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The confi.g:uration interaction space Xn generated by n 
particles moving over 2n orbitals is considered. The formalism 
of the molecular orbital resonance theoil:y {MORT) a,pproach 
is used. H is shown tha.t the space Xn can be split into SIUJbspaces 
Xn+ and Xn- so that »e1ementary« one-particle opera.tors connect 
either the stJartes contained in ithe same subspace, oil: they conn:ec.t 
the sitates contained in different subsipaces. In pa·rticular, each 
state qt+ E Xn+ atlld each state qt- E Xn- has a uni:form charge 
density distribution over all 2n oirbitals, and vanishing bond 
orders between orbi1tals of the same parity. As a sirrn,ple consequ­
ence the pairing theorem results. To be »alternant-liike« .is thus 
shown to be the property of whole spaces Xn + atlld Xn- , rather 
ithan the property 01f paxticulair eigenstates. The coinnectiioin wilth 
the pairing theorem as deri•ved by other authors i:s discussed. 

INTRODUCTION 

A new approach to the treatment of quantum chemical problems 
was recently proposed.1-4 This aproach, called the Molecu1ar Orbital Re­
sonance Theory (MORT) retains the concept of the resonance from the 
VB method, but .it treruts each particular bond 'in the MO s.ense. Accordin­
gly, a MORT resonance structure is a determinant containing bond or­
bitals. Many quantum chemical problems can be expressed 1n a very 
simple form using these structur·es. For example, a very primitive model 
retaining only Kekule structure in conjunction with the Htickel Hamilton­
ian satisfactorily reproduces the heats of atomisati001 o.f conjugiated hydro­
carbons &5 well as of conjugated heterocompounds.1 The Htickel (4m+2) 
rule can be .generalised to arbitrary conjugated hydrocarbons no·t only 
within the Htickel,2 bwt also within the more sophisticated Pople approxi­
ma't'ion.3 Charge pol!arisation and · bond · length fixat.ion can also be 
explained in a very simple way.4 These results suggest that the MORT 
approach is quite natural in representLng a certain Cllass of quantum che­
mical problems. In the present paper we will further develop this method. 
In particular, the well known pairing theorem will be derived within this 
approach. 

In the f~rsit section the configuriationo interaction (Cl) space X0 is 
considered and MORT resonance structures spanning this space are defined. 
In the second section it is shown how the space Xn can be split into 
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subspaces xn + and xn- spanned by »positive« 1and »negativ·e« structures, 
respectively. In th:e third section the so called splitting theorem i:s de-
11ived. Acc·ording tJo this theorem there are two kinds of »elementary« 
one-particle operators. These operators connect either the states in ithe 
same subspace (Xn + <OT Xn -) , or th·ey connect the states in different 
subs:paces. As a simple consequence of th'iis theorem, each state 'I'+ € Xn +, 
as well as each state 'I'- € xn-, is »alternant-li'ke«. In other words qi± 

is the stiat e with uniform charge density d'i1stri:buti.!On over all vertices 
(atoms), and wilth vanishing bond orders between V1ertices (atoms) of the 
same parity. This is discussed in the fourth section. In the f.ifth section 
the ipairing theorem is derived for a variety of qwantum chemical models. 
The theorem follows from the fact it.hat eigenstat es of the Hamiltonian 
corresponding to an alternant system lie in ,subspaces Xn + and Xn - . This 
theor·em is thus a simple cons·equence of the special properties of spaces 
Xn + and xn-, as expressed by the more general :splitting theorem. In ithe 
sixth section a comparison with the derivation of the pairing theorem by 
other authors is given. In particular, it is shown t hat resonance struc­
tures as defined in bhe MORT 1approach are eigenstates . of the pairing 
operator C defined by Koutecky. These structures hence form the most 
natural lbase in the CI space Xn in which to expTes·s the pairing theorem. 

1. Configuration Interaction Space Xn and MORT Resonance 
Structures 

Let us f'irst define the configuration interaction (CJ) spac·e Xn to 
be treated here. This space ls determined by n particles moving over 2n 
orthonormal'ised orbitals Xi· Orbitals x1 can be spin-orlbiJtials, atiomic or­
bitals, mol:ecular orbitals etc .. For the sake of reference and unless other­
wise specified, we will call orbitals x1 primitive orbitals (PO) . The set 
of all normaHsed determinants containing n prim:itive or:bitalls forms an 
orthonormalised base in the space Xn. Accordingly, the dimension of the 
space Xn equals 

d(n) = (2n) !/(n!) 2 (l) 

One cam now construct different MORT resonance structures in Xn. Normal 
resonance structures (NRIS) are def'ined to be normalis·ed determinants 
containing n mutually disjunct bond orbita1s (BO) constructed out of 
PO-s Xi (see Appendix). The set N {n) of all NRS-s spans the space X

0 

and hence all quantum chemical problems defined in X0 can be ex.pres's·ed 
in terms of NRS-s. This set is however overcomplete, and one can restrict 
consideration to the so called regul1ar resonanc,e structures (RRS) alone. 
The set R (n) of all RRS-s ts a subset of the set N (n) . The definition 
of thiis set deipends on the partition of the set B of all 2n PO-s Xi into 
subsets B 0 and B x containing n PO-s each. For the sake of reference 
orbitals X1€B0 arre called source, while orbitals Xi€Bx are called sink. OnJy 
these BO-s are considered which contaiin one source and one sink PO. Each 
NRS containing only sUICh BO-s is by definition a RRS. In the Appendix 
it is proved that the set R (n) of all RRS-s spans the CJ space X n. This 
set however, is still overcomplete. On can show that the set R (n) can be 
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further reduced by taking into accoUJilt only nonexcited and singly excited 
structures.5 We will not here further elaborate on the linear depen­
dence of RRS-a and this question will be treated eLsewper,e5• For our 
purpose here it •is enough to say that •the se·t R(n) spana- the space Xn. 

'X4 - - - 1 2 

A.3 - - - D X2 - - ·-
X.1 - - - 4 3 

DI D2 03 D4 Ds 05 Bo= [x.2 xJ 

a) b) 
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G12 G13 G14 G1s G15 G17 Gia 

d) 

Figure 1. Norma·! and regular resonance structures in the case n = 2. 

a) The space X2 is spanned by six determinants D1 to Ds. Each of these deter­
minants represents one possible distribution of two particles over four orbitals 
Xi. 

b) P.aTt1:tion of the set B = { xl' x2' x3, x4} on subs·ets B0 and Bx. OrbiltaJs x2 1and 

X4 (2 and 4) are defined ,to be source, while 0 1rbi1ials x1 ·and X3) (1 amd 3) are 
sink. 

c) Normal resonance structures. Nonoriented bonds represent nonexcited bond 
orbitals, while oriented bonds represent excited bond-orbitals. With respect 
to the pairtition B 0 = { x2• X4 } structures S1 oo Sa are Tegu1lar resonance struc­
tures. 

d) Superpositions G12 to G14 contain an even number 01f passive cycles, while 
superpositions G1s to Grn contain an odd number (in this case one) of passive 
cyciles. Structures S1 to S4 span .the spac•e X2+, while structures Ss to Sa span 
the space X2- . 
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Note that the definition of the set R,(n) depends on the pantition of 
the set B on subsets B0 and Bx. There ts a one- to -one correspondence 
between different sets R(n) and different partitions of the set B on sub­
sets B 0 and Bx (up to the exchange B0 +--+ Bx). Hence there are N(n) = 

= (112) (2n!)/(n!) 2 = d(n)/2 different sets R(n) corresponding ito the same 
set N (n). In Figure 1 the case n = 2 is considered. The space X2 is gene­
rated by two particles occupying four orbitals and its dimension is six 
(Figure la). The same space is spanned by twelve NRS-s shown in Figure 
le. One way to partition the set B = {x1, x2, x3, X4 } into subsets B0 and Bx 
is B0 = {x2 X4}, Bx= {x1, Xa} (Figure lb). In this case eight structures (S1 

to S8) are contained in the set R (2). Double exacited structures S4 and S8 

can be eliminated as they are linear combinations of structures S1 to S3 

and S5 to S7, respectively5• A different partition of the set B into subsets 

x 

xOx 
a) 

00CDG0©©© 
b) 

Figure 2. Regular resonance structures in the case n = 3. 
a) Partition on s.inik and source orbitals. 
b) Nonexcited and single exci'ted RRS-s. Structures S1 to S12 span the space Xa+, 

whtle s truotures Sia to S24 span the spaoe X 3-. 
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B0 and Bx would select a different subset of eight structures from the set 
N(2) to form the set R.(2). Two more such partitions defined by B 0 = {x1, 

x2} and B 0 = {Xi• X4}, respectively, are pos..sible. In Figure 2 the case n = 3 
is shown. Only nonexcited and singly excited RRS-s are drawn, since they 
alone span the space X3• Since d(3) = 20 this set is still overcomplete by 
four structures. 

2. Spli tting of the Space X 0 into Spaces X 0 + and X 0 -

Consider the set R (n) of all n-particle RRS-s. In the Appendix it is 
shown that one can partition this set into subsets R+(n) and R- (n) in 
the following way: 

Definition 1 

Let Sa, Sb E R(n). Form the superposition Gab = Sa + Sb.2 1f thds su­
perposition contains an even number of passive cycles, then · these two 
structures are contained in the same subset, ei·ther in R+(n) or in R-(n). 
Otherwi.rse they are contained in different subse.ts. 

The above part1tion of RRS-s on positive and negative structures re­
sembles on the similar-partition of VB structures on posiltive and negative 
structures.6 In fact, the notion of passive cycle reduces to the notion of 
4m-cycle if the two RRS-a in question are nonexcited. The two sets of 
structures have however completely different meaning, and the analogy 
is mainly graphical.2 Acc.ording to the Definition 1, only the partition of 
the set R(n) on subsets R+(in) and R-(n) is fixed. Which subset is called 
R+(n) and which R-(n) i:s arbitrary. The consistency of t he superposition 
criteria is proved in the Appendix. This consistency is not trivial. It can 
be shown that the set l(n) ~ N(n) can be consistently partitioned on 
positive and negative structures if and only if there is some set R(n) ~ N(n) 
of RRS-s such that I(n) s;: R(n). In other words, only subsets of different 
sets of RRS-s can be partitioned on positive and negative structures5• For 
example, the three NRS-s shown in Figure 3a form a set 1(2) which is 
contained in no set R(2). Ahl the three superpositions G 15, G 19 and G 59 

conta.in a single passive cycle (Figure 3b) . If we were to satisfy the su-

DD~ 

Figure 3. Only subsets of different sets o·f RRS-s can be consistently part itioned 
on posit ive and n egative structures. 

a) The set I (2) = { S 1, Ss, Ss} liS contiainred in no set R(2) of RRS-s. 
b) Each •of the superpositions G 1s, G 19 and G ss contains a single passive cycle. 

Partiltion o.f 1the s et I (2) on positive and n eg.aiti.ve &tructures is noit possible. 
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perposit1on criteria, all the three structures should be contained in diffe­
rent subsets. Th1is however r,an not be done with jUiSt two subsets, R +(2) 
and R- (2) , i.e. the set 1(2) can not be partitioned on positive a nd nega­
tive structures alone. On the other hand, using the superposition criteria 
one easily finds that structures S1 to S4 in Figure 1 form R + (2) , while 
structures S5 to S8 form R-(2). Similarly, in Figure 3 structures S1 to S 12 

form R+(3) , while structures S13 to S24 form R- (3) . 

Lt can be shown that the overlrap Sab between RRS-s Sa and Sb equa1s2
• 

_ {2 P- n 
sab - 0 

if G ab contains no passive cycle 

otherwise (2 ) 

where p ts the number of cycles contained ii.n the superposition G ab of 
these two structrue,s. From this equation and the definition 1 it follows 

Lema 1 

Let Sa, Sb E R(n). If Sa E R+(n) and Sb E R- (n) then the overlap Sab 
vanishes: 

(3) 

The space Xn+ spanned by the subset R +(n) is hence orthogonal to the 
space xn- spanned by the subset R- (n), i.e. these two spaces have no vector 
in common (except nulvecrtor) . Since the set R(n) spans the whole CI 
space Xn, it follows that each state 'I' E Xn can be represented as a linear 
combination of some states qt+ € xn+ and p- € xn-· 

(4) 

Given spa·ces Xn+ and Xn-, this representation is unique. Furthermore, 
each choice of a particular set B 0 (or Bx) uniquely fixes the pa,rtition of 
the space Xn on subspaceis Xn+ and xn-, and hence there aire d(n) / 2 such 
partitions (up to the exchange Xn + +--+ xn- which forms no new partition) . 
Moreover, one can show tha,t spaces Xn+ and xn- have the same dimension 
which hence equa11s d(n) / 2.5 For example, in Figure lb structures S1 to S4 

span the subspace X 2+, while structures S5 to S8 span the subspace x 2-. Both, 
x 2+ and x 2- are three-dimensional. One can show that any three of four 
structures S1, •• • , S4 span X 2 +, whereas any three of four sitriuctures 
S5, ••• , S 8 span x 2-.5 Simillarly, in Figure 2 structures S1 to S 12 span the 
space X/, whereas structures S13 to S24 span the space X3- . Since d(3) = 2() 
spaces X 3 + and X 3- are ten-dimensional. Sets { S1, •• • , S12 } and { S13, •• • , S24 } 

are hence both ove~complete by two structures. 

For reasons which will be apparent in the subsequent sect.Lons, we will 
[!all each state 'I' E xn+ and each state 'I' E x n- an a1ternant-like state. In 
conclusion, given spaces Xn + and xn- an arbitrary state 'I' E Xn can be 
represented in a unique way as a linear combinaMon of two alterna,nt-like 
states. 
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3. The Splitting Theorem 

Each one-particle operator defined in the space X n can be represen­
t ed as a linear combination of elementary one-particle operators Aki and 
Bkl such that2 

<xi I Aki I xj> = oik oj1 + ojk on, <xi I Bkl I xj> = v-1 (oik oil -~.1 ojk) 

Jn terms of creaition and annihilation operators one can wriJte 

Aki = a +ka1 + a\ak 

Bkl = v-=-1 (a+k a 1 - a\ ak) 

(5a) 

(5b) 

where a\ and a; ar.e creation and annihilation operaitors russociated with 
the orbital X;· Operators Aki are real, while operators Bkl are imaginary. 
Bot.h , Aki and Bkl are hermitean operators. 

In ref. 2. matrix elements of elementary operators between NRS-s were 
derived. Analysing these ma,trix elements one can prove the following 

Theorem 1 

1. Let the states 'Pa and 'l'b be contained in the same subspace, either 
X n + or X n-· Then 

a) Matriix elemerut A\b = <'l'alAkl'l'b> of each vertex operator Ak = Akk 
equals overlap Sab· 

b) Matrix element A•ab <'l'alA'l'l'b> of each trans-bridge operator 
A• = A kl vanishes. 

c) Matrix element B•ab 
B s = Bkl vanishes. 

2. Let the states 'Pa and 'l'b be contained in different subspaces, one 
in the subspace Xn + and anothe.r in the subspace Xn -. Then 

a) Matrix element A•ab of each cis-bridge operator A" vanishes. 
b) Matrix element B•ab of each trans-bridge operator B• vanishes. 

In other words: 
'Pa, 'l'b € X n+ or '1'8 , 'l'b € xn- __,. A\b = Sab• A•ab = 0 if A• 

is trans-bridge, B•ab = 0 if B• is cis-bridge (6a) 
and 

'l'. € X n+, '¥b € xn- or 'I'a € xn- , 'l'b € Xn+ -+ 

A•ab = 0 if A• is cis-bridg.e 
B•ab = 0 if B• is ·trans-bridge 

(6b) 

The various terms, ci:s-bridge, trans-bridge etc. are explained in the Appen­
dix. We refer to the above theorem as a spJit:ting theorem. All elementary 
one-particle operators are shown to be of two kinds. They either connect 
states contain.ed in the same subspace, or they do connect states contained 
in different subspaces. This is explicitly true for all bond opera.tors, either 
of the ci:s-bridge or of the trans-bridge type. Concerning V·ertex opemtors 
A\ they eff.ec·tively connect only the sta.tes in different subspac.es, since 
(6a) implies <'l'alAk-JI 'I\> = o whenever either '1'8 , 'l'b E xn+ or '1'8 , 

'l'b € xn-· 
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4. Charge Densities and Bond Orders 

There are some very simple and important consequences of the sp;lit­
ting theorem. Consider for example a conjugated 'It-electron sys·tem. Assu­
me that the 1t electrons move over n orthonormallsed 2pz orbitals w1, one 
orbital from each atom participating in the conjug0Jtion. Using these orbi­
tals one can now construct various CI spaces: 

1. Let the sett B contain 2n spin-orbitals Xi 

X1 = W; a (i = 1, . . . , n) (7) 
Xn+1 = ~ = W; ~ 

where a and ~ are spin-a and spin-~ states, respectively. This set uniquely 
defines the Cl space Xn. Let a+1 be creation and a1 annihilation operators 
of the spin-a orbital Xi = w1 a, and let b\ be creation and b1 annihilation 
operators of the spin-~ orbital Xi= w1 ~·Define operators for electron den­
sittes (Qi) and bond orders (P!J) for electrons of a and ~ spins 

pP = (b+b + b+b.)/2 ij i J j 1 (8a) 

and for total bond orders and electron densities 

_ a · ii 
P1J - p ii + p ii (8b) 

Similarly, »cross« bond orders can be defin,ed 

(8c) 

Partitton now the se.t B into subserts B0 and Bx and form corr.esponding 
subspaces Xn + and Xn - . Then according to the splitting theorem 

Q a = < -qr ±I q a I 'i' ± > = Q P = < 'J.i ± j q /J j 'l' ± > = 1 /2 
I I i I i ' i 

(9a) 

Qi = < q,± I qi I 'I'±> = 1 

for each normalised staite 'l'+ E Xn + and qr- E X 0 -. The subspaces Xn + and 
Xn- have a speci.al property that each a;lternant-like state 'I' ± E Xn ± has 
a uniform spin-,a and a uniform spin-~ density of 1/2 over all conjuga,ted 
atoms (i) (i = 1, ... , n). The spin-a and spin-~ charge polarisat.ion, and 
hence the total charge polarisation resuLts from the mixing of states 'I' • 
and qr- in res.peeitive subspaces Xn+ and xn-· In other word:s, the charge 
polarisation is due to the interference between the two subspaces. Further, 
if 'l' ±is an a:lternant-like strute then 

pa =<'11±\ pa \ '11±' = 0 
ij lj / (9b) 
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whenever spm orbilbahs x1 and xj are of the same pa.Itty. Similarly P fJ = 

=--' < 'l' ± I p ~i I 'I' ± > = 0 whenever spin orbitals Xi and XJ are of the 

same parLty, and ana1ogously for cross bond ord:ers P if. Since the choice 
of n spin orbitals contained in B 0 (or in Bx) is arbitrary, spin o:tbttals 
Xi and Xi associated with the same conjugated atom (i), are not necessarily 
of the same parity. In particular considteir the following choices 

la) Let spin orbitals Xi and Xi (i = 1, . . . , n) be of the same parity. 
Such a choice 11equtreis n begin even, since othe;rwise subsets B 0 and Bx 
can not conttadn the same number o! spin orbitails. In this case one obtains 

. ,y, ±' a I ,y, ± ' < ,y, ±I ~ I ,y, ±> < ,y, ±I afl I ,y, ± " Q < "' I p iJ , r .. > = "' p !J ' "' = "' , p ii "' / = 
and hence (10) 

pij = < 'l' ±I Ptj I 'I'± > = 0 

whenever atoms {i) and {j) are of the same parity. F·or example, the CJ 
space X4 corresponding to the cyc1obu:tadiene 1t-electron system is con­
structed out of ei.ght spin orbitals (Figure 4a). Carbon aitoms 2 and 4 

DD 
s s' 

,a). b) .~) 

D :o: @@@ 
s s .s 

d) .e) 

;-,-\ 6"--!J3 
s s· .4 

(Jj 
x x 

g) 

Figure 4. Illustration of the discussion on charge densities and bond orders. 
For details see· text. 

a) Spin orbitals forming cyclobutadiene n-electron system. 
b) Spittl orbitals x1 and x1 are chosen to. be of the same parity. 
c) Some RRS-s consistent with the partition in b) . 
d) Spin Olrbi:tals x1 a.re chosen to be sourc•e, whi!1e spin orbitais )(1 are silnik. 
e) Some RRS-s consistent with the partition in d). 
f) Spin orbitals forming pentalene n-electron system. 
g) Spin or:bitaJs x1 and Xi are chosen .to be of the same parilty. 
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can be chosen to be the source, and ca.rbon atoms 1 and 3 to be the 
sink (Figure 4b). Each state 'JI± E X4 ± has uniform spin densities 

Qi = Qf = 1/2 over all carbon atoms (i). In addition, 1it has vani!Shing 

bond orders P fj, Pfi , P'if and P;i bet ween all aitoms of the same parity 
(1 and 3 or 2 and 4). Similarly, in ithe case of the penJtalene molecule 
carbon a.toms (i) = (3, 8, 6, 7) c•an be chosen to be the source, and carbon 
atoms (i) = (1, 2, 4, 5) to be the sink (Figure 4g). Each state '1'± E X 8 ± 

has uniform elec1tron densLtie1s Qi = Qf = 1/2 and Q1 = 1 over all eight 

carbon atoms. In addition, i.it has vanishing bond orders Pji ,P ~ ,P if and 
P1i between an atoms of the same parity. In particular, < 'l' ± I p78 l '1' + > 
= O, i.e. bond Ol'.der P78 across a »nonaltemant« ·central bond (78) 
vanLshe;s if either '1' = '1'+ E X 8 + or '1' = '1'- E X8- . Since pentalene ts a 
nonalternant molecule the eigenstates of the corresponding Hamiltonian 
are polarised. Hence these eigenstates are neither in the subspace X 8 + nor 
in the subspace X8- but should contain components of both. 

If the conjugated system is even alternant, the partition on source 
and ,sink atoms can be made to coincide wi·th the partitton on starred and 
unstarr1ed atoms, as we did in the case of the cyc1obutadiene molecule 
(Figure 4b). The ei.genstate:s of neutra1l alternant hydrocarbon system 
possess a specific property thait they hav·e uniform charge density di.istri­
bution over all carbon atoms and vani!Shing bond orders between all a•toms 
of the same pariJty. This is exactly the property of the states '1' ± E X n ± , 
and hence we call such states alternant-like. In the following section it 
will be shown t hat, under certain assumptions, all eigenstates of a neut ral 
alternant hydvocarbon system can be chosen to be alternant-1ike, i.e. to lie 
eit her in the space Xn + or in the space xn-· 

lb) Consider now the following partition of the set B on subsets B 0 

and Bx: 

(i = 1, .. . , n) (11) 

Each RRS contains now only those BO-s which connect one spin-o; and 
one spin-~ orbital. All spin-a orbitals are of one parity, while a.11 spin- ~ 
orbi.itals are of another. Hence 

< 'l'± iPij i 'l'±> = < 'l' ±I Pfi 1'1-.±> = 0 

and 
+ + 

pij = < '1' -· I P1i I 'l' - > = 0 
(12) 

for all atoms (i) and (1) (i-¢ 1). In thi:s representation bond orders P;J 
are nonvani:shing only between the states 'I'+ and '1'- contained in diffe-

rent subspaces. Only cross bond mderi.s p~P can connect the states within 
IJ 

the same subspace (see Figure 4d) and 4e)). Partitions (la) and (lb) 
are two e}Ctreme examples. Many other pairtitions of the set B on subsets 
B 0 and B x ar.e possible. Each of these partitions redefines the notion of the 
alternant-like state. As illustrated by relations (10) and (12) , this leads 
to the van1shing of different sets of bond orders of altemant-like staites. 
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2. In a spin-separation approximation the state 'I' is assumed to be 
an anti.5ymmetrtsed pro.duc;t of a spin-a: and a spin-~ states <I>aand ciiP re­
spectively1 

'I' = I <I>a it>µ > (13) 
In pa,rticular, the ground state of a conjugated system containing an 
even number of electrons is usually well represented in the form (13) 
where cI>a = cI> p = cI> ts an n-pa.rticle state11

• Hence we will consider the 
space Yn which is the smallest space containing all spin separated states 
(13) such that subsitates cI>a and !l>p c<antain n parttcles each. This spa.ce 
is a nonline1ar subspace of the comp1ete CI space X2n. The state (13) is 
however more general than one-determinental states assumed in various 
SCF approaches. As far as correspond1ing spa.ces are conserned, t he spin­
-separation assumpti.on is intermediate between the SCF appro:.:i,ch and 

the complete CI treatment. Let a Xn and Pxn be CI spaces associated with 

sets aB ={Xi Ii, .. . , 2n} and 'liB ={Xi Ii = l, ... , 2n}, respectively. Partition 
the set a B on subsets aB0 and a Bx. This partition determines spBces 
axn+ and axn-, ,subspaces of the spin-a: space axn. One finds 

+ + Qi=<cI>- lqi l <I> -->=1/2 (i = l, ... ,2n) (14a) 

for ea.ch normalised state <I>±€ a Xn ±. Also 

P iJ = < cI>± I P iJ j <I>±>= O (14b) 

whenever orbitals x1 and Xi are of the same partty. Similarly, spaces ~ Xn + 

and ~ Xn- can be constnlCted. Hence 
Q, = < 'I' I qi I 'I' > = < cI>a ii>ii I qi I <fl, ~/I > = 1 ( 14c) 

whenever cI>a and ifi11 a·re alternant-like, Le. cI>a € a Xn ± and cI>p e tJ Xn ± 

(<I>a and <Pp are normaliised). If the partition is such that Xi € aB0 implies 
Xi € ~B0, 'then for aliternant-like <I>a and cDf, 

<'I' I PiJ I 'I'> = < !l>a~/11 PtJ I <fla ilip > = Q (15) 
whenever atoms (i) and {i) are of .the same parity. In conclusion, each 

alteirnant-like spin-a: state <I>a€ axn has a uniform spin-a: density of 1/2 over 

all atoms (i), and vanishing bond o.rders Pli betw:een all atoms of the same 
parity. Analogous relatLons hold for each alte,rnant-like spin- ~ stat.e 

tl>p € 11Xn and hence for each state 'I'= J !l>acii11 > € Yn constructed out of · 
altemant-like states <I>a and q;,-p. For example, RRS-s in Figure 2 can be oon-

sid.ered to span ithe CI space a X3 (!Or the CI space /JX3) associated with 

the benzene molecule. Structures S1 to S12 now span the subspace ax3+, 

while structures S13 to S24 span the subspace ax3-. Each linear combination 

of structures S1 to S12, i.e. each state cI> € ax 3 +, has a uniform spin-·o: denstty 

of 1/2 over all six carbon aitoms and vaniishing spin-a: bond orders P fi bet­

ween all atoms of the same parity. Similarly for each state <I> e ax 3- which 
is a linear oombin,ation 00' struc,tures S13 to Sw Charge polarisation is again 
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due to the interference between subspaces 0 X/ and 0 X3-. In the spin se­
paration apprioximat.Lon the ground state of the 7t-elect.ron benzene system 

- + ts or the form 'I' = 1 <1> ct> > wh:ere <1> is a1ternant-1ike, Le. <1> e ax :i-. More-

over, ct> E "X3 + since the subspace "X3 + contains Kekule structures S1 and 
S2 which are most s.table. 

3. The above approach can be gener:allised. to include a-electrons a:s 
well. Let w1 (i = 1., ... , n) be orthonormalised atomic orbitals including 
now orbLtals forming a bonds as well. Define the set B to contain 2n spin 
orbitals Xi = w1 a and Xi = w1 ~. in analogy with (7). Define operators for 
electron densities on atom (µ) and bond orders between atoms (µ) and (u): 

p~u = ~ (a\ a1 + a+1 a1)/2 (l6a) 
iEµ, j EV 

p~V = ~ (b+I bl+ b+l b1)/2 
iEµ, j EV 

for spin-a: and spin-~ electron dens!ttes and bond orders. The symbol iEµ 
means that the i-th spin orbLtal 1s Localised on the atom (µ) and the sum­
mation 1s performed accordingly. Similarly cross bond orders 

p~~ == ~ (a+! bl + b+l ll1) /2 
ieµ, j EV 

(16b) 

and total bond orders and electron densities 

Qµ = q ~ + q ~ Pµv = p ~v + p ~v (16c) 

can be defin.ed. The set B determines the corresponding CI space X 0 • For 
an arbLtrary partitLon of B on subse.ts B 0 and Bx one finds 

< 'I'± ! q ~ I 'I' ± > = < 'I' ± J q ~ i 'I' ± > = n µ. 12 

<'l'± lqµl'l'±>=nµ (17a) 

where nµ is the number of AO-s w1 l.ocallsed on the atom (µ), and the 
states qi :±: c x;t: are normalised. If the partition of the set B on subsets 
B 0 and Bx is such that all spin orbitals localised on a par:ticular atom (µ) 
are of the same patrity, then 

<'l'±IPa. i 'l'±>=<'l'± jpB j'l'±>= µv 1 µv 

<'1'± 1 Pa.~ l 'l'±>=<'l'±IP i'l'±>=O 
1 µv µv 

(17b) 

whenever atoms (µ) and (v) are of the same parity. Relations (17) are 
generalisations of relations (9a) and (10). 
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5. The Pairing Theorem 

In the context of the Htickel or Pariser-Parr-Popl.e approximaition, 
molecular orbita1s nad orbital energies of alternant hydrocairbons have 
»pairing proper:tLes«. These properties were first deduced by Coulson and 
Rushbrooke7 using Htickel theory, while Pople8 did the same for the SCF 
theory. Mc Lachlan9 extend.ad the treatment to the comp1ete CI space, 
while ~outecky10 deduced rather general conditions for the occurance of 
pairing propertie1s. He fonnu1arted these conditions in terms of the system 
of equations to be satisfied by one- and two-particle parts of the Hamil­
tonian operator.10 In the case of neutral alternant hydrocarbons, the most 
important ~onsequence of pa1ring properties ts uniform 7t-electron charge 
density and v'anishing bond orders between all carbon atoms of the same 
parity (starred or nonstarred). We will refer here to these properties as a 
pairing theorem. This theorem will be derived here for a variety of appro­
ximatkmrs using the MORT approach. 

(1) In the second quantisation forrnaJJism the PPP Hamiltonian of an 
alte:mant hydrocarbon system can be written in the form · 

H = K ~ q1 + :S P1J ~tj + ~ Y1J (qi-1) (qJ-1) + 
l l,j l<J 

+ ~ Y11 (qa -1/2) (q " -1/2) 
I I I 

(18) 

where the resonance integrals ~tJ = ~Jt vanish unless atoms (i) and {j) 
are of dtfferent parity, K = E1 + y11/2 1s the effective potential energy of 
a 7t elect:rion which is the same on each carbon aitom, and Y1J are electron 
repulsion integrals 

Ytj = f W1 (1) W1 (1) l/T12 wj (2) wj (2) dl d2 (19) 

Up to the con:stant the Hamiltonian (18) is identical to the PPP Hamil­
tonian as defined by McLachlan in ref. (9). Consider now the CI space X 0 

defined in the paragraph (1) and subspaces xn+ and xn- as defined in the 
paragraph (1,a) of section 4. Define projection operators p+ and P- which 
project a state 'l' E Xn onto subspaces Xn + and Xn-, respectively 

(20a) 

These operators satisfy 

p+ + P- = I and p+ P- = 0 (20b) . 

Since the operator N = ~ q1 is the operator of the total number of electrons 
it fol1ows 

(21a) 

i.e., the first term in the Hamiltonian (18) commutes with both, p+ and 
P-. Furthermore, according to the splitting theocem < w+ I p1J I W-- > = 0 
whenever ventices (i) and (j) are of different parity. Hence 

(21b) 
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if (i) and (1) are of different parity, and thus the second term in the 
Hamiltonian (18) commutes with P ± as weU. Consider now the commu-

tator [ (q ~ -1/2) (q: -1/2), p+] and observe the action of this commu-
A 

tator on the state 'I'+ € xn+· Relations (9) imply (qf - 1/2) p+ 'I'+ = 

(qf -· 1/2) 'I'+= 'I''€ xn-, and further (q~ - 1/2) 'I''= <!'"€ Xn+· Analogou­

sly, p + (q~ - 1/2) (qf - 1/2) 'I'+ = p + (q~ - 1/2) 'I'' = p + 'I'" = 'I'". 

Hence [ ... ] 'I'+ = 0. One can similarly show that [ ... ] '!'"- = 0 where '!'"- € 
xn-· Hence the commutator [ ... ] vanishes. In the same way the following 
relations cam. be derived : 

[(q ~ - · 1/2) (q; - · 1/2),P±] =0 

[ (q f -1/2) (q: --1/2), p :': ] = 0 

[(qt - -1/2) (qf -1/2),P±] = 0 

(21c) 

Relattons (2·1) imply that the Hamiltonian Hts b1ockd1agon,aUsed in spaces 
Xn+ and Xn-· Thi:s proves the pairing theorem since each state 'I'±€ Xt has 
a uniform ~lectron density Qi = 1 over all atoms (i), and vanishing bond 
orders P1J = 0 betw:een all atoms of the same parity. 

+ (2) In addition to the property Q1 = 1 alternant-like states 'I'-·- sa.tlsfy 

Q~ = 1/2 and Q e = 1/2. Stmilarly, not only total bond orders PIJ• but also 

spin bond orders P~3 and P~ , a.is well as cross bond orders P ~P vanish 
between atoms of the same parLty. This is a stronger assertion than the 
one implied by the pair.mg theorem as stated above. In connectlon with 
it note that 

<'I' ± IS, I '1'±> = 0 where s. = ~1 (q' - q s )/2 (22) 

is the operator ·Of the spin projectton. Thts opera.tor is however an integral 
of the m«?tion, i.e. [S,, HJ = 0. It implies that triplet and higher multiplet 
states must be pairwise degenerate in spaces Xn+ and X 0 -. Namely, if 'I' 
satisfies 

H 'I' = E'I' and s, '1' = (m/2) 'I' m ~ 0 

then it must be of the fo.rm 'I' = 'I'+ + 'I'- where 'I' ± ~ 0 

(23a) 

(23b) 

since otherwi:se <'I' I Sz I 'I'> = 0, contmry to (23a). Since howev.er H is 
block-diagonalised in xn+ and xn-, states '}!+ and 'I'- are degenerate ei­
genstateis of the Hamiltonian H with the eig-envalue E. Furthermore, if the 
state 'I' = 'I'· + <!'- is an eigenstate of the opemtor Sz with the eigenvalue 
(m/2), then the state 'I" = IJI+ - 'I'- is an eigenstate of the same operator 
with the eigenvalue (- m/2). Eigenstates 'I' and 'I'' (and 'I'+ and '!'"-) of 
the Hamiltonian operator H thus appeaJ" in pains. If however m = 0 then 
either 'I' = 'l'T or 'l1 = '!'"-, unless there ts an accidental degeneracy. In 
particular, unless there is an accidental degeneracy each singlet eigenstate 
is contained either in x n+ or in x n- · 
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(3) A pairing theo11em derived in (1) follows. from the commutation 
relatLons (21). According to the spUtting theorem and the results obtained 
so far, all the following operators commute with projecition operators p+ 
and P---: 

(i) and (j) are of different parity 

(i) .and (j) are of the same parity 

(24) 

(qr -1/2) (q a -- 1/2) 
l 

(qf -- 1/2) (q fi - 1/2) 
l 

(i) and (j) are arbitrary 

(q~ -- 1/2) (q 1 - 1/2) 

Eigenfunctions of any Hamiltonian which ~s an arbitrary function of .the 
above operators satisfy the pairing theorem. The PPP Hamiltonian (18) 
is only the specia.l case. Using various operators in (24) one can explicit[y 
construct all such Hamiltonians. 

(4) In the SCF formulation of the PPP approach, the eigenstate 'l' is 
assumed to be a single-det·erminantal functiion.8 In particular, a closed 
shell singlet state i1s of the form 

'l'=lt!i1,~1• tliz, tliz, ... , 4Jn, ~nl = (-l)n(n-l)/2J<1><1>> 

<I> = I tli1, tliz, · · · • tlin J 
(25) 

where tjl1 are orthonormalised molecular orbitals, linear combinations of 
2n atomic orbitals w/1• Each state (25) d.s a ·spin separated state contained 
in the space Yn. An arbitrary single-determinental state '!' = I <I>a<i>P > € Yn 
satisfies 

< 'l' I qf q ; i 'l' > = < <l>a <Dp I q~ q ~ I c!>a cDf) > = Q~ Q; - (P~ )
2 

(26a) 

where 

p~ = < '!'Ip~ J 'l' > = < <l>a Ip~ I <l>a > 
and similarly for ~-spins. 

(26b) 
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Define now a one-particle spin-ex Hamiltonian 

H ap = LQ ~ [K + 2 L Yij (Q: -1/2)] + L P ~ ( ~ti- P~ YiJ) 
i j~i i~j (27) 

Using (26) one easily finds that 

2 < fl> I H ap I <I> > = (28) 

~= K L Qi+ 2 ~ P1j ~tj + ~ [(Q1 - 1) (QJ-1) - (P1J) 2/2] Ytj 
i<:: J i<::J 

whenev,er ll>a = <l>p = rt>. This is in pa·rticular true for each state 'l' 
of the type (25). In :this case, however, the expression (28) is equaJ.enit 
to the Pople's e~pression8 for the total :n:-electron energy. Since H/ is a 
one-particle operator, its eigenstates are single-determinantal functions, 
and hence :the iterative diagonalisation of the Hamiltonian HaP is equi­
valent to the People SCF pliOcedure. The paiirin.g theorem now follows 
by induction. Assume as a first approximation '1'0 = I cl>0 cl>0 > and cl>0 E 

E 0 xt. Simila·rly as above one obtains 

(29) 

where operators ap + and ap- project the state cl> E ax n on subspaces a Xn + 

and ax-n, respectively. Hence 11>1 E ax,°t' , where Hap (cl>0 ) <1> 1 = E1 ll>i- By 

induction the SCF lim·it cl> satl!sftes cl> E ax ;t:- , and hence the state 'l' = 

I <I> cl>> satisfies the pairing theorem. Note however that solut ions which 

do not satisfy this theorem may exist. This can happen if <1>0 ¢ ax,t . 
(5) An intermediate approach between a full CI and one-determinen­

tal SCF approach can be formulated. Consider the spin separated states 

'l' E y n and related spaces ax n and p Xn.Define spin-ex and spin- ~ Hamil­
tonians : 

Ha (cl>p) = K ~ q ~ + ~ P~ ~tJ + 2:Y1i (q~ -- 1/ 2) (q f - 1/2) + 
i i ,j 1<'.:i 

+ ~ r 1j ( q~ - 1/2) < <I>p I qf - 1; 2 1 «l>p > 
l<::J 

H p (<I>a) = K ~ q~ + ~ P~ Pi; + ~ Yti (q ~ - 1/ 2) (qf - 1/ 2) + 
1 i ,j l < J 

+ ~ Yii (q f - 1/2) <:: cl>a I q a - 1/ 2 I <I>a > 
l<J J 

Using relations (26) one finds that each state 'l' E Yn satisfies 

< 'l' I H I 'JI > = < <I>a I Ha I <I>a > + < (i)p I H p I (ii p > 

(30) 

(31) 

An iterative solution of the eigenvalue equations involving operators Ha 
and H p is thus equivalent to the solution of the single eigenvalue equa.tion 
involving operator H, as long as one is confined to the spin-.separated func-

tions only. If in the first iteration <1>0 a E axf and <1>0 p E Pxf' then 
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[Ha (tl>0 p), ap ±] = [Hp {tl>0 a), Pp±] = 0 (32) 

which guarantees the pairing theorem for the iterative limit. Similarly 
as in the SCF one-detenninental approach, the solutions which do not 
satisfy thiJS theorem may exist. 

(6) Under the same conditions as above, the pairing theorem can be 
shown to be true fm the following: 

a) Each linear subspace of the space Xn in conjuncture with the Ha­
miltonian (18). 

b) Each spin-separated space generated f'rom arbitrary linear sub-

spaces of spaces "Xn and Pxn in conjuncture with Hamiltonians (30), etc. 

For example, let aK0 and PKn be the set of all spin-a and spin-~ Kelmle 

structures, respectively. The space "Xkn spanned by the set aK
0 

is a linear 

subspace of the space axn, and similarly for the space Pxkn spanned by th1 

set PK,,. The pairing theorem now holds for the space Y'0 cortstaining all 

the states of the type 'I'= I tI>a CJir. > where<I>a E axkn and '(i)p E Pxkn• 

6. Comparation with the Other Derivations of the Pairing Theorem 

It is interesting to compare the above derivation of the pairing theorem 
with the results obtained by other authors. Pairing properties are tradi­
tionaly derived within the framework of the MO theo.ry.7- 10 In the SCF MO 
approach the molecular orbitals (MO) qiµ are eigenstates of the one-ele­
ctron Hamiltonian operator H 

(33) 

Each orbital qiµ is a linear combination of atomic orbitals wi which in the 
case of hydrocarbons are 2pz atom1c orbitals localiised about each carbon 
atom. In the case of alternant hydrocarbons one can write 

qiµ = :S* c µi wi + :S0 c,,J wi (34a) 
I j 

where summaitions:S* and :S0 are over »starred« and »unstarred« carbon 
atoms, respectively. For each orbital qiµ, there is a paired orbital 

qi•,, = ~*C1,i W; - ~° CµJ Wi (34b) 
i j 

the orbital energies being Eµ and e.'1, = 2 K - Eµ, respectively. Relations (34) 
express pair,ing properties. The pairing theorem ts the consequence of 
these relations. In the Htickel theory the pairing properties follow from 
the fact that diagonal matrix elements are all equal to a constant K, while 
off diagonal elements are zero, except between directly bonded atoms, 
which are of diferent parity.7 In the SCF PPP approximatk>n, an inductive 
argument is used.8 As a zeroth order approximation a set of MO-sis taken 
which satisfies pairing properties. The eUective Hamiltonian constructed 
out of these orbitals satisfies the condltion that diagonal matrix elements 
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are all equal to a constant, while off diagonal elements are zero, except 
between atoms of different parity. Hence the eigenfuncttons of such a 
Hamiltonian satisfy pairing properties as well. By induction the SCF limit 
also satisfies these properties.8 Mc Lachlan extended the above approach 
to the complete CI space.9 He considers the PPP Hamiltonian which is 
essentially identica;l to our Hamiltonian (18) . To each configuration 'I' con­
struoted out of molecular orbitals a paired configuration 'I'' constructed 
out of paired molecular orbitals is associated. Using paired MO-s and paired 
configurations, Hamiltonian H' describing a motion of »paired« holes is 
constructed. Hamiltonians H and H' are shown to differ only by a con­
stant, out of which pairing properties of respective eigenfunctions result.9 

Kou.tecky similarly uses pairing of oonfigurations in order to derive pai­
ring propertdes.10 In the process he def.ines the so-called pairing operator 
C. The pairing properties then result from commutation re1atLorns between 
a pairing operator C and respective Hamiltonians. He derived a mther 
general conditions for a two-particle Hamiltonian Ito possess .pairing pro­
perties.10 There is an interesting connection between the pairing operato.r 
C as defined by Koutecky and our approach. In the case of the CI space X0 

this operator can be shown to satisfy10 · 

C2 =I (35) 

and hence its eigenvalues are ± 1. Further, eigenvectors of the Hamil­
tonian operator of an altemant system are alJSo eigenvectors of C, and 
any vector multiplied by the projection operator 

S ± =(I± C)/2 (36) 

is an eigenvector of C with eig.envalue + 1 and -1, respectively. The 
matrix elements of the Hami1ton1an between two vectors, one of which is 
multiplied by S+ and another by S- equals zer:o.10 This, however, is exact<Iy 
the property of priojection operators p+ and P- defined in the MORT 
approach. Since this is true for each PPP Hamiltonian associated with an 
alternant sysitem, projection operators S + as defined by Koutecky must 
be the same as projection operators p±- (or P + )defined in the MORT 
approach. It follows that operators S:t: project on spaces x± (or x+t. In 
particular, each RRS is an eigenstate of the projection operators S + and 
hence of the pairing operatocr C. This establishes the connection between 
MORT structures and the pairing operator. 

The difference between the MORT approach and other approaches 
should be noted. All previous derivations of the pairing theorem are ba­
sed on some variant of the MO theory and on .the pairing of orbitals (34) 
and its generalisa·ttons. The pairing properties and the pairing theorem 
in particular are then expressed in terms of eigenfunctions of the Hamil­
tontan operator associated with the altemant system. These eigenfuncti­
ons depend on the Hamiltonian and hence they vary from case to case. 
In the MORT approach the emphasis is on the splitting of the CI space 
X 0 on subspaces X 0 + and xn-· This splitting has nothing to do wiJth the 
particular form of the Hamiltonian. Ahl states '11 ± e Xn ± are likely candi­
dates for the eigenfunctions of some Hamiltonian associated with an alter-
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nant system. All these states satisfy the pa.il'ing theorem. Pairing pro­
perties are thius regarded as properties of whole spaces X n + and x n-, rather 
than to be properties of pa.rticular eigenfuncttons. It turns out that re­
gular resonance structures form the most natural base in which to express 
the pairing theorem. They already satisfy this theorem, and it is very easy 
to construct spaces X n + and Xn- out of these structures. 

One further point should be mentioned. The pairing properties as de­
rived by Koutecky, McLachlan and others7

-
10 are more general than the 

patring theorem derived here in that rtihey apply to ionic aJ.ternant systems, 
odd alternant systems etc .. The derivat·ion presented in the preceeding sec­
tion can however be generalised to these cases as well.5 In addition, in some 
other respects the pairing theorem as derived here is more general. For 
example, in the paragraph (3) o,f the preceding section a very generail form 
of Hamiltonians satisfying a pairing theorem is given. The construction 
of these Hamiltonians is straightforward, and they cover some cases not 
explicitly considered by other authors. For example Koutecky formulated 
what was untill now the most general conditions for the ocourance of pai­
ring p:rioperties. However, he derived these condiUons only for symmetri­
cal, i.e. real, Hamiltonians.10 Hence Hamiltonians containing for example 
operators B ija, B ijp and B iiaP in (24) are not covered by these conditiJO.ns. 

7. Summary and Conclusion 

In this paper the CI space Xn generated by n particles moving over 
2n orbital:s is considered. As a base d.n this space the so called regular re­
sonance structures are used. These structures are defined within the MORT 
appr.oach, and they are antisymmetrised products or mutually disjunct 
bond orbitals. The following results are obtained: 

1. The space Xn can be split into subspa.ce X 11 + and xn- · »Positive« 
structures span the space x n+, while »negative« structures span the space 
x n-· The simple superposition criteria (Definition 1) determines whether 
the two structures a.re contained in the same subspace or not. Each state 
qt+ E X n + and each state I.Jr E Xn- is defined to be alternant-liike. 

2. Matrix elements of »elementary« one-particle operators between 
alternant-like states possess special properties. These operators either 
connect states contained in the same subspace, or they connect states 
contained in different subspaces. These properties are summarized in the 
splitting theorem 1. 

3. As a consequence of a splitting theorem each state qt± E Xn ± has 
a uniform charge density dist·ribution over all 2n vertices (orbitals), and 
a vanishing bond order between vertices (orbitals) of the same parity. 
This justifies the term »alternant-like« for these states. In brief, to be 
alternantlike is the property of whole spaces X n + and Xn -, rather lthan 
the property of particular states. From this point of view charge polari­
sation in nonalternant systems is the result of the interference between 
spaces Xn + and xn- · Only states containing nonvani:shing componentJs in 
both subspaces can have a nonuniform charge density distribution. 

4. As a further consequence of the splitting theorem eigenstates of 
Hamiltonians associated with alternant systems are shown to be contained 
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in .swbspaces Xn+ aind xn-, Le. they are alternant-like. This then proves 
the pairing theorem. This theorem is hence a simple consequence of the 
speciaJl properties of spaces Xn + and Xn -. The emphasize here is on these 
spaces and their p11operrties, which sheds a new light on the structure of 
the CI space Xn. 

5. As a by result, an expUcite construction of Hamiltonians is given, 
which possess pairing properties, but which were J1J0t till now considered 
by other authors. 

The only restriction to the generaiity of the above results is that the 
CI space considered should be generated by n particles moving over 2n 
orbitals. The above results can hence be applied to all systems which can 
be approximated using the minimum basis set. This approximation follows 
the phy1sical picture of one e·lectron per atomic orbital, and besides 1C-ele­
ctron systems it can be used to describe many a-electron systems as well. 
The whole treatment can be however generalised to an arbitrary CI space 
XN0 generated by n particles moving over N orbitals (n and N arbi-trary).5 

APPENDIX 

Let B = {Xi I i = 1. . . . , 2n} be the set 01f 2n orbiltia1ls Xi· Unl1ess otherwise spe­
cified orbitalJS x1 will be called J)['limitLve orbjjtals CPO) , and we Wlill ass1Ume ithe 
set B to be orthonormalised. Consider now n-particle determinants 

D =I . . , . I =- 1- :E .(-l)PXu (Pl) x12 CP2) .. . x1n (Pn) 
X 11, X12, •• • , Xm v n! P (Al) 

The set of all determinants (Al) is orthonormaUsed and it spans the CI space Xn. 

Normal Resonance Structures 

Normal resonance structures are defined in the following way : 
1) F·orm excited and nonexctted bond oribitals (BO) 

rt's = rtlij = (Xi + XJ) / v2 nonexcited BO 

excited BO 
(A2) 

2) Each normailised determinant containing n mutually disjunct BO-s is called 
normal resonance structure (NRS). By definition, BO-s are mutually disjunct 
if they have no PO iirl commo111.2 We denote the set of rull NRS-s w.ith N { n) . 

Regular Resonance Structures 

Regular resonance structures are defined in the follo;wing way: 
1) PM"titiion .the siet B containing 2n PO-s xi !Lnto subsets B 0 and Bx coma:i!Il:ing 
n PO-s ea·ch. Call PO x1 »source« if x1 € B0

, and »sink« if x1 € Bx. In the case of 
alternant sys.terns, and if x1 are spin atomic orbitals, source and sink orbitals 
can be made to correspond Ito nonst.arred and starred atoms, respeciti.vely. 
2) Consider l()IIlly those BO-s qJ1J iam.d qi*1J which saitisfy 

( A3) 

i.e., each BO contains one source and one sink PO. 
3) Each nor1ma1ised determinant co:ntain.iln!g n mutually diJsjmmt BO-s saiti.Slfying 
the condition (A3) is a regular reson:runoe struC!ture (RRS). The set R(n) of all 
RRS-s :is the subse1t of the set N (n). 
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Kekule Structures 

If all BO-s I S1) € S contained in the NRS S are nonexc-ited, and if in addition 
they correspond to actual bonds, then S = K is a MORT Kekule structure. Kekule 
structures are not neccessarily RRS-s. 

Superposition of Structures 

GraphicaUy, excited and none1xcited BO-s are represented as I oriented and 
nonoriented bonds, respectively. Superposition of NRS-s Sa and Sb is a graph Gab ' 
which is obtained by superimposing graphical representations of these structu­
res, and it consists of disjunct even cycles Cu € Gab.2 Each cycle c,, € G ab is cha­
raoterilsed by two numbers, n,, and m,,, where (2n,,) iJs the number of bonds in 
c,,, whiJe m,, is the number of oriented bonds in c,,. Cycle c,, is »passlive« if 
<n,, + m,,) is even, .and »,active« otiherwase. A cycle c,, such thait n,, = 1 is called 
a y-cycle.2 

Di!f erent Bond Types 

Bond (s) = (i,j) contained in G ab is a normal bond. Bond (s) = (i,j) not 
C'ontained in G ab is a bridge with respect to G ab, and it is a proper bridge. A 
normal bond is also cons:Ldered to be a bridge. If vertices (i) rand (j) are con­
tained in the same cycle c,,, bridge (s) = (i,j) is internarl. Otherwise it is exter­
nal. If vertices (i) 1and (j) ame of the same parity, 1thils bridge is rtrans-bridge. 
Otherwise it is c.is-bridge. Each cis-bridge internal to the cycle c,, forms two 
even cycles over c,,, while each trans-bridge inrtemail to the cycle c,, forms two 
odd cycles ov1er c,,. Formeir brddges correspond hence to altiernant, while l1aitter 
correspond to nonalternant bonds with respect to G ab. The notion of cis-bridges. 
and trans-br:Ldges ca.n be consistently extended ito the set R(n) O'f a11 RRS-s, 
burt noit to the Larger set N(n) of iall NRS-s. 

Proof of Lemma 1 

In order to prorve lemma 1 one has tu show that each determinant (Al) 
can be represented as a linear combination of RRS-s. An arbitmry determinant 
(Al) can be written in the form 

D = I Xu, Xi2, · ·., Xir, X j(r+ l) , · · ·, Xin I (A4) 

where :the first r PO-s (r = 0, ... , n) are sourc:e (Xis € B 0
), while ;Last <n-r) 

PO-s a1'e stnk (XJs € Bx). Using PO-s not conta:Lned in D, each iPO contained 
in D can be represented as a linear combination of one excited and one non­
excited BO satisfying (A3). Moreover, since there are n snurce and n sink PO-s, 
this can be done in such a way that no two BO-s are adjacent to each other. 
Expanding D in terms of such BO-s one obtains a linear combination of RRS-s. 
This proves rthe lemma 1. 

Linear Dependence of the Set R (n) 

Consider the se•t Ro(n) conrtainmg all nornexcdted RRS-s i.e. these con­
taining no excited BO. One eruslily finds that this set contains Ro(n) = n! stiruc­
tures. Each bond in a particular nonexcited RRS can be made to be either 
excited or illOIIlexc1ted. Hence each nonexcited RRS S € Ro(n) generates 2n stru.c­
t ures S' € R(n) . ]t follows that the number R(n) of all RRS-s equals 

(A5) 

This is Iariger than the dimension d(n) of the space Xn , unless n = 1. The set 
R(n) (n > 1) is hence overcomplete. 
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Consistency of the Definition 1 

As shown by Dewar and Longuet-Higgins6 the set Q>f a ll VB structures C·an 
be partitioned into ~positive« and »negative« structures. If the superposition 
of the tWQ VB structures contains an e.ven number of 4m-cycles, these struc­
tures are of the same parity, anld hence they bell{}ng to the same class. Other­
wise they are contained in two different classes.6 Graphically, there is a one­
to -one correspondence between 2n-particle VB structures and n-particle no­
nexcJited RRS-s. Hence tihe seit RoCin) of 1a;Ll n-partic.l•e non.exdted RRS-s can 
be consi1stently partitioned into subsets R+o(n) and R-o(n) . Since •to each excited 
RRS there co;!1l'espond uniquely a Ltwnexcited RRS, this part1tion can be extended 
to the partit1on oif all r-excied (r = 1, ... , n> RRS-s into ·two subsets. In con­
junotion wiith the def:Lniition of actiive and passive cycles, rthis proves the consis­
tency olf definition 1. 

Proof of the Theorem 1 (Splitting Theorem) 

In ref. 2 the following lemma was derived 

Lemma 2 

Let A• = Akl be an internal cis-bridge operator. Matrix element A"ab = 
< S a I A 5 !Sb > equals 

A 5ab = (-1) ns' + ·ms' Sab (A{)) 

where (2n's) is ·the number of bonds in a cycle c's formed by a bridge (s) l{}Ver 
the superposition G ab, whHe m's is the number oif oriented bonds in this cycle. 
According to this lemma matrix element A5ab of -an internal cis-bridge operator 
A• between RRS-s Sa and Sb is proportional to the overlap Sab. In addition, ma­
trix e1ement A5ab o,f 1an external opem<trnr van:ishes.2 Hencie and from t he eq. (3) 
matrix element of any els-bridge operator A•= Akl between resonance st ructures 
Sa € Xn+ and Sb€ Xn- vanishes. Since structuiies S a € Xn+ span the &pac.e Xn+ , 
whU.e struotures Sb € Xn - span the space Xn -, ·this pmves point 2a) o:f 1theorem 
1. Simtlarly 1all othe:r points of this th1eorem can be de!riv1ed. 
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SAzETAK 
Cijepanje konfiguracijsko-interakcijskog prostora Xn 

na dva komplementarna podprostora 

T. P. zivkovic 

Promaill"an 'je n -cesticni konrf.iig:Uracij1S1ko interakcij1ski pros.tor Xn irz·graden 
nad 2n orbitala. Kori&ten je formalizam mole·kularno orbi1ta1ne rezonantne teorije 
(MORT) . .Pokazano je da se prostm X n cijepa na komplementarne .podlprostore 
Xn+ i Xn- ta:lrn-ve da »eiementarni« jednocesticni 01peratori vezu bilo samo stanja 
u istom .podp[ostoru, ili samo stanja u ·razlicitim podprostorima. Tu: to.ga slijedi 
da svako stanje w+ E X n+, kao i svako st~nje p - E X n- , ima jednoliikiu rasipodjelu 
naboja preko s•vih 2n orbitala, te iscezavajuci red veze medu orbitalama iste 
parnosti. To su karakteristicna svojstva vlasititih stanja neutra:1nih alternatnih 
ugljikovodtka, i kao jednostavna posljedica slijedi teorem parnosti. Cijeli kom­
plementarni iprostori Xn+ i Xn- su sto·ga »alternantni«, a ne samo pojedina vla­
stita stanja od1redenih Hamiltonijana. Diskutirana je verza sa raznim dru,gim 
formulacijama teorema paI'lnosti .po.znaitim Jz literature. 




