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For benzenoid or non-henzenoid catafusenes having a non-
-branched string of cata-condensed rings, the numbers K of
Kekulé structures (perfect matchings) can be expressed via
the recurrence relationship (1); as a corollary when each anne-
lated segment has exactly two rings, the numbers of Kekulé
structures form the Fibonacci sequence.

Corollary 2 presents a second relationship with Fibonacci
numbers. Algebraic expressions for the number of Kekulé struc-
tures in non-branched catafusenes in terms of hexagon num-
bers in each linearly condensed segment can be obtained. The
numbers of terms in such algebraic expressions lead to a new
numerical triangle (Table I) which is related to Pascal’s tri-
angle, and which provides a third link with the Fibonacci
numbers expressed either by relation (7) or by the equivalent
relation (10).

INTRODUCTION

In hydrogen-depleted constitutional graphs of polycyclic benzenoid
condensed hydrocarbon graphs, the degrees of all vertices are two, three
or four. Two six-membered rings are said to be condensed if they share
a bond, i.e. if they have in common two adjacent vertices.

There exist two modes of ring fusion (condensation): if no vertex
is common to three six-membered rings, the structure is said to be cata-
-condensed; if there exist vertices common to three six-membered rings,
the structure is peri-condensed. In this paper we shall discuss only cata-
-condensed polycyclic benzenoid hydrocarbons (polyhexes)which possess
formula C,, ,H,,,,when they have n benzenoid rings. Polyhexes are por-
tions (subgraphs) of the honeycomb lattice which is one of the tesselations
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of the plane. To simplify the nomenclature, we shall use for cata-conden-
sed polyhexes the name catafusenes (as mentioned above, we shall not
discuss perifusenes).

If the centers of six-membered rings are marked by a point and if
two points are joined by a line whenever the two respective rings are
condensed, one obtains the dualist graph of the polyhex. An alternative
definition? of cata-condensation considers the fact that dualist graphs
of catafusenes contain no cycles (i.e. they are trees in graph-theoretical
terminology). Dualist graphs differ in several respects from normal graphs;
the most significant aspect is that their bond angles are important. Ex-
tension of a dualist graph from an endpoint may occur linearly (linear
annelation) i.e. at an angle of 180° or at angles 120° or 240° (kinked
annelation). The structure may be coded numerically by using for angles
of 180° or 120° (240°) the digits 0 and 1(2), respectively. Each line or bond
in the molecular graph of the polyhex symbolizes an electron pair binding
two carbon atoms; two such carbon atoms may share two electrons (sym-
bolized by a single bond) or four electrons (symbolized by a double bond).
Kekulé’s well-known benzene formula contains alternatively single and
double bonds in a six-membered ring; each vertex 1-6 stands for a CH
group. Since atom 1 may be linked to atom 2 either by a single or by
a double bond, benzene has two Kekulé structures.

1 1
6 2 6, 2
G
S 3 5 3
4 4

Figure 1. The two Kekulé structures of benzene.

Naphthalene has two condensed benzenoid rings. With three con-
densed benzenoid rings there exist two isomeric catafusenes, namely
anthracene with linear annelation (a representative of the acene series
possessing always linear annelation, whose dualist graphs are straight
lines) and phenathrene with kinked annelation (see Figure 2 where dua-
list graphs G* of these catafusenes are represented also).

The numbers of Kekulé structures for polyhexes can be correlated
with their stability and with other properties of these hydrocarbons. There
exist several methods for finding how many Kekulé structures exist for
a given polyhex, which have been recently reviewed.3*

Catafusenes differing only in the direction of kinks but having the
same numbers of hexagons in linear segments (which are arranged in the
same order and with the same branching topology) are called isoarithmic®
because they have the same Kekulé structure count. A different way of
expressing the same idea is to associate with catafusenes a tree T (»iso-
arithmicity tree«) which is a homeomorphic contraction of the duailst graph
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Figure 2. Ring structure and dualist graphs of naphthalene, anthracene,
phenanthrene, chrysene, and picene.

by ignoring all vertices with linear annelation. Catafusenes with isomor-
phic trees T, and T, are isoarithmic if the corresponding linear segments
of the catafusenes have the same number of hexagons.®?

A related concept, of isocannonical polyhexes, was proposed by Bier-
mann and Schmidt* for polyhexes having the same structure count ratio
for product and reactant, according to Herndon’s definition of this ratio
as a reactivity index.tc

The kinked annelation of phenanthrene may be continued to form
a zigzag catafusene (e.g. chrysene, picene). Alternatively, the kinked
annelation of phenanthrene may be continued to afford a helix-shaped
system called helicene. The helicenes with the same number of hexagons
form a series whose terms are isoarithmic to the zigzag catafusenes.

NUMBERS OF KEKULE STRUCTURES FOR ZIGZAG CATAFUSENES

All catafusenes with the same number n of hexagons are isomers
i.e. they all have the same molecular formula C,, ,H,, , The molecular
graph of a cata-condensed benzenoid hydrocarbon will be named here
catafusene graph. Every such graph G with n hexagons has precisely
p = 4n + 2 vertices and g = 5n + 1 edges. The vertices of G will be labe-
led by v,,0,,...,0, and the edges by e,...,e, E,...,Er-« such that e, =
= Vv, for 1 £ i £ p-1, e, = v, and the p-cycle of G: v,,0,, ..., 0,7, is
the perimeter of G. The edges eje,, ...,e, of G will be called external
and the remaining n-1 edges E,...,E, , are said to be internal; the
latter represent the bonds between neighbouring hexagons of the struc-
ture, and are intersected by edges of the dualist graph. To every cata-
fusene graph G containing 7 hexagons we have associated its dualist
graph G* which is a tree having n vertices and n-1 edges. Hence dualist



394 A. T. BALABAN AND I. TOMESCU

graphs of catafusenes are trees whose vertices represent centres of hexa-
gons and whose edges link together vertices corresponding to condensed
hexagons, i.e. vertices sharing two adjacent carbon atoms in the original
hydrocarbon. A vertex in a dualist graph can have degree one (endpoint
or terminal vertex), two, or at most three; in the latter case this is a
branching point. In this paper we are concerned with non-branched cata-
fusenes only, whose dualist graphs have vertices of degree one or two.

Every Kekulé structure of a catafusene molecule is in a one-to-one
correspondence with a selection of p/2 independent, i.e. mutually non-
-adjacent, edges in the corresponding molecular graph. Any subset of
p/2 independent edges in a graph with p vertices is called a perfect
matching of this graph. Hence every Kekulé structure of a catafusene
molecule corresponds to a selection of p/2 independent edges in its associa-
ted catafusene graph. Note that every catafusene graph has exactly two
perfect matchings containing external edges only, namely {e;, e;, ..., €,}
and {e;e,...,e,)}.

Denote by K,(r) the number of Kekulé structures for a non-branched
catafusene graph G consisting of n linear segments with r hexagons each
and by K,*(r) the number of these structures for the graph derived from
G by deleting one of the two terminal hexagons.

Theorem 1. The numbers K,(r) verify the following recurrence re-
lation:
Kn(r) = (r—1)Kna(r) + Kn_2(r) 1)
for n>3 and Ki(r) =r +1; Ka(r) =72+ 1.

Proof: Since every Kekulé structure of a catafusene molecule is in a bi-
jective correspondence with a perfect matching of the corresponding mo-
lecular graph G, it follows that K,(r) = r + 1. Indeed, in this case G has
exactly two perfect matchings containing external edges only and r—1
perfect matchings containing exactly one internal edge of G. Note that
any subset of two internal edges E, and E, of G is not contained in any
perfect matching of G because the paths on the perimeter of G connecting
the extremities of E; to those of E, are both even paths of G. Similarly
we find that K,(r) =2 4+ 2(r—1) 4+ (r—1)? = r* + 1, since every perfect

Figure 3. Terminal part of a non-branched catafusene with linear segments
having r hexagons each (in the drawing, r = 4).
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matching of G contains at most two internal edges, one on each linear
portion of G.

Let now G be a catafusene graph consisting of n linear segments
with r hexagons each, B be a terminal hexagon of this graph and
z,y,2,t,u,v,w vertices of this graph, drawn in Figure 3 for r = 4.

Denote by L the linear segment of G with r hexagons lying between
o« and B in Figure 3. First observe that any perfect matching of G does
not contain the pairs of external edges {wz, yu} or {zf, y2} since the
paths on the perimeter of G arround § between ¢ and y and between x
and u are both even paths of length 4(r —1). Hence the set M of perfect
matchings of G may be written as

M =M:ru U Iﬂwz U M‘Lu,

where M,, is the set of perfect matchings of G containing xy, M, is the
set of perfect matchings containing both rw and y2 and M,, corresponds
to the choice of z¢t and yu. Note that M,,, M,, and M,, are three pairwise
disjoint sets. .

It is clear that there exists a unique perfect matching of L such that this
matching contains xy or both rw and yz. Since every perfect matching
of « contains xy or both rw and yz, it follows that

EMxy' =+ ;sz’ = Kna(r)

If a perfect matching of L includes both edges zt and yu, this matching
may or may not contain any internal edge from the set of r-2 intermal
edges different from zy of L. Hence set {zf{, yu} may be completed to a
perfect matching of L in r-1 ways, and any such matching contains also
edge vz. If we delete linear segment L from G we obtain a catafusene graph
which has exactly K ,-,*(r) perfect matchings, hence we can write

Mt = (r — 1) K*n1(r)
which implies that
En(r) = M| = Kna1(r) + (r—1DE*, 1(r) (2)

If we delete § from G, the corresponding linear segment L’ includes only
r-1 hexagons. Hence similarly as above we derive that

KEn*(1) = Kn-1(r) + (r — 2) Kn-1*(1) (3)
From (2) and (3) we obtain

K*(r) = Kn(r) — Kn-1*(r), or equivalently
Kn(r) = En*(r) + Kn1*(1) 4)
By replacing in (2) the wvalues of K,(r) and K, ,(r) from (4), we find

En*(r) = (r — 1) Kn-1*(r) + Kn-2%(r) (5)
Now (4) implies

= (r—1)Knp1*() + Kn-2*(1) + (r — 1) Kp-2*(r) + Kn-3*(r) =
=(r—1) (Bn-1*(r) + Kn-2*(1)) + Kn-2*(r) + Kn-3*(r) =
= (r —1)Kn-1(r) + Kn-2(1).

The theorem is proved.
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Corollary 1. The numbers K,(2) are Fibonacci numbers, i.e.
Kn(2) = Fn,2

Indeed, K,(2) = K,-,(2) + K,-,(2) and K,(2) = 3; K,(2) =5 (We consider
here that F,=F,=1and F,,=F,_ ,+ F, for any n>0).

It follows that for isoarithmic helicenes or zigzag catafusenes consisting
of linear segments with two hexagons each the numbers of Kekulé struc-
tures form the Fibonacci sequence, as mentioned by Cyvin,® and earlier
first by Gordon and Davison,® and then by Yen.’

GENERALIZATION FOR NON-BENZENOID EVEN-MEMBERED SYSTEMS

What was demonstrated above for benzenoid catafusenes can be ge-
neralized for non-branched non-benzenoid cata-condensed systems formed
from even-membered rings all having the same size. We define an annela-
tion angle character ¢ as even or odd as seen in Figure 4 by means of
dualist graphs: linear annelation corresponds to an even annelation angle
character, i.e. ¢ = 0, and so on.

!

¢=2
Figure 4. Annelation angle characters for a non-benzenoid cata-condensed
system having an eight-membered terminal ring.

Even-membered rings (4m-membered, or 0 (mod 4) and 4m+2-membered,
or 2(mod 4)) are assigned with a size index A which is either A =.0 for
0(mod 4)-rings or A = 1 for 2(mod 4)-rings, i.e. again an even/odd index.

All the preceding (and the following) formulas which refer to ben-
zenoid systems having m = 1, .e. to 2(mod 4)-rings, may be converted into
relationships which apply to 0(mod 4)-rings if one replaces »segments of
linearly condensed rings« by ssegments consisting of condensed 0(mod 4)-
-rings such that the annelation angle character ¢ is odd«.
Therefore in a non-branched cata-condensed system the segments are
delimitated by annelation points where A + ¢ is odd.

The generalization is as follows: If the sum A + ¢ is even, then the
non-branched string of cata-condensed rings arranged in n segments
with two rings each has Fn.2 Kekulé structures.
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KEKULE STRUCTURE COUNT OF CATAFUSENES AND THE NUMBER OF SOME
SEQUENCES OF INTEGERS

Corollary 1 has an interesting application to the enumeration, in
terms of the Fibonacci numbers, of some sequences of integers satisfying
parity conditions, as follows.

Corollary 2. The number of all sequences of integers
1£i,<i,<...<i £€n

such that @s,1—1is= 1(mod 2) for s=1,...,k—1 (1£k<£n) is equal
to F,.,—2.

Proof. Let G be a zigzag catafusene graph composed of n linear segments
with two hexagons each. It follows that G has n + 1 hexagons and n
internal edges E, E,, ..., En, which are numbered such that E; lies bet-
ween E, ;and E;,, for i=2,...,n—1

The number of perfect matchings of G is equal to K,(2) = F,,,. Among
these there are two perfect matchings containing external edges only,
hence the number of perfect matchings which include at least one intermal
edge equals F, ,— 2. We shall prove that a selection {Ei, Ei,..., Ey} of
internal edges with 1 L4, <i,<...<{ £Lmn; k> is the set of internal
edges of a unique perfect matching of G if and only if all differences
is;1—1s are odd for 1£Ls<£ k—1.

Note that if E, = v, is an internal edge of G, then both paths P, and P,
connecting »;, and v; on the perimeter of G (composed of external edges
only) are odd. To see this, consider a hexagon corresponding to a terminal
vertex of the graph G*. If we delete this hexagon from G, exactly one
of the paths P, and P, decreases its length by 4, hence it conserves its
parity. We may repeat this procedure until we find a graph consisting
of two hexagons only, and E, is the unique internal edge of this catafusene
graph, hence the two paths between v; and v; have both a length equal
to five. Since both paths P, and P, have odd length, it follows that both
odd paths P’ and P, derived from P, or P,, respectively, by deleting their
extremities v; and v; and the edges incident to v, and v»; have a unique
perfect matching M,, respectively M,. Therefore there exists a unique per-
fect matching of G containing edge E, and 2n 4 2 external edges, namely
M, UM, U/{E]}.

Now if we consider two internal edges E, and E, 0of G with 1 £ s < £ n,
there exist exactly two paths P, and P, on the perimeter of G connecting
the extremities of E, to those of E, and having in common with E, and E,
only their extremities. It is clear that if we are going from E, to E,, P,
and P, contain four edges each on the first linear segment composed
of two hexagons of G. After this, these paths always turn to left or to
right, hence the number of edges of P, and P, increases by 1 or by 3, i.e.
they always change the parity. Hence P, and P, have the same parity in
G, equal to the parity of the difference t—s.

Consequently, the perimeter of G is decomposed by E, and E, into
four paths: P, and P, having the parity of ¢t —s, P, between the extremi-
ties of E,, and P, between the extremities of E,. We have proved in the case
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of a single internal edge that P, and P, are both odd. Hence there exists
a unique perfect matching of G containing both E; and E, if and only if
P, and P, are both odd, or equivalently if {—s=1 (mod 2).

We can use a similar argument for a set of kK £n internal edges
{Ei, Es,...,Ey} of G. Indeed, by deleting the vertices of these edges we
obtain a subgraph G, of G and the perimeter of G decomposes into a
collection of paths. If the length of every path in this collection is odd,
ie. all differences i,,, —i, are odd, there exists a unique perfect matching
in G, which together with Ei,..., E; yields a unique perfect matching
in G containing these internal edges. If at least one path from the above
collection has even length, i.e. at least one of the differences i, , —i; is
even, then a perfect matching of G containing all the edges Ei, ..., Ejy
cannot exist. The proof is complete.

FIBONACCI NUMBERS AND A POLYNOMIAL COUNTING TECHNIQUE
FOR THE KEKULE STRUCTURES

Let G be a non-branched catafusene graph consisting of n linear

segments having the labels a,, a, ..., a, such that every linear segment
with label a; lies between linear segments having labels a,.,, respectively
a,,,fori=2,...,n—1.

With a such graph G in [4] is associated the polynomial
PGian....a0 =1+ 1 @+ D — W@, 6)
=

where W(G) is a polynomial expression involving products of a/s having
all coefficients equal to one. By grouping these products according to the
number k of a;’s, one obtains Table I. Note that W(G) = 0 only for n =1
or n = 2.

The number K(G) of Kekulé structures of G is then equal to P(G;
A,,...,4,), ie. to the numerical value of the polynomial associated with
G for a,=A,,...,a,=A4,, if every linear segment of G with label g,
contains A4; + 1 hexagons for 1 £Li <L n.

The polynomial W(G) has a purely combinatorial characterisation as
follows: There exists a one-to-one mapping between the set of all products
Qi Qi, . . . Ay, in the development of W(G) as a sum of products and the
set of all sequences of ¥ matural numbers

144, <i,<...<i £n

such that at least one of the differences i,,, —i, (1£Ls<£Lk—1) is an
even number.

The lower part of this Table I is a numerical triangle of the numbers
W, x, where W, , denotes the number of products containing exactly k > 2
variables g, in the development of W(G) as a sum of products of variables.
The total number of terms in W(G), denoted by W,= 3 W, ,, may be

kX2
obtained from (6) for all variables a; = 1. Hence

Wn=2"+1—P(G;1,...,1),
where P(G; 1,...,1) = K,(2) and Corollary 1 implies
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TABLE I

The Terms of W(G), Above the Thick Line, and the Numbers of Such Terms
for Given n and k (Below the Thick Line)

n\ k 5 4 3 2
3 — — — a3
4 — —— Q10204 a1a3
a1a3a4 Q204
a1Q2a3Qas Q10204 aas
Q1020405 Q1a3Qas Q204
5 — 130405 aiasas a1as
Q2a3Qs Qasas
a204Q5
102030406 Q1020305 Q10204 Q204Q6 ai.as
Q12030506 Q1020405 Q10304 Q3046 Q204
Q1Q20405Q6 1030405 a103as a3asQs a1as
Q103040506 1020406 Q20305 asas
6 Q1430406 Q20405 Q206
ai1a30s0s Q10208 QsQs
Q2030406 a1a30e
a2a3A506 Q104Qs
Q2040506 Q10506
3 — — — 1
4 — — 2 2
5 — 3 5 4
6 4 9 12 6
Wrn=22+1—"Fn,2 N

Theorem 2. The numbers W, , verify the following recurrence relation:
Wnxe = Wa-1,k + Wn-1,k-1 + ([(n +k—3)/2] ) (8)
k—1

where |x] denotes the integer part of z.
Proof. The set of all sequences of k natural numbers 1 £4, <i,<...<{ £n
such that at least one of the differences i,,—i;, (1£Ls£Lk—1) is an
even number may be written as the union of three pairwise disjoint sets
4, B and C, where:
A is the set of all sequences of k natural numbers
1£i<iz<...<ikLn—1
which satisfy the same condition;
B is the set of all sequences of k¥ natural numbers
lLin<iz<...<@k=n
such that at least one of the differences i,,,—i, (1£s<£Lk—2) is an
even number,
C is the set of sequences
1€, <i,<...<ipy=mn
which satisfy i,—i, = i,—i, = ... = zk_ — ey =1 (mod 2) and i, —
— -y =0 (mod 2). It is clear fchat |A| Wiy and Bl = W,y . If we
denote |C| = f(n, k) it remains to prove that
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f(nk) = ([(n +kk—_i 3)/2] ) 9

For k = 1 we deduce f(n, 1) = 1 and for ¥ = 2 we have i, = n and i, — i,
is an even number, hence f(n,2) = | (n—1)/2].
We shall prove (9) by induction on n.

Formula (9) is true for n = 2 and n = 3 for all k > 1, if we define (0 )=

0
= 1. Suppose (9) to be true for n £ m —1.
It is clear that f(m, k) = N,(m, k) + N,(m, k), where N,(m, k) is the num-
ber of sequences verifying the above conditions from C, for which i, =1
and N,(m, k) is the number of such sequences with i, > 2. It follows that
N,(m,k) = f (m —1, k) because the sequence

1£ciV<<...<i=m—1,

where i} = i,—1 for 1 £j £ k verifies the same conditions and this map-
ping is one-to-one.

For m—k =0 (mod 2) we have N,(m,k) =0 and for m—k =
=1 (mod 2) we deduce in a similar way that N,(m, k) = f(m —1, k—1).

We shall consider two cases:

i) m—k =0 (mod 2). We derive

(l(m + k—4)/2J)
f(m k) =f(m—1k) =

by induction hypothesis. If m —k =0 (mod 2) it follows m +k =
= 0 (mod 2), hence | (m +k—4)/2] = |(m + k—3)/2] and f(m, k) =

[(m + k—3)/2]

k—1 ;
i) m—k=1 (mod 2), hence m + k — 1 (mod 2). In this case

fon k) =fm—1,k) +fm—1k—1) =(”’” +kk—14)/21)

1% (l(m +kk_—25)/2])= (L(m + k—3)/21 -—1) ([(m + kk—_32)/2j—l)

_ ( Lim + k—3)/21 )

hence (9) is true for n = m also. The proof is complete.
It follows that Table I can be easily constructed from Pascal’s triangle
of binomial coefficients presented in Table II in a slightly modified form:
its last column of I’s has been deleted, and zigzag lines have been marked.
All entries in Pascal’s triangle are bracketed in order to distinguish them
from the entries of W(G) in Table I.

Table IIT shows how one can obtain the entries in the lower part
of Table I from the bracketed binomial coefficients displayed in Table II.
Each non-bracketed number in Table III is the sum of one or two non-
-bracketed numbers (directly above and/or above-right) and of one bra-
cketed number (directly above). The bracketed numbers are those fol-
lowing the zigzag lines in Table II (for illustration purposes, the same
types of lines have been employed in Tables II and III).
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TABLE II
Pascal’s Triangle of Binomial Coefficients Depleted of the Last Column of 1’s

//// /'
(1 )_._(3)._. ..... (/3)
’./ :/' /
(1)=—-(4a)--—=(8) (&)
/ /
51)---—(& (10) (10) (5)

(1) (6) (15) (20) (15) (s)

TABLE III
The Numerical Triangle for the Number of Terms in W(G) from Table I
(Non-bracketed Values)

n Triangle entries wn K W
3 1 1
(1)fii};)
& 4
4 /2 /2 4
(] )===(*)= ==(5)
p ¢ . 12
5 3_-5 %
R )—‘4?)—'—43 )= (2)
+ i & v
6 4 9 12 6 31
R oo o6 ol A%y
- . 'g ;' S
7 5 14 2 ] 7¢
21 ! 1 z//'& J
(1)--(1)ffjj(s)ffji(é)—---(G)ffiiz3)
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Hence the numbers f(n, k) for k > 1 generate the zigzag lines in Table
II. Denote their sum for k> 1 by G, or

Gn =k§1 (L(n —*I::ET 3)/2])

From Pascal’s triangle in both cases when 7 is even or odd we deduce
that G,,,=G,,; + G, for any n > 2, taking into account the recurrence
relation for the binomial numbers. We find also G, =1=F, and G; =
= 2 = F,, which implies that G, = F,_, for any n > 2.

This property and relation (8) imply a recurrence relation for the
numbers W,, which contains again Fibonacci numbers:

Wn=2Wp-1 + Fp-1—1 (10)

Relationship (10) can be deduced directly from (7), therefore for-
mulas (7) and (10) are equivalent.

Two other reccurence relations can be obtained from (7) and (10),
respectively, by using the adapted recurrence relations for F‘lbonacci num-
bers (F,=F,.,+ F,,):

Wa = Wn-1+ Wnp-g + 272 —1 (11)

Wan=3Wn1— Wa2—2 Wp-3+1 (12)

An explicit formula for numbers W, , can be deduced as follows.
Theorem 3. The following relation holds

. n+k n+k—1
Wy = (,.k )r—— = 2 (13)
k k

for every n, k> 1.
Proof. From (13) we can conclude that W,, =W, ,=0 for every n>1
and also that W,, =0 for k >n. Then the proof follows by induction
on n. Suppose that (13) holds for every n £ m —1 and every k> 1. By
(8) we obtain that

m—1 m—1 [m+k——1J lm+k—2J
Wn,k= + — 2 = 2 .
k k
l’m+k——2 m+k——3 lm+k—3J
k—1 k~—$1 k—1
m l kJ [m+k~1J
=()k)'— il 2
' k k

by applying the recurrence relation for binomial coefficients, since

m+kKk—2 m+k
: Jz — 1. Thus (13) holds for every n,k > 1.

2 2
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Corollary 3. For any fixed k, k > 1 the numbers W, verify that
: Wn k 1 1
Iim %, = L
n-—soo nk k! tk k-1 )
This follows from (13).

Corollary 4. The following equality holds:
lim Wn_ _ 1
n-—oo 28

The proof follows from (7) since

L [(1+ v‘s—)m ('1_ v?)"“]
Fo= —F= = < 1.62n+1 > 0.
N [( 3 5 for every n> 0

This indicates that for a non-branched catafusene consisting of n
linear segments the number of products in the development of W(G)
from (6) has an exponential character as n tends towards infinity. The
last corollary also indicates that the term 2°% in (11) represents asympto-
tically 1/4 from W,.

The three links between the Fibonacci sequence and the numbers of
Kekulé structures for non-branched cata-condensed polycyclic hydrocar-
bons (benzenoid or conjugated even-membered non-benzenoid) presented
in this paper are supplementing the previous relationships between che-
mistry and Fibonacei numbers described by Hosoya.?
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SAZETAK

Kemijski grafovi. 40. Tri relacije izmedu Fibonaccijevog niza i brojeva
Kekuléovih struktura za nerazgranate katakondenzirane policiklicke
aromatske ugljikovodike

Alexandru T. Balaban i Ioan Tomescu

Odredene su rekurentne relacije za K brojeve Kekuléovih struktura kod
benzenoidnih i nebenzenoidnih katafuzena koji imaju nerazgranatu vrpcu kata-
kondenziranih prstena. Odatle proizlazi da u sluéaju aneliranih segmenata koji
imaju dva prstena brojevi Kekuléovih struktura formiraju Fibonaccijev niz.
Korolar 2 daje drugu relaciju s Fibonaccijevim brojevima. Dobivene su algebarske
formule pomoc¢u kojih se brojevi Kekuléovih struktura mogu dobiti iz brojeva
Sesterokuta za svaki linearno kondenzirani segment. Brojevi ¢lanova u ovim
algebarskim izrazima formiraju numeri¢ki trokut koji je povezan s Pascalovim
trokutom i koji daje treé¢u relaciju s Fibonaccijevim brojevima.





