 C_1 = C_2/\text{Å}^{-1})</td>
<td>2.617</td>
<td>5.246</td>
<td>-0.623</td>
<td>2.753</td>
</tr>
<tr>
<td>(C_3)</td>
<td>-2.019</td>
<td>7.752</td>
<td>-0.272</td>
<td>-1.590</td>
</tr>
<tr>
<td>(C_{11} = C_{22}/\text{Å}^{-2})</td>
<td>0.627</td>
<td>-1.539</td>
<td></td>
<td>1.246</td>
</tr>
<tr>
<td>(C_{23})</td>
<td>0.223</td>
<td>-0.278</td>
<td></td>
<td>0.311</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>0.837</td>
<td>0.026</td>
<td></td>
<td>3.500</td>
</tr>
<tr>
<td>(C_{13} = C_{23})</td>
<td>0.076</td>
<td>-0.496</td>
<td></td>
<td>0.215</td>
</tr>
<tr>
<td>(C_{111} = C_{222}/\text{Å}^{-3})</td>
<td>-0.002</td>
<td>-0.704</td>
<td></td>
<td>3.212</td>
</tr>
<tr>
<td>(C_{333})</td>
<td>-0.069</td>
<td>-0.676</td>
<td></td>
<td>-0.900</td>
</tr>
<tr>
<td>(C_{122})</td>
<td>0.076</td>
<td>-1.723</td>
<td></td>
<td>-0.863</td>
</tr>
<tr>
<td>(C_{133} = C_{233})</td>
<td>0.151</td>
<td>-0.795</td>
<td></td>
<td>0.658</td>
</tr>
<tr>
<td>(C_{113} = C_{223})</td>
<td>0.123</td>
<td>-0.342</td>
<td></td>
<td>2.634</td>
</tr>
<tr>
<td>(C_{123})</td>
<td>0.076</td>
<td>-0.833</td>
<td></td>
<td>-0.467</td>
</tr>
<tr>
<td>(C_{1111} = C_{2222}/\text{Å}^{-4})</td>
<td>-0.038</td>
<td>-0.822</td>
<td></td>
<td>-0.738</td>
</tr>
<tr>
<td>(C_{3333})</td>
<td>0.048</td>
<td>-0.997</td>
<td></td>
<td>-0.452</td>
</tr>
<tr>
<td>(C_{1112} = C_{1222})</td>
<td>0.061</td>
<td>-0.902</td>
<td></td>
<td>0.061</td>
</tr>
<tr>
<td>(C_{1123} = C_{2233})</td>
<td>0.110</td>
<td>-0.523</td>
<td></td>
<td>-0.737</td>
</tr>
<tr>
<td>(C_{1113} = C_{2223})</td>
<td>0.079</td>
<td>-0.341</td>
<td></td>
<td>-0.181</td>
</tr>
<tr>
<td>(C_{1122})</td>
<td>0.058</td>
<td>-0.656</td>
<td></td>
<td>0.315</td>
</tr>
<tr>
<td>(C_{1133} = C_{2233})</td>
<td>0.210</td>
<td>-0.318</td>
<td></td>
<td>-0.528</td>
</tr>
<tr>
<td>(C_{1123} = C_{1223})</td>
<td>0.037</td>
<td>-0.809</td>
<td></td>
<td>0.427</td>
</tr>
<tr>
<td>(C_{1233})</td>
<td>-0.004</td>
<td>-0.981</td>
<td></td>
<td>0.395</td>
</tr>
<tr>
<td>(V_0/\text{eV})</td>
<td>4.361</td>
<td>-0.771</td>
<td>-0.261</td>
<td>2.143</td>
</tr>
<tr>
<td>(\gamma_1 = \gamma_2/\text{Å}^{-1})</td>
<td>2.357</td>
<td>2.000</td>
<td>2.271</td>
<td>2.0</td>
</tr>
<tr>
<td>(\gamma_3)</td>
<td>0.959</td>
<td>12.000</td>
<td>1.988</td>
<td>2.0</td>
</tr>
<tr>
<td>(R_{10} = R_0^c/\text{Å})</td>
<td>1.117</td>
<td>1.246</td>
<td>1.527</td>
<td>1.553</td>
</tr>
<tr>
<td>(R_0)</td>
<td>2.226</td>
<td>2.180</td>
<td>3.053</td>
<td>3.105</td>
</tr>
</tbody>
</table>

* Bond definitions: \(R_1 \equiv R(CX), \ R_2 \equiv R(CX'), \ R_3 \equiv R(XX') \)

Finally, the input harmonic force constants in Table I were adjusted to give added flexibility to the fitting procedure, and the resulting three-body terms so obtained are given in Table III. In Table IV, we present a comparison between the observed and calculated \(J=0 \) vibrational spectra for several isotopes of CO2 and CS2. The mean error is 3.7 cm\(^{-1}\) for the CO2 spectra and 8.8 cm\(^{-1}\) for CS2. This suggests that the potential functions given in Tables II and III are accurate representations of the complete three-dimensional ground state surfaces, especially at the equilibrium configurations and at the dissociation limits. They should therefore be particularly useful in dynamical studies.
TABLE IV
Comparison Between Experimental and Calculated $J = 0$ Vibrational Spectra of $\text{CO}_2(\tilde{X}^1Σ^+_g)$ and $\text{CS}_2(\tilde{X}^1Σ^+_g)$.

$\text{CO}_2(\tilde{X}^1Σ^+_g)$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{16}\text{O}^{12}\text{C}^{16}\text{O}$</td>
<td></td>
<td></td>
<td>$^{16}\text{O}^{12}\text{C}^{16}\text{O}$</td>
<td></td>
<td></td>
<td>$^{16}\text{O}^{12}\text{C}^{16}\text{O}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100)</td>
<td>1286</td>
<td>1285</td>
<td>(301)</td>
<td>6075</td>
<td>6076</td>
<td>(100)</td>
<td>1286</td>
<td>1266</td>
</tr>
<tr>
<td>(100)</td>
<td>1339</td>
<td>1338</td>
<td>(301)</td>
<td>6217</td>
<td>6228</td>
<td>(100)</td>
<td>1369</td>
<td>1370</td>
</tr>
<tr>
<td>(200)</td>
<td>2550</td>
<td>2548</td>
<td>(301)</td>
<td>6339</td>
<td>6348</td>
<td>(001)</td>
<td>2282</td>
<td>2283</td>
</tr>
<tr>
<td>(200)</td>
<td>2667</td>
<td>2671</td>
<td>(301)</td>
<td>6505</td>
<td>6503</td>
<td>(101)</td>
<td>3528</td>
<td>3528</td>
</tr>
<tr>
<td>(200)</td>
<td>2800</td>
<td>2797</td>
<td>(003)</td>
<td>6970</td>
<td>6973</td>
<td>(101)</td>
<td>3628</td>
<td>3633</td>
</tr>
<tr>
<td>(300)</td>
<td>3795</td>
<td>3792</td>
<td>(401)</td>
<td>7284</td>
<td>7284</td>
<td>(203)</td>
<td>4750</td>
<td>4748</td>
</tr>
<tr>
<td>(300)</td>
<td>3935</td>
<td>3942</td>
<td>(401)</td>
<td>7455</td>
<td>7460</td>
<td>(203)</td>
<td>4880</td>
<td>4887</td>
</tr>
<tr>
<td>(300)</td>
<td>4095</td>
<td>4064</td>
<td>(401)</td>
<td>7585</td>
<td>7594</td>
<td>(203)</td>
<td>4987</td>
<td>4991</td>
</tr>
<tr>
<td>(300)</td>
<td>4229</td>
<td>4224</td>
<td>(401)</td>
<td>7729</td>
<td>7734</td>
<td>(303)</td>
<td>5954</td>
<td>5952</td>
</tr>
<tr>
<td>(400)</td>
<td>4671</td>
<td>4673</td>
<td>(401)</td>
<td>7924</td>
<td>7921</td>
<td>(303)</td>
<td>6113</td>
<td>6120</td>
</tr>
<tr>
<td>(400)</td>
<td>5188</td>
<td>5197</td>
<td>(401)</td>
<td>8292</td>
<td>8294</td>
<td>(303)</td>
<td>6230</td>
<td>6242</td>
</tr>
<tr>
<td>(400)</td>
<td>5315</td>
<td>5329</td>
<td>(401)</td>
<td>8681</td>
<td>8684</td>
<td>(303)</td>
<td>6361</td>
<td>6364</td>
</tr>
<tr>
<td>(400)</td>
<td>5470</td>
<td>5476</td>
<td>(401)</td>
<td>8777</td>
<td>8780</td>
<td>(303)</td>
<td>6777</td>
<td>6780</td>
</tr>
<tr>
<td>(400)</td>
<td>5672</td>
<td>5686</td>
<td>(401)</td>
<td>7145</td>
<td>7143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(400)</td>
<td>5912</td>
<td>5915</td>
<td>(401)</td>
<td>7329</td>
<td>7333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(400)</td>
<td>6013</td>
<td>6016</td>
<td>(401)</td>
<td>7473</td>
<td>7482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(400)</td>
<td>7132</td>
<td>7134</td>
<td>(401)</td>
<td>7592</td>
<td>7600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(400)</td>
<td>7251</td>
<td>7260</td>
<td>(401)</td>
<td>7748</td>
<td>7748</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(400)</td>
<td>7377</td>
<td>7377</td>
<td>(401)</td>
<td>8084</td>
<td>8089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(400)</td>
<td>9248</td>
<td>9247</td>
<td>(401)</td>
<td>8084</td>
<td>8089</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{CS}_2(\tilde{X}^1Σ^+_g)$

<table>
<thead>
<tr>
<th>Assignment</th>
<th>$^{32}\text{S}^{12}\text{C}^{32}\text{S}$</th>
<th>Expt.</th>
<th>Assignment</th>
<th>$^{32}\text{S}^{12}\text{C}^{32}\text{S}$</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100)</td>
<td>660</td>
<td>658</td>
<td>(100)</td>
<td>659</td>
<td>657</td>
</tr>
<tr>
<td>(020)</td>
<td>811</td>
<td>802</td>
<td>(020)</td>
<td>786</td>
<td>776</td>
</tr>
<tr>
<td>(200)</td>
<td>1316</td>
<td>1314</td>
<td>(200)</td>
<td>1471</td>
<td>1485</td>
</tr>
<tr>
<td>(120)</td>
<td>1459</td>
<td>1447</td>
<td>(120)</td>
<td>2123</td>
<td>2135</td>
</tr>
<tr>
<td>(040)</td>
<td>1642</td>
<td>1620</td>
<td>(040)</td>
<td>2245</td>
<td>2250</td>
</tr>
<tr>
<td>(001)</td>
<td>1521</td>
<td>1535</td>
<td>(001)</td>
<td>2277</td>
<td>2782</td>
</tr>
<tr>
<td>(011)</td>
<td>2173</td>
<td>2185</td>
<td>(011)</td>
<td>2884</td>
<td>2887</td>
</tr>
<tr>
<td>(021)</td>
<td>2320</td>
<td>2325</td>
<td>(021)</td>
<td>3038</td>
<td>3031</td>
</tr>
<tr>
<td>(031)</td>
<td>3415</td>
<td>3425</td>
<td>(031)</td>
<td>3415</td>
<td>3425</td>
</tr>
<tr>
<td>(041)</td>
<td>3138</td>
<td>3130</td>
<td>(141)</td>
<td>3521</td>
<td>3521</td>
</tr>
<tr>
<td>(041)</td>
<td>3467</td>
<td>3478</td>
<td>(061)</td>
<td>3669</td>
<td>3659</td>
</tr>
<tr>
<td>(221)</td>
<td>3597</td>
<td>3597</td>
<td>(003)</td>
<td>3948</td>
<td>3948</td>
</tr>
<tr>
<td>(141)</td>
<td>3769</td>
<td>3757</td>
<td>(103)</td>
<td>4566</td>
<td>4566</td>
</tr>
<tr>
<td>(061)</td>
<td>3972</td>
<td>3948</td>
<td>(023)</td>
<td>5201</td>
<td>5201</td>
</tr>
<tr>
<td>(003)</td>
<td>4559</td>
<td>4566</td>
<td>(003)</td>
<td>5331</td>
<td>5331</td>
</tr>
</tbody>
</table>

*calculated by the authors in references [13] and [14].
CONCLUDING REMARKS

In this paper, we have attempted to outline in some detail the step by step analysis of two-valued triatomic potential surfaces; how a two-valued surface can be recognised and the procedures required in order to construct its potential energy function. We have also highlighted the main areas which are involved in refining the potential to the observed vibrational spectrum of the molecule.

In this and other work2,15 we have found that much more accurate vibrational spectra can be obtained by directly iterating to the observed spectrum variationally, rather than by more standard perturbation techniques.16 The failure of the perturbation method lies in the truncation both of the data and of the potential,2 whereas in the method described here, both are infinite expansions. Even at the harmonic level, small differences in the force constants are to be found. This is illustrated in Table V, where we give the harmonic force constants predicted for CO\textsubscript{2} and CS\textsubscript{2}.

TABLE V

Comparison Between Experimental and Calculated Harmonic Force Constants

for CO\textsubscript{2} (\tilde{X} \: ^1\Sigma\textsubscript{g}+) and CS\textsubscript{2} (\tilde{X} \: ^1\Sigma\textsubscript{u}+)

<table>
<thead>
<tr>
<th></th>
<th>CO\textsubscript{2} (\tilde{X} : ^1\Sigma\textsubscript{g}+)</th>
<th>CS\textsubscript{2} (\tilde{X} : ^1\Sigma\textsubscript{u}+)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>calc.</td>
<td>expt. [11]</td>
</tr>
<tr>
<td>$f_{\pi\pi}/\text{aJ} : \text{A}^{-3}$</td>
<td>15.995</td>
<td>16.032</td>
</tr>
<tr>
<td>$f_{\sigma\pi}/\text{aJ}$</td>
<td>0.791</td>
<td>0.783</td>
</tr>
<tr>
<td>$f_{\pi\tau}/\text{aJ} : \text{A}^{-3}$</td>
<td>1.252</td>
<td>1.250</td>
</tr>
</tbody>
</table>

Finally, the use of a variational procedure to calculate the vibrational spectra produces a means of investigating the extent to which vibrational states interact. CO\textsubscript{2} is the classic example of such interactions, known as Fermi-resonance in the vibrational spectra. For CO\textsubscript{2} (X\: ^1\Sigma\textsubscript{g}+) the two normal mode vibrations (10\:\circ) and (02\:\circ) are degenerate, as are all multiples thereof. This results in heavy mixing which make it impossible to assign the spectrum along conventional normal mode lines (see [3] and references therein). In Table VI, we give the contributions to the variational (J=0) vibrational wavefunctions for 12C16O\textsubscript{2} calculated from our potential. In order to investigate the interactions between the vibrational motions, it is most appropriate to use a method of calculation that employs normal coordinate basis functions,8 since these are diagonal (unmixed) at the harmonic level. Our analysis appears to be the first time that such an investigation of the CO\textsubscript{2} spectrum has been carried out using the complete vibrational hamiltonian, coupled with a full three-dimensional potential.
Coefﬁcients of Basis Functions, Corresponding to the Fermi-Resonant Normal Coordinate Eigenstates, in the Normalised \(J=0 \) Vibrational Wavefunctions of \(^{12}\text{C}^{16}\text{O}_2 (\tilde{X}^1\Sigma^+). \) Coefﬁcients are Underlined When There are Larger Single Contributions Elsewhere in the Wavefunction.

<table>
<thead>
<tr>
<th>Conventional Assignment</th>
<th>Coefﬁcient of Normal Mode basis function*</th>
<th>Conventional Assignment</th>
<th>Coefﬁcient of Normal Mode basis function*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100)(_I)</td>
<td>-0.75 -0.64</td>
<td>(001)</td>
<td>-0.98</td>
</tr>
<tr>
<td></td>
<td>(100)(_II)</td>
<td>(100)(_I)</td>
<td>0.60 0.75</td>
</tr>
<tr>
<td></td>
<td>(200)(_I)</td>
<td>(100)(_II)</td>
<td>0.70 0.65</td>
</tr>
<tr>
<td></td>
<td>(200)(_II)</td>
<td></td>
<td>(201)(_I)</td>
</tr>
<tr>
<td></td>
<td>-0.76 0.20 0.56</td>
<td></td>
<td>-0.26 0.63 -0.67</td>
</tr>
<tr>
<td></td>
<td>(200)(_III)</td>
<td></td>
<td>(201)(_II)</td>
</tr>
<tr>
<td></td>
<td>-0.49 -0.72 -0.46</td>
<td></td>
<td>-0.66 0.17 0.56</td>
</tr>
<tr>
<td></td>
<td>(300)(_I)</td>
<td></td>
<td>(301)(_I)</td>
</tr>
<tr>
<td></td>
<td>0.11 -0.40 0.66 -0.60</td>
<td></td>
<td>0.09 -0.36 0.65 -0.59</td>
</tr>
<tr>
<td></td>
<td>(300)(_II)</td>
<td></td>
<td>(301)(_II)</td>
</tr>
<tr>
<td></td>
<td>0.48 -0.60 0.04 0.56</td>
<td></td>
<td>0.38 -0.53 0.01 0.56</td>
</tr>
<tr>
<td></td>
<td>(300)(_III)</td>
<td></td>
<td>(301)(_III)</td>
</tr>
<tr>
<td></td>
<td>0.69 0.24 -0.40 -0.43</td>
<td></td>
<td>0.53 0.25 -0.38 0.45</td>
</tr>
<tr>
<td></td>
<td>(300)(_IV)</td>
<td></td>
<td>(301)(_IV)</td>
</tr>
<tr>
<td></td>
<td>0.30 0.62 0.62 0.33</td>
<td></td>
<td>-0.73 -0.58 -0.63 -0.34</td>
</tr>
<tr>
<td></td>
<td>(002)</td>
<td></td>
<td>(003)</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td></td>
<td>-0.89</td>
</tr>
<tr>
<td></td>
<td>(400)(_I)</td>
<td></td>
<td>(401)(_I)</td>
</tr>
<tr>
<td></td>
<td>0.04 0.20 0.47 0.64 0.53</td>
<td></td>
<td>0.03 -0.17 0.44 -0.64 0.53</td>
</tr>
<tr>
<td></td>
<td>(400)(_II)</td>
<td></td>
<td>(401)(_II)</td>
</tr>
<tr>
<td></td>
<td>0.22 -0.55 0.49 0.08 -0.56</td>
<td></td>
<td>-0.16 0.46 -0.44 -0.11 0.56</td>
</tr>
<tr>
<td></td>
<td>(400)(_III)</td>
<td></td>
<td>(401)(_III)</td>
</tr>
<tr>
<td></td>
<td>-0.51 -0.49 0.09 0.45 0.34</td>
<td></td>
<td>0.40 -0.21 -0.35 0.24 0.43</td>
</tr>
<tr>
<td></td>
<td>(400)(_IV)</td>
<td></td>
<td>(401)(_IV)</td>
</tr>
<tr>
<td></td>
<td>-0.17 0.48 0.63 0.48 0.22</td>
<td></td>
<td>-0.32 -0.47 0.03 0.47 0.37</td>
</tr>
<tr>
<td></td>
<td>(102)(_I)</td>
<td></td>
<td>(401)(_V)</td>
</tr>
<tr>
<td></td>
<td>-0.52 0.71</td>
<td></td>
<td>0.11 0.42 0.63 0.51 0.23</td>
</tr>
<tr>
<td></td>
<td>(102)(_II)</td>
<td></td>
<td>(103)(_I)</td>
</tr>
<tr>
<td></td>
<td>-0.61 -0.64</td>
<td></td>
<td>-0.44 0.65</td>
</tr>
<tr>
<td></td>
<td>(202)(_I)</td>
<td></td>
<td>(103)(_II)</td>
</tr>
<tr>
<td></td>
<td>-0.20 0.57 -0.63</td>
<td></td>
<td>-0.49 0.64</td>
</tr>
<tr>
<td></td>
<td>(202)(_II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51 -0.12 -0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(202)(_III)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.32 -0.65 -0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*\(\nu_1 \) = symmetric stretch, \(\nu_2 \) linear angle bend, \(\nu_3 \) = asymmetric stretch

**I = 0 \) is assumed in the assignments: \((n_1n_2n_3) \equiv (n_1n_2^n_3).\)

It is obviously impossible to assign the \(\text{CO}_2 \) spectrum according to its normal modes, and in this respect, our potential function appears valid.

Acknowledgment. — One of us (S.C.) would like to thank the British Council for the award of a visiting lectureship to Zagreb, Yugoslavia, and to the Institute Ruder Boškovic for financial support during the tenure of his visit.
Potencijalni model za dvovrijednosne troatomske površine opisan je s obzirom na potencijale temeljnog stanja za CO₂(\tilde{X}¹Σ_g^+) i CS₂(\tilde{X}¹Σ_g^+). Uspoređeni su zapaženi vibracijski spektori \(J=0 \) s onima koji su izračunani iz izvedenih potencijala s pomoću varijacijske metode. Po prvi puta je utvrđena jaka Fermijeva resonancija u vibracijskim stanjima (10°0 i 02°0) upotrebljavajući potpuni trodimenzioni potencijal i vibracijski hamiltonian.