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Two types of pruning techniques for certain trees are described
and utilized into an easy combinatorial algorithm for the sys-
tematic construction of sextet polynomials of catacondensed
benzenoid hydrocarbons of large sizes.

The algorithm offers an alternative to existing methods for
the enumeration of Kekulé structures which is not restricted
to non-branched systems.

1. INTRODUCTION

A few years ago Hosoya and Yamaguchi' introduced the sextet poly-
nomial, B;(X) of benzenoid hydrocarbons defined as:

Be(X) = 3 r(G,k) X* &)

where (G, k) is the number of ways in which k disconnected but mutually
resonant sextets are chosen from molecular graph G and is called the
resonant sextet number; n(G, O) is defined as unity. The parameter m is
the maximal possible value of k in G. This polynomial, has so far attracted
the attention of organic chemists as well as of graph theorists. Its impor-
tance in organic chemistry led Aihara? to define a resonance polynomial,
Ay (X), given by

4a(X) = 3 ()" 1(G, k) Ko @

The rocts of A5(X) were found to correlate well with known resonance
energies?. In graph theory two important developments took place, viz.,
1) Gutman demonstrated® that the coefficients of B;(X) were identical to
the coefficients of the characteristic polynomials of certain trees, T,

Thus

r(G,k) = p(T,k) 3)
where p(T, k) is the number of ways in which %k nonincident edges can
be selected from T. In a related recent development Gutman* constructed

* Dedicated to Professor Dr. Ivan Gutman for his elegant work on the
subject (refs. 3,4).
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new graphs, called C graphs from the corresponding molecular graphs of
benzenoid hydrocarbons, BH’s, such that the vertices v, and v, of the C
graph are adjacent if and only if the hexagons of BH are mutually not
resonant. Gutman, then, elegantly showed* that such C graphs are actually
the line graphs® of the trees, I's, whose coefficients enter into eqn. (3), thus
C = a(T); 4
T = a1 (C)
As an illustration we consider the molecular graph of phenanthrene, its C
graph and the corresponding T = o—! (C). Details are found in ref. 4.

e 1]

£ L) =T

il) Quite recently, the author® partitioned the factor graphs’ (previously
called submolecule graphs) corresponding to the Kekulé structures of
BH according to numbers of bivalent vertices: thus if m is the maximal
number of bivalent vertices possessed by a factor graph of some BH,
a, is the population (number) of factor graphs possessing m bivalent
vertices, then for non-branched catacondensed all-benzenoid hydrocar-
bons, one has:

am =r1(QG,0)
am-1 = 1(G, 1)
am-; = NG, j) (5)

Other relations were also discovered® for various types of topologies.

The above brief history of the sextet polynomial indicates its impor-
tance in chemistry. So far, however, the literature seems to be devoid of a
general and systematic method of constructing such polynomials for large
(or even small) size BH’s without resorting to the tendious task of dra-
wing and closely inspecting all Kekulé structures of the BH as originally
suggested by Hosoya and Yamaguchil. For example the BH whose molecular
graph is shown below
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has 189 Kekulé structures and obviously to construct its sextet poly-
nomial by drawing and examining all such Kekulé structures would be
both very cumbersome and error prone. In this paper we introduce a
very simple combinatorial method for systematically counting the reso-
nant numbers without drawing any Kekulé structures. It must be empha-
sized, however, that our objective is not to count K (number of Kekulé
structures) since elegant methods already exist for doing so®. Our algo-
rithm, nevertheless, besides computing coefficients of sextet polynomials of
BH’s provides an interesting alternative to finding K which is not limited
to nonbranched systems.

2. DEFINITIONS

Dualist®, D

When the hexagons of the molecular graph of a BH are replaced by
vertices and then the vertices that correspond to hexagons having a com-
mon edge are connected a dualist D, results, E.g.

We observe that each kink in D corresponds to an angularly annelated
hexagon® (See B, where L = linear and A4 = angular annelation).

Dualist Subgraphs, <8 >

The dualist of the molecular graph might be partitioned into a number
of induced!* subgraphs. For our purpose we distinguish two types of dualist-
-induced subgraphs, viz.,

<S> = L%4; 8= 1,23, 50m 500 (6)
where L%4A and AL%A are sequences of the L—A symbols® indicating.
<8,> = AL%A; S =012 500 v e ("

modes of ring annelations in a particular subset of dualist vertices as des-
cribed in details in ref. 3. As an illustration we consider all <S,>’'s and
<S,>’s present in D, There are two <S8,>’s, viz, {1,2,3}=L’4 (s =2)
and (8,7 }= LA (s, =1), where the numbers in brackets correspond to
numbers assigned to dualist vertices. There are three <S,>’s in D,:
these are:

{3,4}y =4 =ALA (le.s;=0)

{4,5,6} = ALA (s;=1)
{6,717 =42 (s,=0)
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One observes that both <S,> and <S,> define subsets of dualist vertices
linked in straight lines i.e. devoid of any kinks.

(This might cause some confusion since the symbol A is taken to mean
an angular annelation i.e. a kink. However such a kink is formed only
when we consider the dualist as a whole. E.g., in D, <S§,> = L?4 i.e. the
solid circles, however, when this part is excised from the dualist it becomes
simply an L3 which has no kinks. Such induced subgraphs were called-
-erroneously by this author-linear subgraphs'.

Restricted Disjoint Interactions (6), RDI’s

An element of an RDI, (v, v;, ¥y, ...) is defined as a subset of dualist
vertices v, v;, vy, ... such that:

(a) No two vertices are adjacent, and (b) No two vertices belong to the
same <S>. Thus one defines pairs of RDI’s, N(2)’s, as the sum of all pos-
sible pairs of dualist vertices complying with (2) and (b). E.g. D, has the
following elements of:

N(2): (14), (15), (16), (17), (18); (24), (25), (26), (27), (28); (35), (36),
(37), (38); (47), (48); (57), (58); (68). Thus N(2)p, = 19. Similarly N(3),
N@4),..., N(j); j<v (v =number of vertices in D) might analogously
be defined.

We shall define N(0) =1 and N(1) = R.

One might then define an RDI polynomial, R(G, X) given by eqn. 8, viz.,

R@GX) =3NO) X ®

where m is the maximal value of 4. It might be shown that for cata-con-
densed BH’s there is exactly a 1:1 correspondence between eqns. (1) and (8).
This might easily be envisaged by considering one of the Kekulé structures
of B, drawn using Clar’s notation®®

We observe that there is only one resonant sextet per each <S> as defined
in (6) and (7).

Thus counting resonant sextet numbers boils down to counting doublets
of RDI’s, which is the subject of this work. We shall do so graphically by
employing two types of pruning operators applied to dualist graphs.
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3. PRUNING OPERATORS
(A) Non-Branched BH’s
(i) P(1)

The operator P(I) successively prunes terminal vertices, one by one,
(arbitrarily to the left of the tree). Thus the successive operation by P(I)
on L, generates the following trees.

An Illustration of P(I) on D,

rrarnarL D) parran, PA) ) parar p, 2D, g2 PA) g 42 PA)

PU) rar, PU) 12 P 7 PU) & (empty set) )

We observe that when a terminal L us adjacent to an A is operated by
P(I) two operations occur: (a) The terminal L is removed, and (b) the
A is replaced by an L.

(ii) P(II)

This operator carries out two operations on D: (a) It removes an
<§8,>, and (b) it changes the terminal A from the left (if any) into an
L. Thus when D, is subjected to P(II) the following trees are generated

r2arnac BAD)  pagep, PUD) 72 PUD g (10)
P(II) prunes L, (s=1,2,..... )

A terminal tree, T'(¢), in the sequence of trees generated by P(I) operator
on a dualist, is defined to be the graph containing the smallest number of
vertices with at least one kink and which when subjected to the action
of P(II) becomes the dualist of a linear acene (i.e. becomes devoid of
any kinks). In the sequence defined by (9), the graph LAL is T(¢)

aLPUn)y,y.

4. GRAPHICAL SYNTHESIS OF SEXTET POLYNOMIAL

(a) The dualist tree, D, is subjected to the successive operations of P(I)
until D is pruned down to a tree containing the smallest number of
vertices which vhen subjected to P(II) leads to an L* (s=1,2,...).
The trees generated from P(I), called P(I)-trees, T(P(I)) define a
graph, G(P(I)), containing as many components as the number of
P(I) trees. A tree is identified by a subscript indicating the number
of times P(I) is applied to it and a superseript indicating the number
of vertices in it. Also the graph G(P(I)) is identified by a subscript in-
dicating the number of pruning cycles which led to it. A pruning cycle
starts at T(P(I),’) and ends at T'(f). (See later).

(b) Each T (P(I)J) is operated by P(II), the last tree being T(¢). The graph
resulting from P(II) operations is called G(P(II)),. (The subscript 1

indicates one pruning cycle). The order of G(P(II)),, i.e. number of
its vertices, |P(II)|, is equal to N(2).
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(¢) The T(P(II){) trees are used to feed a second P(I) cycle, i.e. every
T(P(1I){) is equated to a T (P(I),). Again the resulting T (P(I){) ’s are
operated by P(II), the resulting disconnected graph, G(P(II)), is used
to calculate N(3):

START fg

20 2L, np(11)2) ——]

P(IA

v-1
7(x(1),) 2L T(P(II)bl,

(1)

comrmwe 2L, a(per1)d)

MHIDY) 19 17| 2

P(I)
Yes No =
(t) P(IT 12 _—
| =1,
.
—t—

Figure 1. Algorithm describing pruning cycles of trees. P(I), P(II) and T(t) are
explained in the text. At the end of the jth cycle the order of the total graph
composed of all pruned trees is N(j-+1) = r(G, j+1).

IP(ID)], = N(3)

(d) Again the cycle is repeated by starting with T(P(II){) ’s and a
G(P(1I)), is generated.
In general one has

[PUD|;=N@G+1) =1r(G,i+1) (11)

(e) The pruning cycles are terminated when all the resulting T(P(II){) ’s
are linear acenes-dualists ie. L5, s=1,2,.....
Steps (a—e) are worked out in detail for both a branched and a
non-branched system. In the rseults Figure 1 outlines the pruning
algorithm.

B. Branched HB’s

The application of either P(I) or P(II) to a non-branched cata-con-
densed BH-dualist leads to a connected graph. When P(II), however, ope-
rates on a branched dualist, sometimes a disconnected graph results; e.g.
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P(11) f
The application of either P(I) or P(II) to the resulting multicomponent
graph follows the cited operations of the operators, eg.

g | e ° P()__
R oo e
P(I)

B (00) e

g:-o P (%o f(_")_>(o)

' It is convenient to define the graph G(P(II);) the components of which
result in the jth pruning cycle. Thus for D, G(P(II),) is given by (see
results) where the suprescripts indicate multiplicities of the components.

(oY (™) (o) (o)

Thus |[P(II)|;=2X5+4+2X2+1=19 = N(2).
G (P(II);) graphs are shown for D,, a branched system, In the results.

5. RESULTS
Throughout the following charts, the solid circles indicate <S,>

I. Construction of Sextet Polynomial of D:

N@©0) =r(G,0) =1
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N(1) = r(G,1) = |D,| = order of D, =8
N(2) = 1(G, 2) = |P(I)),

The First Pruning Cycle : Generation of G(P(II)),

Lpod° B o P

8 5
T(P(I)o) T(P(ll)o )

O |
“pof" P(I1) ood™®

T(R(D) ) T(PUD Y )

P(1) jl
‘,.-OCP-Q P(II) o.a°'°

T(P)S) T(P(IN)

JOM|

Continued on the next page.
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Contin.
P(II)

oo d® = oo
T(P(D3) T(P(ID3)
JOMN |

o P(II) e

T(R(D,) (PN )
JON |

o ° P(1I) o
T(t) =T(P(I)g) T(P(Il);)

TP D)y Tran ) s

ST(PUND), < eran), - {(WJ}O')ZW)(O-O)Z(O)}
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IPUD)|, =2X5+4+2X2+1=19=N(2) =1(G,2).

The second Pruning Cycle: Generation of G(P(1I)),

We have only three trees that yield non-vanishing graphs when su-
bjected to P(II), viz, T(P(I)y’), T(PUI),’) and (T(P{I),").

(i) T(PUING) ——= T(P(I))

P(II
o0 d® (11) oo
T(R(DY) T(P(NG )
P(1) @
2 P(11) 5
T(R()?) T(PUN?)

P(II)

P(I)([L
o’.—o - = o

T(H) =T(P(1)3) T(P(11)})

(i) T(PUD ) ——=  T(R(DY)

We obtain an identical graph as in (i), viz., (0—o0)% (0)

(1i1) TN %) ——= T(P(1)})

P P(LI) 00 5
T(P(1)g) — T(P(IDg)
P(l)&
-0 P(11)
—— o

() = T(P(D) T(P(u)})
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ZTRN), <= 6(RUD)), = {(00)°, (0)?]
|[P(II), =5 X243 X1=13=N(3) = r(G,3).

Since all P(II)-trees in the second pruning cycle are either K, or K,
N#4) =1r(G,4) =0 and m = 3.

The Sextet polynomial of B, is thus 1+8X+19X%*413X° and K = 1+8+
+19+13 = 41.

I1. Sextet Polynomial of a Branched BH

We consider a BH whose dualist is B, viz,

We shall omitt tree symbols. Horizontal arrows are P(II)'s while vertical
ones are P(I)’s.

First pruning cycle ——— G(P(II)), —— [P(II)|, = N(2)

-*o*:;%o _ %
quﬂ

"}w —

Continued on the next page.
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Contin.

0 SRR
.

!
Yo = (3)
l
&o — (o)

Continued on the next page.

Second pruning cycle —— G(P(II)), — [P(II)|, = N(3)

(i) A’E‘ — }_o
l
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,@
> =
|
h =
(i) ‘11%0 —
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13

(o)
(o)

()

(%)
(5)
(°)

(o)
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- At - ()
(v) () - (°)

Third pruning cycle ——— G(P(II)); —— [P(II)|, = N(4)

o= )

G [(9) =o(e) ] X

Fourth pruning cycle —— G(P(II)),—— [P(II)|, = N(5)
° (o)
o) == (3

The results of D, are outlined as follows:

N(2) =6454+44+2X24+1 =20

N(4) =2X14+6X1 =38

{2) . (o))

N() =1
{(o)}
B(G; X) = 148X +420X%4-19X34-8X*+ X°
K =1+48420+19+8+1 = 57
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III — Pruned Graphs of D:

((A))

(GG SNESTESIBIRIEY

N(1) =10

{_(ﬁ‘»(o{»)z'(ﬁ»f(%ﬂ(%ﬂi‘( o) ]
(o) (B ) (30) (%) (o)
(&) (2 )]
—‘ © . o]

{(0)}
B(G, X) = 14+ 10X +36X?+60X°+51X*+23X5+1X*+ X";

K = 189.
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6. SOME SPECIAL TOPOLOGIES

I. Non-branched Cata-condensed All-benzenoid Hydrocarbons,
NBCCABH’s

Calculation of N(j)’s (=n(G,7)’s) of this class of BH's obey a
relatively simple arithmetic.
First we define the following quantities:

SH=i+G—D+@—2+...+1; (122)
38(1) = 8G) +SG—1) +8G—2) +...+ S(D), (12b)
S(1) =1 (12¢)

Let v be the number of vertices of the dualist graph of an NBCCABH : The
following equations might easily be written:

N@O)=1 ; N@1) =v

N@) =S@w—2) (13)
N@B) =3S(v—4) (14)
N(4) =3S(@®—6) + ZS(0—"1T) + ...+ S(1) (15)

Expressions for higher interactions are more involved. Figure 2 is a gra-
phical representation of these equations for an NBCCABH containing ten
rings. The numbers in Figure 2 are orders of graphs pruned at various sta-
ges of the algorithm. The sums of such numbers at each level of pruning
give the corresponding N(j). It would be very cumbersome to compute
B(G; X) for an NBCCABH for which R = 10 using the original method of

110} =2 1(1) = 10
: %Nﬂ@m .
/ \ \\\
((5\,5\,\4,3{,1); (5:44242,1); (4 3.&(3 2,1); (2,1); (1)}=>E(3) = 56
\ ~—
\\ \
{(4w2’1); (1); Q); 2,1)77(1)57(2,103(1) 5 (1))o1(4)=35
%(1);

1); (1)} —=oN(5)=6

B(G,X)= 1+10X + 36X2 + 56%° + 35%% +6%0

Figure 2. Graphical construction of the sextet polynomial of an NBCCABH
containing 10 hexagons. The lines indicate successive P(II) operations.

Hosoya and Yamaguchi® or using Gutman’s® method or the author’s®
method depending on the partitioning of the corresponding Kekulé-factor-
-graphs.
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I1. Branched Cata-condensed Systems Containing One Branched Ring

The dualists of such BH’s have one trivalent vertex. A general repre-
sentation of such systems is shown below:

/
Pruning cycles are illustrated in a compact form as follows

N(2) Graphs

L
B

-
%

(<
n %
7
jL (n’1)(W+[+2)
P(1) Jl
1+1
o
2 P(I1) (o )
(l*]) (Wo-))
/7
Therefore N(2) = (n+1) (w+Ii+2) + (I+1) (w+1) (16)

Suppose, eg., n =m =1=1; we will have

N@2) =1+1) 14+142) + (141) (1+1) = 12. These elements are: (1),
(15), (16), (17), (24), (25), (26), (27), (57), (56), (46), (47).
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N(3) Graphs

(n+1) (ne1)(le1)
ok W PO e
P (2) P(1I)
Therefore N(3) = (w+1) (n+1) (I+1) an

Again if w=n=1=1 N(3) = 8. These elements are (146), (147), (156),
(157), (246), (247), (256), (257). Eqns. (16) and (17) become essential when
dealing with large sizes, e.g.

N(2) = (6) (5) + (2) (3) =36; N(3) = (6) (3) (2) = 36;
B(G, X) = 1+12X+36X+36X°; K = 1+12+436+36.

It would take much more time to construct B(G, X) or compute K for
BH’s of this size using the reported methods.

II1. Non-branched Cata-condensed Systems Containing One Kink

Dualists of this class have the following structure

o—¢

i
There is only one pruning cycle i.e. m = 2 and N(3) = 0:

J 1+l
o A3 P(1) S

i (2) P(I1)

Therefore N(2) = (i+1) (j+1). (18)
Analogous formulae are easily derived for other topologies.
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Topological Origin of the Method

The outlined algorithm rests on an important topological character of
Kekulé structures of BH’s: there is only one resonant sextet in each subset
of benzene rings corresponding to dualist vertices defining <S,> and/or
<S8,> (c.f. egns. 6; 7). This fact leads in cata-condensed BH's to a 1:1
correspondence between the sextet polynomial, eqn. 1, and the RDI poly-
nomial, eqn. 8 i.e.

(G, §) = N(7)

where j=0,1,...,m, m being the maximum number of disconnected but
mutually resonant sextets or the maximum number of dualist vertices
defining a subset in which: (i) no two vertices are adjacent, and (il) no
two vertices belong to the same <S>. We can now understand the opera-
tions of P(I) and P(II) operators. Suppose we wish to calculate the number
of vertices in D, which are allowed to form pairs of RDI's with »,. To do
this we remove <S,> ={1, 2,3}, the resulting tree contains the required
number of vertices. This is the operation of P(II). When this operation is
repeated with the rest of the vertices and the order of the resulting dis-
connected graph is computed (i.e. the total number of its vertices) N{2)
results. The operation of P(I) is to avoid counting an interaction more
than once, while P(II) removes all vertices adjacent to or belonging to
the same <S,> relative to a particular vertex in the dualist. N(3) is simply
the sum of N(2) values corresponding to all trees generated in the first
pruning cycle, N(4) is the sum of N(2) values of all trees generated in the
second cycle and so on until all trees become terminal. The operation of
P(II) on a particular vertex is thus a graphical representation of N(2) of
that vertex.

7. SOME REMARKS ABOUT PRUNING METHODS

(i) Ulam’s conjecture!* is one of the early useful pruning methods in
graph theory.

(ii) The computation of matching polynomials of graphs®® using Heil-
bronner’s formula!® uses a special pruning method.

(iii) Recently, Balaban!” deviced a topological index by adopting a special
pruning of graphs.

(iv) Quite recently, Balasubramanian'® developed a method for obtaining -
spectra of chemical trees adopting a pruning technique. He' has
also used a similar method for isomer enumeration.

In this work we introduced two pruning methods which lead to the
systematic synthesis of sextet polynomials of BH’s of relatively large size.
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SAZETAK

Jednostavan kombinatorni algoritam za konstrukciju sekstetnog polinoma
kata-kondenziranih benzenoidnih ugljikovodika

Sherif El-Basil

Opisana su dva tipa obrezivanja za odredena stabla i iskoriStena u jedno-

stavnomu kombinatornom algoritmu za sustavnu konstrukeciju sekstetnih po-
linoma kata-kondenziranih benzenoidnih ugljikovodika velikih dimenzija.

Algoritam nudi alternativu postojeéim metodama za prebrojavanje Keku-

1éovih struktura koja nije ograni¢ena ni sisteme bez grananja.





