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Two types oif i>mning techniques for cer.tain trees are described 
and utilized into an easy combinatorial a1gorithm for the f:?YS­
tematic construction o.f sextet polynomials of catacon.densed 
benzenoid hydrocarbons of large sizes. 
The a1gori.thm oiffers an ailte!l'na.tive to ex~sting methods !or 
the enumeration of Kekule structures which is not restricted 
to non-branched systems. 

1. INTRODUCTION 

A few years ago Hosoya and Y:amaguchi11ntroduced the sextet poly­
nomlail, BG(X) of ibenzenoid hydrocaribons defined as: 

m 
BG(X) = ~ r(G, k) Xk (1) 

k=O 
wihere r(G, k) is the number of ways i:n which k dlsoonnected ibrut mutually 
resonant sextets are chosen from molecular graiph G and is called the 
res'Onant sextet number; 11(G, 0) is defined as unity. The parameter m is 
the m:aximall ipossible value of kin G. This ipolynomial, has so far attracted 
the attention of organic chemists as welil as of graph theorists. Its impor­
tance in ol\g·anic chemistry led Aiihara2 to defLne a resonance ipOlynomia:l, 
AG(X}, given by 

m 
AG(X) = ~ (-l)k r(G, k) x2m-2k (2) 

k =O 
The roo~ of AG(X) were found to corr.elate well with known resonance 
energies2

• In graph theory two important devielopments took place, viz., 
i) Gutman demonstrated.3 that the coe1fificients of BG(X) were identical to 

the c.oeff'ic·ients of the charactemtic polynomiials of certain trees, T, 
Thus 

r(G, k) = p(T, k) (3) 

where p(T, k) is the number of ways in which k nonlnctdeint edg.es can 
be selected from T. In a related Tooent development Gu1lmain4 constructed 

• Dedicaited to Proifessor Dr. Ivan Gutiman for his elegant work on the 
subject (refs. 3,4). 
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new graphs, called c graphrS f.rooh the cor.respondin:g molecular graipihs of 
benzenoid hydroca.I'bons, BH's, siuoh that the vertices vr and v. of the C 
graph are adjacent if and only if the hexagons of iBH are muturul.ly not 
resonant. Gutman, then, eleg.antlly showed4 that such C graphs are actually 
the line gr~hs5 rof the trees, T's, whose coefficients enter into eqn. (3), thus 

C = a. (T); (4) 
T = a.-1 (C) 

As an illustration we cons1der the moleculrur grnph of phenanthrene, its C 
graph and th1e ccwresponding T = cx.-1 (C). Details are found in ref. 4. 

LJ 
p-1 

tL (CJ ·= T 

ii) Quite recently, the author6 ;partitioned the faretor graphs7 (previously 
cailled submolecule grnphs) correS!J)onding to the Keilm1e st.ructures of 
BH according to rnwmber.s of b.ivalent vertices: thus if mis the maximal 
number of bi•valent veTtices rpossessed .by a factor g1raph of some BH, 
am is the ipopwlation (number) of factor grap:hs ipossessi.ng m bivaJ,ent 
vertices, then for non-;branched catacondensed aU-benrzenoid hydrocar­
bons, one ha;s: 

. am = r(G, 0) 
am-1 = r(G, 1) 
am-J = n(G, j) 

Other relations were ailso discovereid8 for vairious tyipes of topologies. 

(5) 

The aibove brief history of the sextet ipolynomirul. inid1cates its impor­
tance in chemistry. So f1ar, h:owever, the literatur,e s1eeims to be devoid of a 
general and systematic method of construc1ting sUJc:h polynomials for large 
(or even small) size BH's without r,esorting to the t·endious tasik of dra­
wing and closeay inspecting a11 Kekule structures of the BH as orLginallly 
suggested 1by Hosoya and Yamaguchi1

• For examrple t!b.e BH whose moleciular 
graph is shown below 

s, 
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has 189 Ke1mle structuDes and obvtou\Slly to constl'IUct its sextet poly­
nomial by drawing and exami..ning all such Kekule structures would be 
both very cumbersome and error prone. In this paper we introduce a 
very simple combinatorial method for systemaitically counting the reso­
nant numbers with10ut drawing any KeJkiUJle structures. It must be empha­
sized, however, that our objective is not to count K (number of Ke•kule 
structures) since elegant metihods already exist for doi..ng so9

• Our algo­
rithm, 1I1e1v1ertheless, besiides computing coe1f:fiicients of se~tet polynomia,ls of 
BH's p:mvides an interesting alternative to finding K wh'icih is not limited 
to nonibranched systems. 

2. DEFINITIONS 

Dualist1°, D 

When tihe hexagons af the molecular graph of a BH are replaced by 
vertices and then the vertices that correspond to hexagions having a com­
mon edge are connected a dualist D, resiults, E.g. 

7 B 

We observe that each kin'k in D correisponds to ·an angulacrly annelated 
hexagon3 (See B 2, where L = linear and A = angular annelat!Lon). 

Dualist Subgraphs, < S > 
The duaJ.ist of the molecular g.raiph mi:giht be ,partitioned into a ruumber 

of induced11 suibgraphs. For our ipurpose we distinguiJSh two t~es of dualist­
-induced sulbgraphs, viz., 

<S1> = L"1A; SI = 1, 2, 3,.... .. .. (6) 
where L"1A a.ind AL"2A a'l"e seqlWnceis of the L-A symbolls3 .inldi~aiting 

<S2> = AL"2A; s2 = 0, 1, 2, . . . . . . . . (7) 

modes .of ,J:ling annela'tions in a partt.dc.ular s.ubset .of dtual.iis't vertiJ.c.es as des­
cribed 1n details in ref. 3. As an illustration we oons1ide.r aill <S1>'s and 
<S2>'s presen,t 1n D2• There are two <S1>'s, v;iz., { 1, 2, 3} = L2A (s = 2) 
and { 8, 7 }=LA (s1 = 1), where the numbers in b~ac:kets oorrespond to 
numbers assigned to dualis1t v1erUiceis. There are three <S2>'s 1n D 2 : 

these a.re: 
{3, 4} = A 2 = AL0A (Le. s2 = 0) 
{4, 5, 6} =ALA (s2 = 1) 
{6, 7} = A2 (S2 = 0) 
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One obseITVes that both <S1> ·and <S2> define subsets of dualist vertices 
linked in straight lines Le. devoid of any ikinlks. 
(This ml.ight cause some confusion since the symibol A is taken to mean 
an angwl.ar annelation i.e. a kinlk. However such a ikLnlk ls formed on~y 
wh·en we consider the dualist as a who1e. E.g., in D2, <S1> = L"A i.e. the 
solid cl.ircles, however, when this ipart is excised from t!he duailist it becomes 
simply am L3, which has no kinks. Such induced swbgra(ph.s were called­
-erroneously by this autihor-linear &ubgraphs12. 

Restricted Disjoint Interactions (6), RD I's 

An element of an RDI, (v1, Vi, vk, ... ) is defined as a sutbset of duaill.st 
vertices v1, Vi, vk, ... such tihat: 
(a) No two vertices are adjacent, and (ib) No two ve·rtices belong to the 
same <S>. Tihw one defines ipairs of RDI's, N(2)'s, a;s t!he sum of all !POS­

s~ble palrs of dualist vertices complying with (a) and (•b). E.g. D, has t!he 
foUowing elements of: 
N(2): (14), (15), (16), (17), (18); (24), (25), (26), (27), (28); (35), (36), 
(37), (3·8); (47), (48); (57), (58); (68). Thus N(2)D2 = 19. Slmilarly N(3), 
N(4), .. ., Ni(j); j<v (v =number of vertices in D) mlght analogoosly 
be de~ined. 
We shall defin·e N(O) = 1 and N(l) = R. 
One miight trhen define an RDI ;polynomial, R(G, X) given by eqn. 8, viz., 

m 
R(G, X) = ~ N(j) X' (8) 

J=O 

Wlihere m 1s t!he maximal value of j. It mlgiht be shown tiha·t for cata-con­
densed BH's there is e~actly a 1: 1 corre®ondence between eqns. (1) and (8). 
This might e·asily be envtsaged by considering one of t!he Kekule structures 
of B 2 drawn using Clar's notationC13> 

We observe that tlhiere is only one resonant sextet per each <S> as d·efined 
in (6) and (7). 

'Dhus counting resonant sextet numbers boHs down to counting douiblets 
of RDI's, whtch is the subject of this work. We &hall. do so graiphic·a11'ly by 
~loyin.g two types of (pruning operators aippill:ed to dualist graiphs. 
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(A) Non-Branched BH's 
(i) P(l) 

3. PRUNING OPERATORS 

5 

The Qperator P(I) S1Uccessively prunes terminal vertices, one by one, 
(a:rbit,rarily to the left of the tree). Thus the successive operation by P(l) 
on L 2 gener,ates the f;c>Uow'ing itrees. 

An Illustratio:n of P(I) on D2 

L 2A2LA2L P(I) LA2LA2L P(I) LALA2L D
2 

P(I) L2A 2L P(I) LA2L P(I) 

P(I) LAL P(I) L 2 P(I) L P(I) <I> (empty set) (9) 

We observe that when a terminal L UIS adjacent to an A is operated by 
P(I) two operations occur: (a) The termi.naa L ls removed, and (b) the 
A ls replaced by an L. 

(ii) P(ll) 

This operator cail"l'ies out two operations on D: (a) It r,emoves an 
<S1>, and (b) it changes the terminal A from tfhe left (if any) into an 
L. Thus when D2 is subjected to P(ll) the following trees are generated 

L 2A 2LA2L P(II~ L2A 2L P.(II~z; P.(II~ <I>. (10) 

P(II) prunes L•, (s = 1, 2, ..... ). 

A termlnaa tree, T(t), in the sequence of tre.es generat~d by P(J) operator 
on a dualist, i's defined to be the igra.ph containing the smallest numlber of 
vertices with at l1east one kin:k and which when su1bjected to the action 
of P(II) becomes the dualist of a ilinear acene (i.e. becomes devoid of 
any kinks). In the sequence defined by (9), the graph LAL ls T(t) 

(LAL P.(ll~L). 

4. GRAPHICAL SYNTHESIS OF SEXTET POLYNOMIAL 

(a) The dualist tree, D, is subjected to the successtve operations of P(l) 
until D is !pI'Uiled down to a tree containing the smal'lest number of 
vertices Which vhen subjected to P(Il) leads to an L• (s = 1, 2, ... ). 
The trees generated from P(J), called P(J)-trees, T(P(l)) define a 
graph, G(P(J)), containing as many components as the number of · 
P<(I) t 1rees. A tree is identified by a subscrLpt indicating the number 
of tifrnes P (I) is ~pilled to it and a su1perscrilpt Indicating the number 
of vertices in it. Also the graiph G(P(J)) is identHled by a siu1bscrLpt in­
dtcating the number of \Pl'Uning cyoles which led to it. A pruning cyCILe 
starts at T(P.(J) 0v) and ends at T(t). (See later). 

(b) Each T(P(J) 1l) is QPerated by P(IJ), the last tree being T(t). Th1e graph 
resulting f,rom P(II) operations is called G(P(II))l' (The su:bscrLpt 1 
indicates one pru:nlng cyc·le). The order of G(P(Il)) 1, i.e. niumber of 
its vertices, IP (II) 11 is equal to N (2). 
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(c) The T'(P(I1) 1i) trees are used to f·eed a second P(I) cycle, i.e. every 
T(P(J1) 1l) is equated to a T(P.(1) 0l). Again the .resultLng T(P(J) 1l) 's are 
operated by P(II), the resulting disconnected graph, G(P (11)) 2 is used 
to calculate N (3) : 

@y 
T(P( l )~ ) ...!till...- T(P( II )~) 

P(IJ 
v -1 PIII \ b 

T (F( I ) 1 I ~ T( P ( II\) 

P(I )l 
C0?1T r.mE 

P(l) 

Yes No 

T( t) ED.il._.. L 9 

9 
S=l ,2 , •• • 

Fi.gure 1. Algorithm desC'ribing pruning cycles of trees. P(l), P(ll) and T(t) are 
explained in the text. At the end of the jth cycle the order of the total grnph 

composed oJ a;ll pruned trees is N(i+l) = r(G, j+l) . 

jP(JJ) l2 = N(3) 

(d) Again the cycle ts r,epeated by starting with T(P(Il) 1i) 's and a 
G (P·(II)) 3 is generated. 
In general one has 

jPCII) li = N(i + 1) = r(G, j + 1) (11) 

(e) The pruning cycles a.ire terminate:d when an the resultililg T>(P(Jl) 1l ) 's 
a.re linear acenes-dual'ists i.e. L', s = l, 2, ..... 
Steps (a-e) are work.erd out in detail for both a branched and a 
non-branched system. In the rseults Figure 1 outlines the pruning 
algorithm. 

B. Branched HB's 

The ·aip1plication of either P(J) or P.(11) to a non-branched cata-con­
densed BH-dualist leads to a connected g.raph. When P(II), however, ope­
rates -on a branched d1U:aUst, sometimes a disconnected graph results; e.g. 
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P(ll) 

'!'he aipplication of either P(J) or P(II) to the resulting multicomponent 
grarph follows the cited operations of the operators, e.g. 

( t) P(I) 
> 

P(I)> ( 0-0) etc . 

(~) POI) 
> P(ll) "' ( O) 

It is convenient ,to def;ine the grapih G(P(II)J) the components of which 
resU!lt in the jth pruning cycle. Tih:us for D 2, G{P(Il) 1) ts giv,en by (see 
results) where the su:prescr~pts ind}cate multiplicities of the components. 

Thus l.Pi(Il) Ii = 2 X 5 + 4 + 2 X 2 + 1 = 19 = N (2). 
G(P(II) 3) graiphs are shown for D1, a branched system, in the results. 

5 .. RESULTS 

Throoghout the following cha,rts, the solid ciroles indicate < S1> 

I . Construction of Sextet Polynomial of D2 

N (O) = r(G, 0) = 1 
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N(l) = r:.(G, 1) = jD2J = order of D 2 = 8 
N!(2) = r:(G, 2) = jP(II) j1 

The First Pruntng Cycle : Generation of G(P(II)) 1 

..rr P(ll) >r o-or 
T(P(I)~) T( P(ll) ~ ) 

P(l) i 
.rr P(ll) 

> o-oJ>o 

T(P(I) ~) T(P(ll)~) 

P(I) ~ 

~ 
P{ll) 

> 

T(P(I )~) T(P(II)~) 

P(I) ~ 

Continued on the next .page. 
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Coo.tin. 

~ 
P{Il) 

> 0-o 

T(P0)~) T(P(ll)~) 

P(I) ! 
P(ll) 

> 

T( PO)~) T(P(II)~) 

P(I) ! 
~ P(II) > 0 

T(t) 
3 = T(P(I) 5 ) T(P(Il)~) 

T(P(I) ~ )
1
• s 

I 
T( P( II ) .: >; s 
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IP(II)l1 = 2 x 5 + 4 + 2 x 2 + 1 = 19 = N(2) = r(G, 2) . 

The second Pruning Cycle: Generation of G(P (II)) 2 

We have only three trees that yield non-ivanisihing gra.phs when su­
bj.reted to P(Il), viz, T(P(Il) 0

5), T(P(Il) 1
5 ) ood (T(P{II) 2

4
). 

' 
(i) T( P(II)g) T ( p (I )6) 

..r P(II) 
3:> 0-0 

T(P(I)g) T(P(II)~) 

P(I) ~ 

J-0 P(II) 
o--0 

T(P(l)~) T(P(II)~) 
P(I) ! 

P( II) r )> 
0 

T ( t) = T ( P (J )~ ) T(P(II)~) 

(ii) T(P(ll)~) T(P(I)~) 

We obtain an identical graipib. as in (i), viz., (0-0) 2
, (o) 

(iii) T(P(ll)~) -,,...---- T(P(l)~) 

P(II) 

P(II) 
0 

T(P(Il) ~) 
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c:: G(P{II) )
2 

.-

IP(II) l2 = 5 x 2 + 3 x 1=13 = N(3) = r(G,3). 

Si.nee all P(IJ)-trees in the second pruning cyc'le are either K 2 or Kp 
N(4) = r(G, 4) = O and m = 3. 

The Sextet polynomial of B2 is thus 1+8X+l9X2 +13X3 and K = 1+8+ 
+19+13 = 41. 

II. Sextet Polynomial of a Branched BH 

We constde•r a BH whose dualist is B 3, viz, 

We shall omitt tree symbols. Horizont-al arrows are P(II) 's whhl·e vertical 
oo.es are P(J) 's. 

First pruning cycle--~G(P(II)) 1 ~ IP(II)l1 = N(2) 

Continued on the next page. 
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Con tin. 

( 0) 
Cont:ililued cm the next page. 

Second pruning cycle-- G(B(II)) 2 -+ IP(II) l2 = N(3) 

( i ) 

~ 
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Cont in. 

~ (~) 

! 
/-a ( ~) 

i 
""° 

(O} 

( ii ·) 

r ( ~) 

(.~) ~ 
!\"° { o_) 

(iii) 

)1 
! 

(~) 

cAo ( o) 
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( iv) (~) 

(v) 

Third pruning cycle-----..,G(P(II)) 3 ---+ IP(II)I~ = N(4) 

( i ) 

( i i ) [ ( ~ ) =<> ( o) J X 5 

Fourth pruning cycle-----..,G(P(II)) 4 ---+ !P(II)l4 = N(5) 

( ~ ) (<~)) 
The results of D3 are outlined as follows: 
N'(2) = 6+ 15+4+2x2+1 = 20 

N(3) = 4+2X5+5Xl = 19 

N(4) = 2X1+6Xl = 8 

{(~) ' (o)'} 
N(5) = 1 

{( 0)} 

5 
( 0 ) 

0 

B(G3, X) = 1+sx+2ox2 +19X3 +8X'+X5 

K = 1+8+20+19+8+1 = 57 

{ 0) 

( ~ ) 

( 0 ) 
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III - Pruned Graphs of Di 

N(l) = 10 

N(2) = 36 

N(3) = 60 

N(4) = 51 

N(5) = 23 

N(6) = 7 

N(7) = 1 
{Co)} 

{ (Jo) , ( ~ )~ (o) 11 } 

{l~). (0)5} 

B(G1, X) = 1+10X+36X2+60X3 +51X'+23X5 +7X6 +X7
; 

K = 189. 

15 
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6. SOME SPECIAL TOPOLOGIES 

I. Non-branched Cata-condensed All-benzenoid Hydrocarbons, 
NBCCABH's 

Calcullation of N(j) 's ( = r.(G, j)'s) at this class of BH's obey a 
relatively simple ariithmetic. 
First we define the :following quantities: 

S(i) = i + (i-1) + (j-2) + ... + 1; 
}:.S(j) = St(j) + S(j-1) + S(j-2) + ... + S(l), 

S:(l) = 1 

(12a) 
(12ib) 
(12·c) 

Let v be the number of vertices of the duaUst g·rruph of an NBCCABH : The 
following equations might easily be w.ritten: 

N(O) = 1 N(l) = v 
N(2) = S(v -2) (13) 

N(3) = }:S(v-4) (14) 

N(4) = l:S•(v-6) + l:S(v-7) + ... + S(l) (15) 
Expressions for higher intera;ctions are more involNed. Figure 2 is a gra­
phica:l. representation of these equations for an NBCCABH containing ten 
rtngs. The numbers in Fiigulie 2 are ordexs of gra;phs ip[!uned at various sta­
ges olf tihe algorithm. The SUJlllS olf s!Uch nlllillbers at each level of pruning 
give the corresponding N (j). It would be very cumbersome to compute 
B(G; X) for an NBCCABH for which R = 10 uslng the or'1gi.nal method of 

{10} =0;; (1) = 10 
__,,..,,,..-,~~ 

B(G,X)= l+lOX + J6X2 + 56XJ + J5X4 +6X5 

Figure 2. Graphical constr;uction of the sextet polynomial of an NBCCABH 
containing 10 hexagons. The lines indicate successLve P(II) operations. 

Hosoya and Yamaguchi<1> or using Gutman's<3> method o.r the autihor's<6> 
method depending on the partitloning of the correspondtng Ke!kule-factor­
-graiphs. 
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II. Branched Cata-condensed Systems Containing One Branched Ring 

Tihe duaUsts of sUrCh BH's have one tri1valent verte'.X. A general '.repre­
sentation of SIUch systems is shown below: 

Pruning cycles are Hlustrated in a compact f'O~m as f1olJ:ows 

N(2) Graphs 

P(I) 

Therefore N(2) = (n+l) (w+Z+2) + (Z+l) (w+l) 
SUPIP·OSe, e.g., n = m = l = 1; w.e will hav,e 

( n+ 1) ( w + l + 2 ) 

( 
0 ) l+, ,ar"' 

(l+l)(W+l) 

(16) 

N(2) = (l+l) (1+1+2) + (1+1) (1+1) = 12. Thes.e elements are: (1). 
(15), (16), (17), (24), (25), (26), (27), (57), (56), (4,6), (47). 
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N(3) Graphs 

( n+1) 

(1) P(I); 
--...~--... 

( 2) P(II) )

( n+ 1) ( l + 1) 

(.~ 

Therefore N(3) = (w+l) (n+l) (l+l) (17) 

Ag.ain if w = n = l = 1 N(3) = 8. These elements are (146), (147), (156), 
(157), (246), (247), (256), (257). Eqins. (16) and (17) become essential when 
dealing with large sizes, e.g. 

N(2) = (6) (5) + (2) (3) = 36; N(3) = (6) (3) (2) = 36; 

B(G, X) = 1+12X+36X2+36X3
; K = 1+12+36+36. 

It would take much more time to construct B(G, X) or compute K for 
BH's of this size using the reported metJhods. 

III. Non-branched Cata-condensed Systems Containing One Kink 

Dualists of this class have the fo'l:lowing structure 

There is only one pruning cycle i.e. m = 2 and N(3) = 0: 

~ l 

0) P(l) ~ · - --(2) P(II) 
( )

1+1 

~ 
Therefoo-e N(2) = (i+l) {i+l). (18) 
Analogous formulae are easily cierlived for other topologies. 
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Topological Origin of the Method 

Tihe outlined algorithm rests on an important topological character of 
Keikule s·tructiures of BH's: there is only one resonant sextet in each subset 
of beIIBene rings corresponding to dualist vertices deflning <S1> and/or 
<S2> (c.f. eqns. 6; 7). This fact leads in ca ta-condensed BH's to a 1: 1 
correspondence between the sextet polynomlail, eqn. 1, and the RDI poly­
noonial, eqn. 8 i.e. 

r(G, j) = N (i) 

where j = 0, 1, ... , m, m beLng the maximum number of disconnected but 
mutuaUy resonant sextets or the maximum nll!Illiber of duaHst vertices 
defining a subset in which: (i) no two vertices are adjacent, and (11) no 
two vertices belong to the same <S>. We can no·w understand the opera­
tions of P(l) and P(II) operators. Suppose we wish to calou~ate the number 
of vertices in D2 which are aHowed to form pairs of P.DI's with v1• To do 
this we remove <S1> = { 1, 2, 3}; the resulting tree contains the required 
number of vertices. This is the QPeration of P(II). When this operation is 
repeated with the rest of the vertices and the order of the resulting dis­
connected graph is computed (i.e. the total number of its vertkes) N(2) 
results. The operation of P(J) is to avoid counting an interaction more 
than once, while P(II) removes aH vertices adjacent to or belonging to 
the same <S2> relative to a partlcu'lar vertex in the dua:list. N(3) is simply 
the sum of N(2) values corresponding to an trees generated in the fir.st 
pruning cycle, N(4) is the sum of N.(2) v<Cl:lues of all tr.ees generated in the 
second cycie and so on until au trees become temninal. The operation of 
P(Il) on a particular vertex is thus a graphical representation of N(2) of 
that vertex. 

7. SOME REMARKS ABOUT PRUNING METHODS 

(i) Ulam's conjecture14 is one of the early U5eful pruning methods in 
graph theory. 

(Iii) The compUitation of maltching polynom1!311s of giraJPhs15 using Heil­
brorriner's form.ula16 uses a special pruning method. 

(ill) Recently, Balabam.17 deviced a topolioglcal index by adoptililg a special 
pruning of graphs. 

(iv) Quite recently, Ba'1asu:bramaman18 developed a method tor obta:lnii.ng 
spectra of chemical tre€is adopting a pr.u:ning technique. He19 h01s 
also used a simhlar method for isomer enumeration. 

In this work we introduced two pmning met!hods which lead to the 
systematic synthesis of sextet pOllynomtals of BH's of relatively large size~ 
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SAzETAK 

Jednostavan kombinatorni algodtam za konstrukciju sekstetnog polinoma 
kata-kondenziranih benzenoidnih ugljikovodika 

Sherif El-Basil 

Opisana su dva tipa o•bremvianja za odredena sta:bla i iskoristena u Jedno­
stavnomu kombinatornom algoritmu za sustavnu kon.strukciju sekstetnih po­
llnoima kata-kondenziranih benzenoidnih ugljikovodika velikih dimenzija. 

Algoritam nudi alternativu postojecim metodama za prebro.javanje Keku­
tfovih struktura koja nije ogran•cena n:i. sisteme bez grananja. 




