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The configuration interaction space Xn. generated by =
particles moving over 2n orbitals is considered. The formalism
of the molecular orbital resonance theory (MORT) approach
is used. It is shown that the space X, can be split into subspaces
Xnt and Xn~ s0 that selementary« one-particle operators connect
either the states contained in the same subspace, or they connect
the states contained in different subspaces. In particular, each
state ¥+ € Xn* and each state ¥~ € Xn~ has a uniform charge
density distribution over all 2n orbitals, and vanishing bond
orders between orbitals of the same parity. As a simple consequ-
ence the pairing theorem results. To be »alternant-like« is thus
shown to be the property of whole spaces Xn* and Xn~, rather
than the property of particular eigenstates. The connection with
the pairing theorem as derived by other authors is discussed.

INTRODUCTION

A new approach to the treatment of quantum chemical problems
was recently proposed.’™ This aproach, called the Molecular Orbital Re-
sonance Theory (MORT) retains the concept of the resonance from the
VB method, but it treats each particular bond in the MO sense. Accordin-
gly, a MORT resonance structure is a determinant containing bond or-
bitals. Many quantum chemical problems can be expressed in a wvery
simple form using these structures. For example, a very primitive model
retaining only Kekulé structure in conjunction with the Hiickel Hamilton-
ian satisfactorily reproduces the heats of atomisation of conjugated hydro-
carbons as well as of conjugated heterocompounds.! The Hiickel (4m+2)
rule can be generalised to arbitrary conjugated hydrocarbons mnot only
within the Hiickel,? but also within the more sophisticated Pople approxi-
mation.? Charge polarisation and bond length fixation can also be
explained in a very simple way.*! These results suggest that the MORT
approach is quite natural in representing a certain class of quantum che-
mical problems. In the present paper we will further develop this method.
In particular, the well known pairing theorem will be derived within this
approach.

In the first section the configurationo interaction (CI) space X, is
considered and MORT resonance structures spanning this space are defined.
In the second section it is shown how the space X, can be split into
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subspaces X,* and X,~ spanned by »positive« and »negative« structures,
respectively. In the third section the so called splitting theorem is de-
rived. According to this theorem there are two kinds of »elementary«
one-particle operators. These operators connect either the states in the
same subspace (X, or X,), or they connect the states in different
subspaces. As a simple consequence of this theorem, each state ¥* € X,
as well as each state ¥~ € X_-, is »alternant-like«. In other words ¥+
is the state with uniform charge density distribution over all vertices
(atoms), and with vanishing bond orders between vertices (atoms) of the
same parity. This is discussed in the fourth section. In the fifth section
the pairing theorem is derived for a variety of quantum chemical models.
The theorem follows from the fact that eigenstates of the Hamiltonian
corresponding to an alternant system lie in subspaces X,* and X,~. This
theorem is thus a simple consequence of the special properties of spaces
X, and X, -, as expressed by the more general splitting theorem. In the
sixth section a comparison with the derivation of the pairing theorem by
other authors is given. In particular, it is shown that resonance struc-
tures as defined in the MORT approach are eigenstates.of the pairing
operator C defined by Koutecky. These structures hence form the most
natural base in the CI space X, in which to express the pairing theorem.

1. Configuration Interaction Space X, and MORT Resonance
Structures

Let us first define the configuration interaction (CI) space X, to
be treated here. This space is determined by n particles moving over 2n
orthonormalised orbitals yx;. Orbitals yx; can be spin-orbitals, atomic or-
bitals, molecular orbitals etc.. For the sake of reference and unless other-
wise specified, we will call orbitals x; primitive orbitals (PO). The set
of all normalised determinants containing n primitive orbitals forms an
orthonormalised base in the space X,. Accordingly, the dimension of the
space X, equals

d(n) = (2n)!/(n!)? 1)

One can now construct different MORT resonance structures in X,. Normal
resonance structures (NRS) are defined to be normalised determinants
containing n mutually disjunct bond orbitals (BO) constructed out of
PO-s y; (see Appendix). The set N (n) of all NRS-s spans the space X,
and hence all quantum chemical problems defined in X, can be expressed
in terms of NRS-s. This set is however overcomplete, and one can restrict
consideration to the so called regular resonance structures (RRS) alone.
The set R (n) of all RRS-s is a subset of the set N (n). The definition
of this set depends on the partition of the set B of all 2n PO-s yx; into
subsets B° and B* containing n PO-s each. For the sake of reference
orbitals x;€B° are called source, while orbitals x;e B* are called sink. Only
these BO-s are considered which contain one source and one sink PO. Each
NRS containing only such BO-s is by definition a RRS. In the Appendix
it is proved that the set R (n) of all RRS-s spans the CI space X,. This
set however, is still overcomplete. On can show that the set R (n) can be
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further reduced by taking into account only nonexcited and singly excited
structures.’ We will not here further elaborate on the linear depen-
dence of RRS-a and this question will be treated elsewhere®. For our
purpose here it is enough to say that the set R(n) spans the space X,.

x L -G~ e e 1 2
X3 R el s B el D e Qe
X2 s s - e —g— e
X) o R - - - 4 2
o
D, D, D B B D¢ B = {x, x,}
a) b)

< S <&
G, G3 G, Gg Gy G; Gy

d)
Figure 1. Normal and regular resonance structures in the case n = 2.

a) The space X: is spanned by six determinants D: to Ds. Each of these deter-
minants represents one possible distribution of two particles over four orbitals
Xi.

b) Partition of the set B = { ¥;, X, Xs X,} on subsets B° and B*. Orbitals x, and
X, (2 and 4) are defined to be source, while orbitals x, and ;) (1 and 3) are
sink.

c) Normal resonance structures. Nonoriented bonds represent nonexcited bond
orbitals, while oriented bonds represent excited bond-orbitals. With respect
to the partition B® = { x,, X, } structures S, to S, are regular resonance struc-
tures.

d) Superpositions Giz to Gus contain an even number of passive cycles, while
superpositions Gis to Gig contain an odd number (in this case one) of passive
cycles. Structures S: to S: span the space Xq*, while structures Ss to Ss span
the space X~
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Note that the definition of the set R(n) depends on the partition of
the set B on subsets B° and B*. There is a one- to -one correspondence
between different sets R(n) and different partitions of the set B on sub-
sets B° and B* (up to the exchange B° «~— B*). Hence there are N(n) =
= (1/2) (2n!)/(n!)? = d(n)/2 different sets R(n) corresponding to the same
set N(n). In Figure 1 the case n = 2 is considered. The space X: is gene-
rated by two particles occupying four orbitals and its dimension is six
(Figure la). The same space is spanned by twelve NRS-s shown in Figure
lc. One way to partition the set B = {X;, X» Xs» Xs} into subsets B° and B~
is B° = {¥, %}» B*= {Xu X3} (Figure 1b). In this case eight structures (S,
to S;) are contained in the set R(2). Double exacited structures S, and S,
can be eliminated as they are linear combinations of structures S, to S,
and S; to S,, respectively®. A different partition of the set B into subsets

X

a)

Sq
S S Sig Sx Sy Sn S Sy

b)

Figure 2. Regular resonance structures in the case n = 3.
a) Partition on sink and source orbitals.

b) Nonexcited and single excited RRS-s. Structures S: to Si2 span the space Xs*,
while structures Si3 to S2¢ span the space Xs.
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B° and B* would select a different subset of eight structures from the set
N(2) to form the set R(2). Two more such partitions defined by B° = {x,,
X2} and B° = {X;, X}, respectively, are possible. In Figure 2 the case n = 3
is shown. Only nonexcited and singly excited RRS-s are drawn, since they
alone span the space X,. Since d(3) = 20 this set is still overcomplete by
four structures.

2. Splitting of the Space X, into Spaces X,* and X,

Consider the set R (n) of all n-particle RRS-s. In the Appendix it is
shown that one can partition this set into subsets R*(n) and R~ (n) in
the following way:

Definition 1

Let S,, S, € R(n). Form the superposition G,, = S, + S,.2 If this su-
perposition contains an even number of passive cycles, then: these two
structures are contained in the same subset, either in R*(n) or in R~(n).
Otherwise they are contained in different subsets.

The above partition of RRS-s on positive and negative structures re-
sembles on the similar-partition of VB structures on positive and negative
structures.® In fact, the notion of passive cycle reduces to the notion of
4m-cycle if the two RRS-a in question are nonexcited. The two sets of
structures have however completely different meaning, and the analogy
is mainly graphical.? According to the Definition 1, only the partition of
the set R(n) on subsets R*(n) and R~ (n) is fixed. Which subset is called
R*(n) and which R~ (n) is arbitrary. The consistency of the superposition
criteria is proved in the Appendix. This consistency is not trivial. It can
be shown that the set I(n) € N(n) can be consistently partitioned on
positive and negative structures if and only if there is some set R(n) SN(n)
of RRS-s such that I(n) € R(n). In other words, only subsets of different
sets of RRS-s can be partitioned on positive and negative structures®. For
example, the three NRS-s shown in Figure 3a form a set I(2) which is
contained in no set R(2). All the three superpositions G;; G,, and Gy,
contain a single passive cycle (Figure 3b). If we were to satisfy the su-

X X

S Ss Sq Gs Gy  Gg
a) b)

Figure 3. Only subsets of different sets of RRS-s can be consistently partitioned
on positive and negative structures.

a) The set I (2) = {Sl, Ss, Ss} is contained in no set R(2) of RRS-s.

b) Each of the superpositions G5, G and Gss contains a single passive cycle.
Partition of the set I (2) on positive and negative structures is not possible.
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perposition criteria, all the three structures should be contained in diffe-
rent subsets. This however can not be done with just two subsets, R*(2)
and R~(2), i.e. the set I(2) can not be partitioned on positive and nega-
tive structures alone. On the other hand, using the superposition criteria
one easily finds that structures S; to S, in Figure 1 form R*(2), while
structures S; to S; form R~(2). Similarly, in Figure 3 structures S, to S,,
form R*(3), while structures S,; to S,, form R~(3).

It can be shown that the overlap S,, between RRS-s S, and S, equals®.

o = 2 P if G,, contains no passive cycle
® 710 otherwise (2)

where p is the number of cycles contained in the superposition G,, of
these two structures. From this equation and the definition 1 it follows

Lema 1

Let S,, S, € R(n). If S, € R*(n) and S, € R~ (n) then the overlap S,
vanishes:

S, e R*(n), S, € R-(n)——>S,, = 0 (3)

The space X,* spanned by the subset R*(n) is hence orthogonal to the
space X,~ spanned by the subset R~(n), i.e. these two spaces have no vector
in common (except nulvector). Since the set R(n) spans the whole CI
space X,, it follows that each state ¥ € X, can be represented as a linear
combination of some states ¥* e X,* and¥~ € X~

YeX, — ¥=V¥"4+ ¥ where ¥'e X", ¥V~ € X~ 4)

Given spaces X,* and X, , this representation is unique. Furthermore,
each choice of a particular set B° (or B*) uniquely fixes the partition of
the space X, on subspaces X,* and X,~, and hence there are d(n)/2 such
partitions (up to the exchange X,* <—— X,~ which forms no new partition).
Moreover, one can show that spaces X,* and X,~ have the same dimension
which hence equals d(n)/2.° For example, in Figure 1b structures S, to S,
span the subspace X,*, while structures S5 to S; span the subspace X,~. Both,
X,* and X,” are three-dimensional. One can show that any three of four
structures S,,...,S, span X,*, whereas any three of four structures
S5 ..., 8; span X,”.° Similarly, in Figure 2 structures S, to S;, span the
space X,*, whereas structures S,; to S,, span the space X;~. Since d(3) = 20
spaces X,* and X,” are ten-dimensional. Sets {S,,..., S} and {S;, ..., Sxu}
are hence both overcomplete by two structures.

For reasons which will be apparent in the subsequent sections, we will
call each state ¥ € X,* and each state ¥ € X,~ an alternant-like state. In
conclusion, given spaces X,* and X,~ an arbitrary state ¥ e€ X, can be
represented in a unique way as a linear combination of two alternant-like
states.
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3. The Splitting Theorem

Each one-particle operator defined in the space X, can be represen-
ted as a linear combination of elementary one-particle operators A¥ and
B¥ such that?

<X ] A l x> = O 511 +5jk O, <t I BX ’ N> = \/:1(5ik ajx—gu 5;’1:) (5a)

In terms of creation and annihilation operators one can write

A =g* a,+ a* a,

— (5b)
B¥ = \/—1 (a*,a,—a* ay)

where a*; and q, are creation and annihilation operators associated with
the orbital x;. Operators A¥ are real, while operators B® are imaginary.
Both, 4¥ and B* are hermitean operators.

In ref. 2. matrix elements of elementary operators between NRS-s were
derived. Analysing these matrix elements one can prove the following

Theorem 1

1. Let the states ¥, and ¥, be contained in the same subspace, either
X,* or X,~. Then

a) Matrix element 4%, = <V¥,|A%¥,> of each vertex operator 4* = A
equals overlap S,,.

b) Matrix element 45, = <V¥ |4%¥,> of each trans-bridge operator
As = A® vanishes.

c) Matrix element Bs,, = <Y, BY¥,> of each cis-bridge operator
B* = B¥ vanishes.

2. Let the states ¥, and ¥, be contained in different subspaces, one
in the subspace X,* and another in the subspace X,~. Then

a) Matrix element A5, of each cis-bridge operator A® vanishes.

b) Matrix element B, of each trans-bridge operator B® vanishes.

In other words:
v,¥, eX,* or V¥,V eX ~— A%, =S8,, 45,=0if 45

is trans-bridge, Bs,, = 0 if B*® is cis-bridge (6a)
and

Y, eX*H VY, eX,~ or VY, eX V¥ €eX*—>
As, = 0 if A% is cis-bridge (6b)
Bs,, = 0 if B® is trans-bridge

The various terms, cis-bridge, trans-bridge etc. are explained in the Appen-
dix. We refer to the above theorem as a splitting theorem. All elementary
one-particle operators are shown to be of two kinds. They either connect
states contained in the same subspace, or they do connect states contained
in different subspaces. This is explicitly true for all bond operators, either
of the cis-bridge or of the trans-bridge type. Concerning vertex operators
A%, they effectively connect only the states in different subspaces, since
(6a) implies <V, |4A*—I| ¥,> = 0 whenever either ¥, ¥, € X,* or ¥,

V. € X,
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4. Charge Densities and Bond Orders

There are some very simple and important consequences of the split-
ting theorem. Consider for example a conjugated n-electron system. Assu-
me that the ~ electrons move over n orthonormalised 2p, orbitals w,, one
orbital from each atom participating in the conjugation. Using these orbi-
tals one can now construct various CI spaces:

1. Let the set B contain 2n spin-orbitals y;

Y = W, & G=1..5,n) (N
Yot = X = W; B

where « and § are spin-« and spin-f§ states, respectively. This set uniquely
defines the CI space X,. Let a*; be creation and aq, annihilation operators
of the spin-a orbital x; = w; «, and let b*; be creation and b, annihilation
operators of the spin-{ orbital y; = w, 8. Define operators for electron den-
sities (Qi) and bond orders (Py;) for electrons of « and § spins

Q;:ai+ai qubi+bi
p; = (a;* a; + a;* a,) /2 p fj = (b* b; + b;* b)) /2 (8a)
and for total bond orders and electron densities
s a B _ a _j B
g=q7 +4 py=pf +0? (8b)
Similarly, scross« bond orders can be defined

P = (" b, + b a,)/2 (8c)

Partition now the set B into subsets B° and B* and form corresponding
subspaces X,* and X,-. Then according to the splitting theorem

&

Qf =<¥F gt |¥*>=0Qf = <¥F|q! |¥vE>=1/2 (92)

5 |
Q=<9* g |¥t>=1

for each normalised state ¥* € X, * and ¥~ € X,~. The subspaces X,* and
X, have a special property that each alternant-like state ¥ * ¢ X, * has
a uniform spin-a and a uniform spin-f§ density of 1/2 over all conjugated
atoms (i) (i=1,...,n). The spin-a and spin-f charge polarisation, and
hence the total charge polarisation results from the mixing of states ¥*
and ¥~ in respective subspaces X,* and X,~. In other words, the charge
polarisation is due to the interference between the two subspaces. Further,

if ¥=*is an alternant-like state then

Pl =<¥E[p{|¥=>=0 (9b)
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whenever spin orbitals x; and yx; are of the same parity. Similarly P{fj =
= <¥* |pf|¥* >=0 whenever spin orbitals y, and x; are of the
same parity, and analogously for cross bond orders Pelzjﬂ. Since the choice
of n spin orbitals contained in B° (or in B*) is arbitrary, spin orbitals
x; and y, associated with the same conjugated atom (i), are not necessarily
of the same parity. In particular consider the following choices

1a) Let spin orbitals y; and x; (i=1,...,n) be of the same parity.
Such a choice requires n begin even, since otherwise subsets B° and B*
can not contain the same number of spin orbitals. In this case one obtains
<vFpy|vET> =< ¥ pf | ¥ > =<vFpPflvE> =0
and hence N . (10)

Py=<¥7|p;|¥™>=0

whenever atoms (i) and (j) are of the same parity. For example, the CI

space X, corresponding to the cyclobutadiene rw-electron system is con-
structed out of eight spin orbitals (Figure 4a). Carbon atoms 2 and 4

—1
(N

1 2

X X
L 3 ‘L 3 X X S s
a) b) ()
X X
> 4 X
S & S
d) )
1 2 1 = 2 X x x X
g 8 A g § Z X X X X
1) g)

Figure 4. Illustration of the discussion on charge densities and bond orders.
For details see text.

a) Spin orbitals forming cyclobutadiene n-electron system.

b) Spin orbitals y; and ¥, are chosen to be of the same parity.

¢) Some RRS-s consistent with the partition in b). B

d) Spin orbitals x; are chosen to be source, while spin orbitals x; are sink.
e) Some RRS-s consistent with the partition in d).

f) Spin orbitals forming pentalene n-electron system.

g) Spin orbitals x, and ¥, are chosen to be of the same parity.
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can be chosen to be the source, and carbon atoms 1 and 3 to be the
sink (Figure 4b). Each state ¥* e X,* has wuniform spin densities

Q¢ =Qf = 1/2 over all carbon atoms (i). In addition, it has vanishing

bond orders Pf;, Pfj s Pi"f and P;; between all atoms of the same parity
(1 and 3 or 2 and 4). Similarly, in the case of the pentalene molecule
carbon atoms (i) = (3, 8, 6, 7) can be chosen to be the source, and carbon
atoms (i) = (1, 2, 4, 5) to be the sink (Figure 4g). Each state ¥+ ¢ X, =+
has uniform electron densities @ = @/ = 1/2 and @, = 1 over all eight
carbon atoms. In addition, it has vanishing bond orders P ,Pf P and

ij o+ 1j o
P, between all atoms of the same parity. In particular, < ¥=* | p, | ¥ + >
= 0, i.e. bond order P, across a »snonalternant« central bond (78)
vanishes if either ¥ = ¥+ € X,* or ¥ =¥ € X, . Since pentalene is a
nonalternant molecule the eigenstates of the corresponding Hamiltonian
are polarised. Hence these eigenstates are neither in the subspace X,;* nor
in the subspace X, but should contain components of both.

If the conjugated system is even alternant, the partition on source
and sink atoms can be made to coincide with the partition on starred and
unstarred atoms, as we did in the case of the cyclobutadiene molecule
(Figure 4b). The eigenstates of neutral alternant hydrocarbon system
possess a specific property that they have uniform charge density distri-
bution over all carbon atoms and vanishing bond orders between all atoms
of the same parity. This is exactly the property of the states ¥ *e¢ X, * ,
and hence we call such states alternant-like. In the following section it
will be shown that, under certain assumptions, all eigenstates of a neutral
alternant hydrocarbon system can be chosen to be alternant-like, i.e. to lie
either in the space X,* or in the space X, .

1b) Consider now the following partition of the set B on subsets B°
and B*:

X € B° X, € B* G=1,...,7n) (11)

Each RRS contains now only those BO-s which connect one spin-a and
one spin-f8 orbital. All spin-a orbitals are of one parity, while all spin-§8
orbitals are of another. Hence

<¥Fpg i vE>S=<¥FpfleT>=0

and 12
Py=<¥¥|p,|¥F> =0 .
= | Dy | - =

for all atoms (i) and (j) (i = j). In this representation bond orders P,
are nonvanishing only between the states ¥* and ¥~ contained in diffe-
rent subspaces. Only cross bond orders P;Jf’ can connect the states within
the same subspace (see Figure 4d) and 4e)). Partitions (la) and (1b)
are two extreme examples. Many other partitions of the set B on subsets
B° and B* are possible. Each of these partitions redefines the notion of the
alternant-like state. As illustrated by relations (10) and (12), this leads
to the vanishing of different sets of bond orders of alternant-like states.
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2. In a spin-separation approximation the state ¥ is assumed to be
an antisymmetrised product of a spin-« and a spin-§ states ®,and &p Te-
spectively?

¥ =0, 0 > (13)
In particular, the ground state of a conjugated system containingz an
even number of electrons is usually well represented in the form (13)
where ®, = ®; = ® is an n-particle state!. Hence we will consider the
space Y, which is the smallest space containing all spin separated states
(13) such that substates ®, and ®; contain n particles each. This space
is a nonlinear subspace of the complete CI space X,,. The state (13) is
however more general than one-determinental states assumed in various
SCF approaches. As far as corresponding spaces are conserned, the spin-
-separation assumption is intermediate between the SCF approach and
the complete CI treatment. Let X, and “X, be CI spaces associated with
sets 2B = {x|4,...,2n}and ®B = {x|i=1,...,2n}, respectively. Partition
the set 2B on subsets %B°and *B*. This partition determines spaces
¢X.*and %X -, subspaces of the spin-a space 2X . One finds
Q =<o¥qf |0 >=1/2 (i=1...,2n) (142)
for each normalised state ®* ¢ 2X_=*. Also

4 =<0T|py0T>=0 (14b)
whenever orbitals y; and x, are of the same parity. Similarly, spaces BX;
and BX; can be constructed. Hence

RQ=<Y|q|¥>=<0 O|q| PP >=1 (14c)
whenever ®, and ®; are alternant-like, l.e. ®, € %X, * and ®; e #X,*
(®, and @; are normalised). If the partiticn Is such that y, € *B°implies
% € BB, then for alternant-like @, and @;

<Y |py|¥> =< Du®s|py|Da®s> =0 (15)
whenever atoms (i) and (§) are of the same parity. In conclusion, each
alternant-like spin-a state ®,e “X, has a uniform spin-a density of 1/2 over

all atoms (7), and vanishing bond orders P{j between all atoms of the same
parity. Analogous relations hold for each alternant-like spin-8 state

®; € *X, and hence for each state ¥ = | ®.05 > € Y, constructed out of
alternant-like states @, and ®;. For example, RRS-s in Figure 2 can be con-

sidered to span the CI space “X, (or the CI space "Xs) associated with
the benzene molecule. Structures S, to S,, now span the subspace °X,*,
while structures S,; to S,, span the subspace “X,~. Each linear combination
of structures S, to S,,, i.e. each state ® € °X,*, has a uniform spin-« density
of 1/2 over all six carbon atoms and vanishing spin-« bond orders P bet-

ween all atoms of the same parity. Similarly for each state ® € °X,~ which
is a linear combination of structures S;; to S,,.. Charge polarisation is again
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due to the interference between subspaces °X,* and ® X; . In the spin se-
paration approximation the ground state of the n-electron benzene system

is of the form ¥ = |®® > where @ is alternant-like, ie. ® e °X s". More-

over, ® ¢ °X,* since the subspace “X;* contains Kekulé structures S; and
S, which are most stable.

3. The above approach can be generalised to include o-electrons as
well. Let w;, (i=1,...,n) be orthonormalised atomic orbitals including
now orbitals forming ¢ bonds as well. Define the set B to contain 2n spin

orbitals y, = w; @ and y; = w, B, in analogy with (7). Define operators for
electron densities on atom () and bond orders between atoms (p) and (v):

a f &

q, = X a'q gP = 3 b b
® iep ”‘ iep

pgu = 3 (a'ya;+ a¥ a;)/2

iep, jev (16a)

PE,= = (b +0,b)/2

iew, jev
for spin-« and spin-f electron densities and bond orders. The symbol iep
means that the i-th spin orbital is localised on the atom (p) and the sum-
mation is performed accordingly. Similarly cross bond orders

pgg = 3 (a%b,+b*a)/2 (16b)
iep, jev

and total bond orders and electron densities
=g B - B
I =q;+a, Puv=pi,+P, (16c)

can be defined. The set B determines the corresponding CI space X,. For
an arbitrary partition of B on subsets B° and B* one finds

o e o o R = o
<¥E[gh|¥E> = <v*|qf¥vF>—n 12

+ - I (17a)
<Vv ,qul\lf >=n,

where 7, is the number of AO-s w, localised on the atom (p), and the

states Y= ¢ Xi are normalised. If the partition of the set B on subsets
B° and B* is such that all spin orbitals localised on a particular atom (p)
are of the same parity, then

_{..

<¥*|p? <\11*';p S ¥E> =

pi ¥
<~y--lpfjf3|\xf >=<¥F|p, [¥F>=0 (17b)

whenever atoms (p) and (v) are of the same parity. Relations (17) are
generalisations of relations (9a2) and (10).
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5. The Pairing Theorem

In the context of the Hiickel or Pariser-Parr-Pople approximation,
molecular orbitals nad orbital energies of alternant hydrocarbons have
»pairing properties«. These properties were first deduced by Coulson and
Rushbrooke’ using Hiickel theory, while Pople® did the same for the SCF
theory. Mc Lachlan® extended the treatment to the complete CI space,
while Koutecky® deduced rather general conditions for the occurance of
pairing properties. He formulated these conditions in terms of the system
of equations to be satisfied by one- and two-particle parts of the Hamil-
tonian operator.’’ In the case of neutral alternant hydrocarbons, the most
important consequence of pairing properties is uniform n-electron charge
density and vanishing bond orders between all carbon atoms of the same
parity (starred or nonstarred). We will refer here to these properties as a
pairing theorem. This theorem will be derived here for a variety of appro-
ximations using the MORT approach.

(1) In the second quantisation formalism the PPP Hamiltonian of an
alternant hydrocarbon system can be written in the form ’

H=K 3 g+ Dy By + 2 vy (@i —1) (g;—1) +
s 1.5 i<y

FE @ —1/2) @ —1/2) (1

where the resonance integrals f; = B; vanish unless atoms (i) and (1)
are of different parity, K = E, + v,/2 Is the effective potential energy of
a = electron which is the same on each carbon atom, and y, are electron

repulsion integrals
1y = J w (1) w (1) /7w, (2) w, (2) d1 d2 (19)

Up to the constant the Hamiltonian (18) is identical to the PPP Hamil-
tonian as defined by McLachlan in ref. (9). Consider now the CI space X,
defined in the paragraph (1) and subspaces X,* and X, as defined in the
paragraph (la) of section 4. Define projection operators P* and P~ which
project a state ¥ € X, onto subspaces X,* and X,~, respectively

P+X =X P X, =X (20a)
These operators satisfy
Pr+P =1 and P*P =0 (20b)
Since the operator N = ¥ q, is the operator of the total number of electrons
it follows
[NP*] =[NP ]=0 (21a)
i.e., the first term in the Hamiltonian (18) commutes with both, P* and

P~. Furthermore, according to the splitting theorem <¥*|p;| ¥~ > =0
whenever vertices (i) and (j) are of different parity. Hence

[ppPTE]1=0 (21b)



380 T. P. ZIVKOVIE

if (i) and (j) are of different parity, and thus the second term in the
Hamiltonian (18) commutes with P * as well. Consider now the commu-

tator [(¢gf —1/2) (qf —1/2), P*] and observe the action of this commu-
tator on the state ¥* € X,_*. Relations (9) imply (af — 1/2) P* ¥+ =
(qf —1/2) ¥* =¥ € X, and further (qf — 1/2) ¥ = ¥” € X,*. Analogou-

sly, P* (g — 1/2) (qf — 1/2) ¥+ = P+ (@f —1/2) ¥ = PV’ = ¥,
Hence [...] ¥* = 0. One can similarly show that [...] ¥~ = 0 where ¥~ €
X,~. Hence the commutator [...] vanishes. In the same way the following
relations can be derived:

[(gF —1/2) (gF —1/2),PT 1=0  [(gF —1/2) (& —1/2),PF 1=0

[(@ —1/2) (& —1/2),P= 1=0 [(¢—1) (g—1),PT1=0 (210

Relations (21) imply that the Hamiltonian H is blockdiagonalised in spaces
X,* and X,~. This proves the pairing theorem since each state ¥ = € Xi has
a uniform electron density Q, = 1 over all atoms (i), and vanishing bond
orders P;, = 0 between all atoms of the same parity.

(2) In addition to the property @, = 1 alternant-like states b satisty
Q@ =1/2 and Q’ = 1/2. Similarly, not only total bond orders Py, but also

spin bond orders P‘;J and Pﬁ , as well as cross bond orders P;‘f vanish
between atoms of the same parity. This is a stronger assertion than the
one implied by the pairing theorem as stated above. In connection with
it note that

<¥F|S,|¥E> =0 where S,=3 (¢° —q*)/2 (22)

is the operator of the spin projection. This operator is however an integral
of the motion, l.e. [S,, H] = 0. It implies that triplet and higher multiplet
states must be pairwise degenerate in spaces X,* and X,~. Namely, if ¥
satisfies

HY =E¥Y and S,¥V= (m/2)¥ m=0 (23a)

then it must be of the form ¥ = ¥* 4+ ¥~ where Vv £« ( (23b)

since otherwise <¥|S,|¥ > = 0, contrary to (23a). Since however H s
block-diagonalised in X,* and X,-, states ¥* and ¥~ are degenerate ei-
genstates of the Hamiltonian H with the eigenvalue E. Furthermore, if the
state ¥ = ¥~ 4 ¥~ is an eigenstate of the operator S, with the eigenvalue
(m/2), then the state ¥ = ¥+ — ¥~ is an eigenstate of the same operator
with the eigenvalue (—m/2). Eigenstates ¥ and ¥ (and ¥* and ¥) of
the Hamiltonian operator H thus appear in pairs. If however m = 0 then
either ¥ = ¥~ or ¥ = ¥, unless there is an accidental degeneracy. In
particular, unless there is an accidental degeneracy each singlet eigenstate
is contained either in X, * or in X~
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(3) A pairing theorem derived in (1) follows from the commutation
relations (21). According to the splitting theorem and the results obtained
so far, all the following operators commute with projection operators P*
and P

o » ﬁfﬁ pf‘f (i) and (j) are of different parity
Bi, = y/—1 (a*;a;,—a*; a;)
Biyp = v/ —1 (a*, b;—b*; a,) (i) and (j) are of the same parity

BYig = y—1(b*;b;—b*"; b)
(24)

(qF —1/2) (g* —1/2)
(@f —1/2) (¢ —1/2) | (i) and (j) are arbitrary
(¢F —1/2) (¢! —1/2)

N=21Qi

Eigenfunctions of any Hamiltonian which is an arbitrary function of the
above operators satisfy the pairing theorem. The PPP Hamiltonian (18)
is only the special case. Using various operators in (24) one can explicitly
construct all such Hamiltonians.

(4) In the SCF formulation of the PPP approach, the eigenstate V¥ is
assumed to be a single-determinantal function.! In particular, a closed
shell singlet state is of the form

V=dy Oy by b oons by Gpf = (=) O=D/2|0D >

(I)”_‘N’l’ q)z»----q)ni (25)
where ¢, are orthonormalised molecular orbitals, linear combinations of
2n atomic orbitals w,!'. Each state (25) is a spin separated state contained
in the space Y,. An arbitrary single-determinental state ¥ = [d),ﬁ)g >eY,
satisfies

L[ g (Y>> =<DuBs|q) 7 [2P>=Q; Q@ — (P} ) (26a)
<W[gr ¢4 |¥>=<Bg? | D> <Pplgl 0> =@ Qf
where

QF = <V¥|g' [¥>=<d|q 0> (26b)

P =<¥|p: |¥>=<|p} | 0>

and similarly for B-spins.
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Define now a one-particle spin-o Hamiltonian

HFf=3q;[K+2 3 v (*H ==1/2)]1 + 2 D (Bi]’_P; i)
i J 21

ie] 27
Using (26) one easily finds that
2<O|HL|O> = (28)
=K3Q +23 Py Bij + 2 [(@—1) (Qj— 1) — (Pij)z/z] ¥i;
i<j b
whenever ®, = ®; = ©®. This is in particular true for each state ¥

of the type (25). In this case, however, the expression (28) is equalent
to the Pople’s expression® for the total z-electron energy. Since H.[F is a
one-particle operator, its eigenstates are single-determinantal functions,
and hence the iterative diagonalisation of the Hamiltonian H,® is equi-
valent to the People SCF procedure. The pairing theorem now follows
by induction. Assume as a first approximation ¥, = ]CDOQTO > and @, €

€ °XF. Similarly as above one obtains
[HF (D), “P+]=0 (29)

where operators “P* and “P~ project the state ® € °X, on subspaces *X_*
and °X-,, respectively. Hence @, ¢ “X;, where H.F (®,) ¢, =E, @, By
induction the SCF limit @ satisfies® € “X;, and hence the state ¥ =
{(DE) > satisfies the pairing theorem. Note however that solutions which

do not satisfy this theorem may exist. This can happen if ®, ¢ *X;i .

(5) An intermediate approach between a full CI and one-determinen-
tal SCF approach can be formulated. Consider the spin separated states

¥ € Y, and related spaces °X, and ?X,Define spin-o« and spin-3 Hamil-
tonians:

H. (®5) =KZqf + =p] By, + 2y (¢f —1/2) (¢f —1/2) +
i i,j i<i

+ 31y (e —1/2) <®s|q) —1/2| 05>
i3

Hz (@) = KEQf & Epé B + = vy (ql: —1/2) (Qf — 1/2) +
i 18 i<y
+ 31y (@) —1/2) <de|q ¢ —1/2]|0.> (30)
1<y

Using relations (26) one finds that each state ¥ € Y, satisfies
<V|H|¥>=<®|H| Q>+ < D3 | Hp | 05 > (31)

An iterative solution of the eigenvalue equations involving operators H,
and Hp is thus equivalent to the solution of the single eigenvalue equation
involving operator H, as long as one is confined to the spin-separated func-

tions only. If in the first iteration ®°, € °X: and ®%s e fXZT, then
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[H. (9%), °P = 1 = [Hs (®%), P F1=0 (32)

which guarantees the pairing theorem for the iterative limit. Similarly
as in the SCF one-determinental approach, the solutions which do not
satisfy this theorem may exist.

(6) Under the same conditions as above, the pairing theorem can be
shown to be true for the following:

a) Each linear subspace of the space X, in conjuncture with the Ha-
miltonian (18).

b) Each spin-separated space generated from arbitrary linear sub-

spaces of spaces “X, and ‘X, in conjuncture with Hamiltonians (30), etc.

For example, let °K, and ’K, be the set of all spin-« and spin-8 Kekulé
structures, respectively. The space “X*, spanned by the set °K, is a linear
subspace of the space °X,, and similarly for the space X%, spanned by tht
set “K,. The pairing theorem now holds for the space Y, constaining all
the states of the type ¥ = |®, @; > where®, ¢ °X%, and ®; € fX¥.

6. Comparation with the Other Derivations of the Pairing Theorem

It is interesting to compare the above derivation of the pairing theorem
with the results obtained by other authors. Pairing properties are tradi-
tionaly derived within the framework of the MO theory.”° In the SCF MO
approach the molecular orbitals (MO) ¢, are eigenstates of the one-ele-
ctron Hamiltonian operator H

H ﬁl)u =Eu q),u (33)

Each orbital ¢, is a linear combination of atomic orbitals w, which in the
case of hydrocarbons are 2p, atomic orbitals localised about each carbon
atom. In the case of alternant hydrocarbons one can write

q) ME C u Wy +E Cu; W; (343)

where summatlonsz* and 3° are over »starred« and sunstarred« carbon
atoms, respectively. For each orbital ¢,., there is a paired orbital

Y= Troww— 5 ¢ 0, (34b)

the orbital energies being ¢, and ¢’ = 2 K — ¢,, respectively. Relations (34)
express pairing properties. The pairing theorem is the consequence of
these relations. In the Hiickel theory the pairing properties follow from
the fact that diagonal matrix elements are all equal to a constant K, while
off diagonal elements are zero, except between directly bonded atoms,
which are of diferent parity.” In the SCF PPP approximation, an inductive
argument is used.? As a zeroth order approximation a set of MO-s is taken
which satisfies pairing properties. The effective Hamiltonian constructed
out of these orbitals satisfies the condition that diagonal matrix elements
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are all equal to a constant, while off diagonal elements are zero, except
between atoms of different parity. Hence the eigenfunctions of such a
Hamiltonian satisfy pairing properties as well. By induction the SCF limit
also satisfies these properties.®! Mc Lachlan extended the above approach
to the complete CI space.® He considers the PPP Hamiltonian which is
essentially identical to our Hamiltonian (18). To each configuration ¥ con-
structed out of molecular orbitals a paired configuration ¥’ constructed
out of paired molecular orbitals is associated. Using paired MO-s and paired
configurations, Hamiltonian H’ describing a motion of spaired« holes is
constructed. Hamiltonians H and H’ are shown to differ only by a con-
stant, out of which pairing properties of respective eigenfunctions result.’
Koutecky similarly uses pairing of configurations in order to derive pai-
ring properties.’® In the process he defines the so-called pairing operator
C. The pairing properties then result from commutation relations between
a pairing operator C and respective Hamiltonians. He derived a rather
general conditions for a two-particle Hamiltonian to possess pairing pro-
perties.’® There is an interesting connection between the pairing operator
C as defined by Koutecky and our approach. In the case of the CI space X,
this operator can be shown to satisfy? '

C? = (35)

and hence its eigenvalues are + 1. Further, eigenvectors of the Hamil-
tonian operator of an alternant system are also eigenvectors of C, and
any vector multiplied by the projection operator

S+ =(1=xC)/2 (36)

is an eigenvector of C with eigenvalue + 1 and — 1, respectively. The
matrix elements of the Hamiltonian between two vectors, one of which is
multiplied by S. and another by S- equals zero.! This, however, is exactly
the property of projection operators P* and P~ defined in the MORT
approach. Since this is true for each PPP Hamiltonian associated with an
alternant system, projection operators S, as defined by Koutecky must
be the same as projection operators P* (or P * )defined in the MORT
approach. It follows that operators S+ project on spaces X= (or X ). In
particular, each RRS is an eigenstate of the projection operators S and
hence of the pairing operator C. This establishes the connection between
MORT structures and the pairing operator.

The difference between the MORT approach and other approaches
should be noted. All previous derivations of the pairing theorem are ba-
sed on some variant of the MO theory and on the pairing of orbitals (34)
and its generalisations. The pairing properties and the pairing theorem
in particular are then expressed in terms of eigenfunctions of the Hamil-
tonian operator associated with the alternant system. These eigenfuncti-
ons depend on the Hamiltonian and hence they vary from case to case.
In the MORT approach the emphasis is on the splitting of the CI space
X, on subspaces X,* and X, . This splitting has nothing to do with the
particular form of the Hamiltonian. All states ¥=¢ X,* are likely candi-
dates for the eigenfunctions of some Hamiltonian associated with an alter-
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nant system. All these states satisfy the pairing theorem. Pairing pro-
perties are thus regarded as properties of whole spaces X,* and X,~, rather
than to be properties of particular eigenfunctions. It turns out that re-
gular resonance structures form the most natural base in which to express
the pairing theorem. They already satisfy this theorem, and it is very easy
to construct spaces X,* and X,~ out of these structures.

One further point should be mentioned. The pairing properties as de-
rived by Koutecky, McLachlan and others™° are more general than the
pairing theorem derived here in that they apply to ionic alternant systems,
odd alternant systems etc.. The derivation presented in the preceeding sec-
tion can however be generalised to these cases as well.’ In addition, in some
other respects the pairing theorem as derived here is more general. For
example, in the paragraph (3) of the preceding section a very general form
of Hamiltonians satisfying a pairing theorem is given. The construction
of these Hamiltonians is straightforward, and they cover some cases not
explicitly considered by other authors. For example Koutecky formulated
what was untill now the most general conditions for the occurance of pai-
ring properties. However, he derived these conditions only for symmetri-
cal, i.e. real, Hamiltonians. Hence Hamiltonians containing for example
operators BY, Biz; and BY; in (24) are not covered by these conditions.

7. Summary and Conclusion

In this paper the CI space X, generated by n particles moving over
2n orbitals is considered. As a base in this space the so called regular re-
sonance structures are used. These structures are defined within the MORT
approach, and they are antisymmetrised products of mutually disjunct
bond orbitals. The following results are obtained:

1. The space X, can be split into subspace X,* and X,~. »Positive«
structures span the space X,*, while »negative« structures span the space
X,.~. The simple superposition criteria (Definition 1) determines whether
the two structures are contained in the same subspace or not. Each state
¥* € X,* and each state ¥~ € X, is defined to be alternant-like.

2. Matrix elements of selementary« one-particle operators between
alternant-like states possess special properties. These operators either
connect states contained in the same subspace, or they connect states
contained in different subspaces. These properties are summarized in the
splitting theorem 1.

3. As a consequence of a splitting theorem each state ¥* € X, *has
a uniform charge density distribution over all 2n vertices (orbitals), and
a vanishing bond order between vertices (orbitals) of the same parity.
This justifies the term »alternant-like« for these states. In brief, to be
alternantlike is the property of whole spaces X,* and X,~, rather than
the property of particular states. From this point of view charge polari-
sation in nonalternant systems is the result of the interference between
spaces X,* and X,~. Only states containing nonvanishing components in
both subspaces can have a nonuniform charge density distribution.

4. As a further consequence of the splitting theorem eigenstates of
Hamiltonians associated with alternant systems are shown to be contained
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in subspaces X,* and X,-, i.e. they are alternant-like. This then proves
the pairing theorem. This theorem is hence a simple consequence of the
special properties of spaces X,* and X,~. The emphasize here is on these
spaces and their properties, which sheds a new light on the structure of
the CI space X,.

5. As a by result, an explicite construction of Hamiltonians is given,
which possess pairing properties, but which were not till now considered
by other authors.

The only restriction to the generality of the above results is that the
CI space considered should be generated by n particles moving over 2n
orbitals. The above results can hence be applied to all systems which can
be approximated using the minimum basis set. This approximation follows
the physical picture of one electron per atomic orbital, and besides =w-ele-
ctron systems it can be used to describe many o-electron systems as well.
The whole treatment can be however generalised to an arbitrary CI space
X~ generated by n particles moving over N orbitals (n and N arbitrary).’

APPENDIX

Let B = {Xi |i =1...., 2n} be the set of 2n orbitals y;. Unless otherwise spe-
cified orbitals x; will be called primitive orbitals (PO), and we will assume the
set B to be orthonormalised. Consider now n-particle determinants

1 s (—DPy, (P1) x5, (P2) ... % (PD)

D=|Xil,Xi2,...,XinI=\/—n—'—P (A1)

The set of all determinants (A1) is orthonormalised and it spans the CI space Xn.

Normal Resonance Structures

Normal resonance structures are defined in the following way:
1) Form excited and nonexcited bond orbitals (BO)

=0y =+ x)/ V2 nonexcited BO
S (A2)
QX =%y = (—x)/ V2 excited BO

2) Each normalised determinant containing n mutually disjunct BO-s is called
normal resonance structure (NRS). By definition, BO-s are mutually disjunct
if they have no PO in common.? We denote the set of all NRS-s with N(n).

Regular Resonance Structures

Regular resonance structures are defined in the following way:
1) Partition the set B containing 2n PO-s y; into subsets B° and B* containing
n PO-s each. Call PO y: »source« if i € B°, and »sink« if x; € B*. In the case of
alternant systems, and if y; are spin atomic orbitals, source and sink orbitals
can be made to correspond to monstarred and starred atoms, respectively.
2) Consider only those BO-s ¢; and ¢*; which satisfy

xi€e B° and ¥ € B* (A3)

i.e., each BO contains one source and one sink PO.

3) Each normalised determinant containing n mutually disjunct BO-s satisfying
the condition (A3) is a regular resonance structure (RRS). The set R(n) of all
RRS-s is the subset of the set N(n).
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Kekulé Structures

If all BO-s | si) € S contained in the NRS S are nonexcited, and if in addition
they correspond to actual bonds, then S = K is a MORT Kekulé structure. Kekulé
structures are not neccessarily RRS-s.

Superposition of Structures

Graphically, excited and nonexcited BO-s are represented as oriented and
nonoriented bonds, respectively. Superposition of NRS-s Sa and Sy is a graph Gab
which is obtained by superimposing graphical representations of these structu-
res, and it consists of disjunct even cycles ¢, € Gab.2 Each cycle ¢, € Gap is cha-
racterised by two numbers, n, and m,, where (2n,) is the number of bonds in
¢,, while m, is the number of oriented bonds in c,. Cycle c, is »passive« if
(n, +m,‘)2 is even, and »active« otherwise. A cycle ¢, such that n, = 1 is called
a y-cycle.

Different Bond Types

Bond (s) = (i,j) contained in Gab, is a normal bond. Bond (s) = (i,j) not
contained in Gab is a bridge with respect to Gap, and it is a proper bridge. A
normal bond is also considered to be a bridge. If vertices (i) and (4) are con-
tained in the same cycle c,, bridge (s) = (i,j) is internal. Otherwise it is exter-
nal. If vertices (i) and (j) are of the same parity, this bridge is trans-bridge.
Otherwise it is cis-bridge. Each cis-bridge internal to the cycle ¢, forms two
even cycles over c,, while each trans-bridge internal to the cycle ¢, forms two
odd cycles over c,. Former bridges correspond hence to alternant, while latter
correspond to nonalternant bonds with respect to Gab. The notion of cis-bridges
and trans-bridges can be consistently extended to the set R(n) of all RRS-s,
but not to the larger set N(n) of all NRS-s.

Proof of Lemma 1

In order to prove lemma 1 one has to show that each determinant (A1)
can be represented as a linear combination of RRS-s. An arbitrary determinant
(Al) can be written in the form

D = ]Xil’ Xi2y - oy Xir, X jix¥1) 2o -:Xan (A4)

where the first r PO-s (r = 0,...,n) are source (xis € B°), while last (n—7)
PO-s are sink (y;, € B¥). Using PO-s not contained in D, each PO contained
in D can be represented as a linear combination of one excited and one non-
excited BO satisfying (A3). Moreover, since there are n source and n sink PO-s,
this can be done in such a way that no two BO-s are adjacent to each other.
Expanding D in terms of such BO-s one obtains a linear combination of RRS-s.
This proves the lemma 1.

Linear Dependence of the Set R (n)

Consider the set Ro(n) containing all nonexcited RRS-s i.e. these con-
taining no excited BO. One easily finds that this set contains Ro(n) = n! struc-
tures. Each bond in a particular nonexcited RRS can be made to be either
excited or nonexcited. Hence each nonexcited RRS S € Ro(n) generates 2° struc-
tures §* € R(n). It follows that the number R(n) of all RRS-s equals

R(n) =2°n! (A5)

This is larger than the dimension d(n) of the space Xn, unless n = 1. The set
R(n) (n>1) is hence overcomplete.
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Consistency of the Definition 1

As shown by Dewar and Longuet-Higgins® the set of all VB structures can
be partitioned into »positive« and »negative« structures. If the superposition
of the two VB structures contains an even number of 4m-cycles, these struc-
tures are of the same parity, and hence they belong to the same class. Other-
wise they are contained in two different classes.® Graphically, there is a one-
to -one correspondence between 2n-particle VB structures and n-particle no-
nexcited RRS-s. Hence the set Ro(n) of all n-particle nonexcited RRS-s can
be consistently partitioned into subsets R*o(n) and R(n). Since to each excited
RRS there correspond uniquely a nonexcited RRS, this partition can be extended
to the partition of all r-excied (r =1,...,n) RRS-s into two subsets. In con-
junction with the definition of active and passive cycles, this proves the consis-
tency of definition 1.

Proof of the Theorem 1 (Splitting Theorem)

In ref. 2 the following lemma was derived

Lemma 2

Let A5 = A¥ be an internal cis-bridge operator. Matrix element A% =
< Sa| A% |Sp > equals

A%p = (— 1D +Ms’ g (A6)

where (2n’s) is the number of bonds in a cycle ¢’s formed by a bridge (s) over
the superposition Ga», While m’s is the number of oriented bonds in this cycle.
According to this lemma matrix element 4% of an internal cis-bridge operator
As between RRS-s Sa and Sy is proportional to the overlap Sa»n. In addition, ma-
trix element A%» of an external operator vanishes.? Hence and from the eq. (3)
matrix element of any cis-bridge operator 45 = AX! between resonance structures
Sa € Xn* and S» € Xn~ vanishes. Since structures Sa € Xn* span the space Xn*,
while structures Sv € Xn~ span the space Xn~, this proves point 2a) of theorem
1. Similarly all other points of this theorem can be derived.
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SAZETAK

Cijepanje konfiguracijsko-interakcijskog prostora X,
na dva komplementarna podprostora

T. P. Zivkovié

Promatran je n-éesticni konfiguracijsko interakcijski prostor Xn izgraden

nad 2n orbitala. KoriSten je formalizam molekularno orbitalne rezonantne teorije
(MORT). Pokazano je da se prostor Xn cijepa na komplementarne podprostore
Xnt i Xa~ takove da »elementarni« jednocesti¢ni operatori vezu bilo samo stanja
u istom podprostoru, ili samo stanja u razliéitim podprostorima. Iz toga slijedi
da svako stanje ¥* € Xn*, kao i svako stanje ¥~ € Xn—, ima jednoliku raspodjelu
naboja preko svih 2n orbitala, te isGezavajuéi red veze medu orbitalama iste
parnosti. To su karakteristi¢na svojstva vlastitih stanja neutralnih alternatnih
ugljikovodika, i kao jednostavna posljedica slijedi teorem parnosti. Cijeli kom-
plementarni prostori Xa»* i Xn~ su stoga salternantni«, a ne samo pojedina vla-
stita stanja odredenih Hamiltonijana. Diskutirana je veza sa raznim drugim
formulacijama teorema parnosti poznatim iz literature.





