CROATICA CHEMICA ACTA CCACAA 57 (1) 21—45 (1984)

YU ISSN 0011-1643
CCA-1419 UDC 547.53
Original Scientific Paper

Molecular Topology and Molecular Properties

I. »Sequence« Labels of Cata-Condensed Benzenoid
Hydrocarbons Containing up to Five Rings*

Sherif El-Basil

Faculty of Pharmacy, Kasr El-Aini Street,
Cairo, Egypt

Received March 25, 1983

An algorithm is described for the systematic numbering of
benzenoid hydrocarbons. The sum of decimal contributions of
all vertices (carbon atoms) in the molecular graph is called the
hydrocarbon label, L. These labels, which are based on purely
structural elements order a set of isomeric benzenoid hydrocar-
bons according to their properties including resonance and total
pi-energies, ionization potentials, heats of atomization, energies
of lowest vacant and lowest filled molecular orbitals and polaro-
graphic half-wave reduction potentials. Such hydrocarbon la-
bels might easily be computed without resort to a computer.

INTRODUCTION

Several years ago Randié' described a method whereby the vertices
(atoms) in a molecular graph are numbered in a special way so that
the rows of their adjacency matrix yield, when combined, a minimum and
unique label characteristic of the graph. Randié’s main objective was to
recognize molecular topology by associating it with some particular label
that is invariant of the graph under consideration. Some problems, ho-
wever, arosez3 due to possibility of existence of local minima when applying
one of the suggested algorithms to certain graphs (but these can be avo-
ided by using alternative algorithm). In another development Randi¢*
was able to order alkanes by adopting a particular canonical labelling of
atoms associated with the smallest binary code for the structure. Ano-
ther application of canonical labeling of atoms is to study symmetry pro-
perties of graphs.5—7

In this work a systematic method is described for labelling molecular
graphs of benzenoid hydrocarbons, BH’s, following a particular sequence
(whence the subtitle of the manuscript). The procedure, when carried out
according to the prescribed algorithm, is error-free. A flow chart of the
procedure of assigning numbers to the vertices of graphs shown in Fi-

* This paper is dedicated to Professor A. T. Balaban.
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gure 4 is given in Figure 6. The adjacency matrices of the resulting la-
beled graphs lead to particular codes that characterize their topologies.
The sum of the components of the code is called the label of the graph.
The assumption is made that two (or more) graphs will not yield iden-
tical codes unless they are isomorphic. The importance of molecular to-
pology in determining molecular and even some biological propertiess—10
justifies this paper. Furthermore, the reported relation between hydro-
carbon graph-labels and molecular properties represents an additional
illustration of the link between VB and MO theoriesiti2 (graph labels
are closely related to VB quantities while many molecular properties can
be discussed within the MO model).

DEFINITIONS

Before describing our method of assigning numbers to the vertices
of a polyhex™ graph, certain definitions will be stated which are neces-
sary for writing the procedure and for discussion.

(1) Balaban-Harary Dualist,* D (or Simply Dualist)

A dualist results when the hexagons of a polyhex are replaced by
vertices and then adjacent vertices corresponding to rings which had a
common edge in the polyhex are connected.

(2) A Dualist Vertex, v(d)
A vertex of a dualist (and not of the hydrocarbon: the latter will

simply be termed, vertex).
(3) The L, A-sequence®

The nonterminal hexagons in a nonbranched cata-condensed system
might be annelated in just two ways, viz.

L-mode A-mode

Furthermore, an additionai convention will be adopted that a hexagon
which is fused simultaneously to three other hexagons (i.e. a branched
hexagon) will be assigned the symbol A, viz.,
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Therefore every polyhex Zraph of a cata-condensed BH might be asso-
ciated with an ordered i-tuple of symbols L, A (1 = number of hexagons),
the so-called L, A sequence.’® By definition the terminal rings will be
given the symbol L. As an illustration G(I) has the following L,A symbols
assigned to its rings:

(4) Induced Subgraphis1? (or simply subgraph)

Three types of induced subgraphs!6.1? might be partitioned out of the
total molecular graph of the BH, viz.,

L= <L (1)
S.

<g,>=<AL'A> (2)

g s=<Adl’> 3)

S
where L , e.g. means L repeated s, times. The values of s, and s, = 0,
while s, may or may not be zero depending on the topology of G. Eg.
G(I) has the following induced subgraphs.

<g,>DO<L’4 >
<G >DO<A >, A2 ><ALA >, < A*>
<g,>D<AL >, <AL >.

which, when represented as labels of rings (or corresponding dualist verti-
ces), become:

<g,>><123 >
<g,>0 <3 4>, <3,6>; <6,7,8, 9>, <9, 10>
<g,> D <4 5>; <10, 11 >

The order of an induced subgraph will be defined here as the number of
its dualist vertices (corresponding to rings defined by egns. 1—3). Thus
the phenanthrene dualist, for example, is partitioned into two induced
subgraphs each of order two, D(I) has one induced subgraph of order 3,
five induced subgraphs of order two each ind one induced subgraph of
order 4.
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(5) Valency (Degree) of a Subgraph

The highest degree given to one of its dualist vertices. Thus the phe-
nanthrene dualist, for example, contains two bivalent subgraphs; while
the triphenylene dualist has three trivalent subgraphs. Benzanthracene
contains two bivalent subgraphs (one of order two and the other of order
three).

(6) Trivalent Sum, S(3)

The sum of numbers assigned to all trivalent vertices in a polyhex
graph.

(7) Label, L, of a Polyhex Graph

The sum of decimal contributions of all the vertices of the polyhex
graph. i.e. the sum of decimal contributions of the rows of the adjacency
matrix that corresponds to the particular labeling (numbering) of atoms
(vertices). Thus a divalent vertex, for examples, has two adjacent neigh-
bours. Let the numbers given to them be k and j, then the decimal contri-
bution of such a divalent vertex is 2»—% 4 2n—J where n is the total num-
ber of vertices in the polyhex graph. The approach is easily extended to
a trivalent vertex. In general, L can be expressed as

L= 3 X 20 4)
allvj

where the first sum is taken oven all vertices and the second over all
adjacent vertices around each vertex. (Tables 1 and 2 present decimal
contributions of the hydrocarbons shown in Figure 4 according to the

n
labeling shown in the figure). Eqn. (4) might be expressed as L = X d,
where d; is the decimal contribution of the jth row. h

(8) vy(z)

A symbol given to a vertex, the degree of which is x and which is
assigned the number y. In this part of the work, since we will be dealing
only with polyhex graphs, x might take only the values of 2 or 3 while
the number of y is defined in the interval 1 £ y £ n.

9) v ()
A vertex whose valency is not assigned.
(10) Unassigned Vertex
A vertex which has not been assigned a number.

(11) Kink Vertex

A dualist vertex defining the intersection of two induced subgraphs
of a dualist, one of which is terminal. Kink vertices are drawn as solid
circles in Figure 4.
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(12) Arranged Matrix™®

An adjacency matrix whose decimal (or binary) values of its rows
form an ascending sequence ie. d; < d;+,, (1 £ j £ n) where d; is the
numerical (decimal or binary) contribution of the jth row.

(13) Vmin(3)

The smallest number assigned to a trivalent vertex of the polyhex
graph. Such numbers are encircled in the graphs shown in Figure 4. These
numbers turn out to have significance in relation to the molecular pro-
perties associated with the polyhex graph (see later).

THE NUMBERING PROCEDURE

We aim at a procedure yielding vertex numberings which result in an
arranged matrix such that, when read sequentially, the rows of the matrix
give (after addition) the smallest label. The following procedure might
be adopted for graphs with vertices of degrees 2 and 3 only. It cannot be
applied to vertex-transitive graphs (i.e. graphs with all vertices equiva-
lent). Consider a graph with n vertices:

(1) The Numbers 1, n and (n—1)

Assign the number one to one of its divalent vertices, v,(2), the two
adjacent vertices on both sides of it are then given the numbers n and
n—1. There are two factors which decide the position of v, (to the left or
to the right of v,): (i) The degree of the vertex adjacent to v,, and (ii) the
degree of v, itself. The »best« situation would be that v, is a trivalent
vertex followed by a divalent vertex as exemplified.

1(n-1)

n

n- )

! not 0

=3 §
=~

(4)

If, however, a v(3) adjacent to », has a neighbour another »(3), one
examines the other side of vertices adjacent to v,. If there are two succes-
sive v(2)’s adjacent to v,, one assigns the number n to the vertex adjacent
to v,. This situation is illustrated below:

n

not

NN
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A third possibility would be that the two adjacent vertices on both sides
of v, are trivalent, viz.,

Z

Cd

One then examines the environments on both sides of »,: the number
n is assigned to a v(3) that is flanked by v,’s (if any), so, for the case
above we would have:

N\

a1

nct

s

=
Z 2

(¢)

When both v’s adjacent to v, are trivalent, each being followed by v(2),
one attempts both possibilities, e.g.

g9
n-1 n & 1 n—l
& Z and
Z e Z
(D) 4

7
: 2

Finally if both v's surrounding v, are trivalent, but each is also flanked
by a v(3), one gets slocked-up< in a »dead-end« situation and must attempt
to start the sequence at another »,. An illustration of such a partial se-
quence is shown below:

-1 N

(8)

A dead-end situation is manifested by the presence of two v(3)’s defining
the termini of a partial sequence such that both have two unassigned
adjacent neighbours. Such trivalent vertices might be termed dead-end
vertices, v(9). As a general rule an assignment of the type @ should never
be used.
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(2) The Numbers 2 and 3

Under the sbest conditions< the lower number, 2, is assigned to a
divalent vertex adjacent to v,. If the vertex adjacent to v, is trivalent,
but the one adjacent to vn-1 is divalent, the number 2 is given to the
latter. If, however, both vertices adjacent to v» and wv.-1 are trivalent,
one checks for the possibility of a dead-end situation: if both »(3)’s ad-
jacent to vn and vn-1 have two unassigned adjacent vertices, one abandons
the possibility of starting the cycle at v:1(2) and must look for another
v(2). If, however, one of the two v(3)’s flanked by v~ or v»..1 has two
assigned neighbours, it is given the number 2. If both v(3)’s adjacent to
vn andvn-1 have two assigned neighbours, the number 2 is given to v(3)
adjacent to v,. (This last possibility cannot happen at this stage of the
sequence in polyhex graphs).

(3) The Numbers (n—2) and (n—3)

These are automatically assigned to vertices adjacent to-v, and v,
respectively. For example a possible sequence would be:

e 0 (2) V0 5( ) 05(2) 00 —1(2)11(2) 05(3) ,(2) Va2 ()0 (Y) - ..

(4) The Numbers 4 and 5

The places of 4 and 5 depend on the values of z and y, i.e. on the
degrees of the v’s adjacent to vn-2 and vn-s. We might list the following
possibilities:

@zrz=yYy=2——sb=4a=35

(b) x=2Ww=3)ory =2 (r = 3) ——> the lower number, 4, is given
to the divalent vertex, then the environment of »(3) is examined: if
two assigned adjacent vertices are present, it is given the number 5,
if it turns out to be a sdead-end« v(3) the sequence is propagated
from the other side by assigning (n-4) next to v,(2).

e)x =y =3

If both (z) and (y) are dead-end vertices one starts the cycle at
another v(2), but if one possesses two assigned neighbours, the num- -
ber 4 is assigned to it. If, finally, both (z) and (y) have two assigned
neighbours, then b = 4, a = 5 i.e. the smaller number is assigned to
the » carrying the largest number.

(5) Numbers (n-4) and (n-5)

These are automatically assigned to v’s adjacent to v, and v; respec-
tively.

{(6) The process is continued until all vertices are visited.
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The sequence of numbers takes the following form:

(n<1l) <= (1) =0 (n)

(2) T (n-2)
(3) s> (n-3)
(4) i" (n-4)
(21) = (2i-n)
(2i+1)

where i is the number of hexagons (benzene rings) in the polyhex graph
(of cata-condensed BH); so the last number given to a vertex is related to
the number of benzene rings in the total molecular graph.

(7) The process is attempted with all other bivalent vertices and trivalent
sums, S(3)’s computed in each case.

(8) The sequence(s) that leads (lead) to the largest S(3) is (are) choosen

and its (their) adjacency matrix (matrices) checked for being arran-
ged.® The presence of disorder (i.e. non-arranged matrix) might be
remedied by the appropriate exchange of numbers (see later for
examples and illustrations).
It must be emphasized that a non-arranged matrix is rejected even
if it leads to a smaller L than the arranged matrix (e.g. numberings
D and E below). The whole procedure of labelling is explained in the
flow chart shown in Figure 6.

Some Illustrations
I. Phenanthrene

This graph has four »(3)’s and ten v(2)’s. The latter may be divided
into two equal sets of equivalent »(2)’s. So we have five possibilities. Fi-
gure 1. shows the sequence resulting when vertex number one (in the
IUPAC system) is attempted:

4
: 3
3 - 3 %
13 12 13 no
1142 114212 3114212
A V[‘(3)-—>¢
B

J, B
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9
5 6
1
e v B
13 12
7143
MATRIX NOT D o7 C
ARRANGED S3)=35
L =33935

3
13

1613
e .
ARRANGED Sl
MATRIX  _>3)=34 ks SN
L=34063 L =34064

Figure 1. Labelling sequence for the phenanthrene graph when starting with

number one at v: according to IUPAC rules. Observe that 7 (=2(3)+1) is the

last number to be assigned, which must then be exchanged with 6 to yield an
arranged matrix (E). Label F' is the sequence proposed by Makay?

There is no difficulty in assigning the first seven numbers, step A,
(Obviously by the »first« seven numbers we do not mean the numbers
1-—17).

Assignment of the number 4 (Step B) might require a moment of
thought: considering the two available vacant vertices, we see that the
v(3) adjacent to v,,(2) has two unassigned adjacent vertices, so it is
abandoned, and thus we are left with the v(3) adjacent to v,,(2) which
has two assigned adjacent vertices, so it is given the number 4. Assigning
n—4(=10) is a routine task, since it should be adjacent to v,  Step D is
based on the fact that divalent vertices take priority over trivalent ones.
Sequence D, however, leads to a nonarranged matrix. This becomes clear
when we list decimal contributions from the rows successively; these are:
{83, 5, 10, 25, 48, 96, 84, 384, 768, 1664, 3072, 4224, 10240, 13312}, (leading
to an L = 33935). The above string of d/s does not define order® because
ds > d, yet other d/s define the relation d; < d;+, (d; = decimal contri-
bution of the jth row). Therefore labelling D should be arranged by ex-
changing 6 — 7 which leads to E. The latter is an arranged matrix, leading
to the following numerical contributions of the individual rows: {3, 5, 10,
25, 48, 84, 96, 384, 640, 1792, 3072, 4352, 10240, 13312}, which is now orde-
red. The label from E is 34063. Although L(D) < L(E), it is rejected beca-
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5
o) 9
' 2 12 5
1 0
: 4
33T
D G
S(3)= 35 5(3) = 32
L - 33935 L =34962

2 3
5(3)=33 | S(3)=32
L=33939 L =34960
3

B 413
S(3)=35
L=33935

Figure 2. Labellings resulting from starting with number one at each of the

five non-equivalent vertices of phenanthrene. Values of S(3)'s and L’s are

given. Observe that D and J lead to identical S(3) and L yet their adjacency
matrices are not identical
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use D is not an arranged matrix. It is interesting to observe that sequence
E is the one originally assigned by Randié.! The one proposed by Mackay?
(sequence F), however, leads to a larger label! (in decimal). Thus F
leads to {3, 5, 10, 22, 48, 88, 96, 384, 640, 1792, 2304, 5120, 11264, 12288}
giving a label of 34064. Figure 2 shows sequences resulting from starting
with all non-equivalent divalent vertices of phenanthrene together with
their labels and trivalent sums. Such quantities will be discussed later in
relation to RE’s of the hydrocarbons.

II. Another example of using the prescribed algorithm that illustra-
tes a vertex leading to a »dead end< is probably desirable. Consider the
dibenzanthracene graph shown below. The sequence leads to the appea-
rance of two trivalent vertices each with two unassigned adjacent neigh-
bours (encircled). One cannot proceed any further with the remaining
numbers and another divalent vertex must be attempted.

20 19
2 22723

III. A third example illustrates how one assigns priorities to a pair
of available divalent or trivalent vertices:

13114 3131072 313,142’2
9,8 10
726 4
WP

Figure 3. Sequence of numbers assigned to anthracene starting with the number
one as shown

Figure 3 shows how one arrives at the anthracene sequence of numbers.
One observes that the resulting sequence is identical to the one given
earlier by Randié!.

In step A one assigns the numbers 2 and 3. Since both vertices adjacent
to v,,(3) and v,5(3) are divalent, priorities are given according to numbers
assigned in adjacent places: Thus 2 is given to the vertex adjacent to
v,(3). Numbers 12 (i.e. 14-2), and 11(14-3), are automatically assigned
to v’s adjacent to v, and v, Again the choice in step B is decided so
that the lower of the two available numbers (4,5) is assigned to the
v(2) adjacent to the v carrying the largest number.

Thus, 4 is assigned to the vertex adjacent to v,; while 5 is located next
to v, The number 10(= 14-4) is immediately assigned adjacent to 2,



39 S. EL-BASIL

and 9(= 14-5) is similarly given to the vertex adjacent to v,. In step
C we assign the remaining three numbers 6,7 and 8: the numbers 6 and
14-6(= 8) are assigned to vertices that immediately flank v,, (rather
than v,). The remaining number, 7, is then given to the remaining vertex
(okserve that 7, which is the last number to be assigned is 2i+1, i=3
for anthracene).

RESULTS AND DISCUSSION

Figure 2 shows numbers assigned to phenanthrene starting from o,
at each of its five non-equivalent divalent vertices. One observes that
there is a relation between trivalent sums, S(3) values, and code sums
ie. labels, L’s, (sums of decimal contributions from each atom): the
larger the value of S(3), the lower is the label. Figure 4 shows sequences
assigned to cata-condensed BH’s which are based on assigning the num-
ber 1 to the bivalent vertex that generates the highest S(3) (followed
by arranging the matrix if any). One also observes that the minimum
number given to a trivalent vertex, v,,,.(3) is significant: the higher this
number, the lower is the label of the sequence; and thé higher is the
corresponding S(3). Again this is reflected in Figure 2 for the five non-
-equivalent phenanthrene sequences. In fact labels D and J (Figure 2)
are identical and so are their S(3) and v,,(3) values, yet their adjacency
matrices are not. One should recall that once the highest S(3) is obtained
(based on flow chart instructions), the matrix is then checked for order.
For example, a permutation 8<—9 is necessary for all non-linear cata-
-condensed acenes containing four rings in order to obtain an arranged
matrix. Also, a permutation 10<—11 was performed with most non-linear
cata-condensed acenes containing five rings so that their resulting ma-
trices become arranged. At this stage it is probably desirable and con-
venient to state two propositions regarding v,,,(3), and the benzene ring
carrying v»,(2) which generates the highest (lowest) S(3) (label). This
particular benzene ring in the polyhex graph is related to the vertex that
corresponds to it in the dualist and which is termed the first dualist
vertex.

Proposition 1

a) for a linear acene containing i rings:
Voin(3) = 43

b) For a non-linear acene v,,,(3) =2+ the order of the longest terminal
subgraph of the dualist of degree £ 2 (Terminal subgraphs are defined
by <g,> and/or <g,> of eqns. 1 and 3 respectively). A few examples
would probably illustrate this proposition, especially part b): Figure
4 shows all the hydrocarbons studied in this work where divalent ter-
minal dualist subgraphs of highest order are heavily drawn and values
of v.,,,(3) are encircled around appropriate vertices. In triphenylene,
9, the order of the terminal dualist subgraph of valency £ 2 is 1, so
Vmin(3) = 241 = 3 (Triphenylene is an exception in the sense that its
dualist contains no bivalent vertices, so our terminal <g> is just a
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Figure 4. continued on the next page.

33
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Figure 4. contin.

Figure 4. Labellings assigned to cata-condensed BH's containing up to five

rings leading to arranged matrices with largest S(3)’s and lowest labels. Values

of vmin(3) are encircled. First dualist vertices are marked with stars. Kink

vertices are solid dualist-vertices. Longest terminal divalent induced subgraphs
are heavily outlined

vertex). In benz [a] tetracene, 11, the order of the longest terminal
divalent dualist subgraph is 4, whence v_,(3) =24+4=6. The tripheny-
lene derivative 17 may further illustrate the method: here the longes!
terminal dualist subgraph, the vertices of which possess degrees £2,
is the one heavily drawn. Its order is 2 and therefore v_,,(3) =2+2=4.

Proposition 2
The »first dualist vertex« is located on the longest terminal dualist

subgraph adjacent to the kink vertex. When no kink vertices are available
one is dealing with a linear acene. For a linear acene containing i rings
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its first dualist vertex will be located on the (i/2)th position. Such first
dual vertices are marked with an asterisk in Figure 4 where the corres-
ponding kink vertices are the solid circles. Locating such vertices makes
the task of obtaining the label of a particular BH very simple, since it
reduces the number of choices by factors of 8 for naphthalene, 10 for
anthracene, 12 for tetracene and so on. Naturally, symmetry reduces the
job further. Once we locate v,(2) the ordering of a set of cata-condensed
BH’s according to several of their molecular properties (such as those
listed in Table V) becomes quite easy.

Table I contains decimal contributions, their sums (i.e. labels), Ran-
dié¢’s’® RE values of the five cata-condensed BH’s containing four rings.

TABLE 1

Decimal Contributions of i th Row di, (1£i£L18), Their Sums (Labels, L. Values)
Together with Randid’s RE’s (ev)'', for Four-ring Catacondensed Benzenoid

Hydrocarbons
oo el 4 Big )\
1 3 3 3 3 3
2 5 5 5 5 5
3 10 10 10 10 14
4 20 20 25 25 24
5 40 49 48 52 48
6 80 98 84 96 104
7 162 192 192 192 192
8 324 384 352 336 322
9 385 324 384 384 384
10 1536 1536 1536 1536 1536
11 2560 2560 2560 2560 2560
12 5120 7168 7168 7168 7168
13 10240 12288 9216 12288 12288
14 20480 24576 28672 25600 24576
15 40960 33792 49152 49152 53248
16 82944 81920 69632 73728 98304
17 165888 167936 163840 163840 164864
18 197120 204800 212992 212992 196608
L= 5278717 537665 545871 549967 562248
RRE = 1.822 2.330 2.540 2.540 2.723

Table II contains the corresponding information for the twelve cata-
-condensed BH’s containing five rings.

A first look at the values of RE’s and L’s reveals that the latter index
is able to reproduce the order of the former among a group of isomeric
BH’s excepting isoconjugates'®: the larger the value of L the more stable
is the BH. At this point it may be convenient to distinguish a »cisoid«
isoconjugate from its stransoid« coumterpart, based on the »configura-
tions« of their dualists. E.g. 8 and 7 (Figure 4) are examples of such
cases, respectively. Similarly 16 and 15 would also constitute such pairs.
In some instances there might be more than one cisoid counterpart for
a particular dualist. A more descriptive nomenclature wolud then be
desirable, thus 18 may be called all-transoid 20 all-cisoid while 19 cis-
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-transoid (or trans-cisold). It is observed that conjugated circuits counts®®
do not distinguish pairs of isoconjugate hydrocarbons. (Nor, in fact,
available values of Dewar-Dellano RE’s®). This observation is in good
approximation to quantum-chemical results. Our L labels, however, do
distinguish isoconjugate pairs: in general structures possessing cisoid dua-
lists have higher L values than the corresponding transoid counterparts.
E.g. Ly > Ly; Lig> Ly, Ly >Lyg; Ly > Ly; L,y > Ly, (Figure 4, Tables I,
II). Discrepancies, however, arise with branched analogues, e.g. L,; > Ly
while RE(17) < RE(16). Table III lists Randié¢’s RE’s per pi-electron,
RE/e, and a function defined by (L/2") for cata-condensed non-linear
acenes containing 3-—5 hexagons. The factor of 2" snormalizes« the L
values to a scale that is independent of n. One observes that the order
of RE/e is reproduced by the function (L/2®) when the cisoid dualists
are excluded from the hierarchy. Figure 5 plots the two functions for
all dualists exepting cisoid ones. Table III also gives the corresponding
values of S(3) and v,,(3). A clear trend is shown by the latter value:
The whole hierarchy spans 3 units starting at a value of 6 for benz[a]
tetracene and terminating at a value of 3 for triphenylene. The former

TABLE II

Decimal Coniributions of di,(1£Li£L22), Their Labels, L, and RRE’s (ev.) for
Five-ring Catacondensed Hydrocarbons

N e | oo | oo [ |

1 3 3 3 3 3 3
2 5 5 5 5 5 5
3 10 10 10 10 10 10
4 20 20 20 20 20 25
5 40 48 49 49 49 48
6 80 100 98 78 98 96
7 160 193 192 192 200 148
8 324 386 384 328 384 416
9 648 768 768 768 7168 768
10 1281 1288 1096 1408 1344 1344
11 1538 1536 1664 1536 1536 1536
12 6144 6144 6144 6144 6144 6144
13 10240 10240 10240 10240 10240 10240
14 20480 28672 24576 28672 28672 28672
15 40960 49152 34816 36864 49152 49152
16 81920 98304 102400 114688 102400 69632
17 163840 196608 196608 196608 196608 182992
18 3217680 393216 393216 393216 393216 425984
19 663552 528384 528384 540672 557056 7186432
20 1327104 1376250 1310720 1310720 1310720 1081344
21 2623488 2637824 2686976 2686976 2686976 2621440
22 3149824 3178496 3276800 3276800 3276800 3407872

= 8419341 8507653 8575169 8606017  *8622401 8674303
RRE = 1.884 2.543 2.705 2.860 2.860 3.046
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TABLE II (Cont.)

S Tt [ omles [e<

1 3 3 3 3 3 3
2 5 5 5 5 5 5
3 10 12 10 10 10 10
4 25 25 25 25 25 25
5 48 50 48 48 50 52
6 84 96 84 84 96 96
7 224 192 192 224 192 192
8 384 416 352 384 336 7 416
9 768 768 768 768 768 768
10 1312 1282 1408 1344 1408 1296
11 1536 1536 1536 1536 1536 1536
12 6144 6144 5144 6144 6144 6144
13 10240 10240 10240 12040 10240 10240
14 28672 28672 28672 28672 28672 28672
15 49152 49152 36864 49152 36864 49152
16 98304 98304 114688 102400 114688 98303
17 167936 212992 147456 163840 196608 212992
18 458752 393216 458752 458752 409600 397312
19 786432 786432 786432 786432 786432 786432
20 1114112 1572864 1114112 1114112 1179648 1179648
21 2621440 2232320 2621440 2621440 2621440 2621440
22 3407872 3407872 3407872 3407872 3407872 3407872
= *8753455  (8802593) 8737103  *8753487  *8802637 8802607
RRE = 3.046 3.120 3.130 3.130 3.130 3.210

* Cisoid duals are not to be compared with transoid counterparts or branched
isomers (whose L values are given in parantheses).
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TABLE III

Resonance Energy per pi-Electron (in ev. Using Method of Randi¢(®), RE/e,
Values of Codes Divided by 2™ i.e. (L/2*), n Being the Number of Rows of the
Corresponding Adjacency Matriz, Trivalent Sums, S(3), and Values 0f Umin(3)
for Calacondensed Non-Linear Acenes Containing Three to Five Benzene Rings

Dualist RE/e (L/2%) 5(3)* Vmin(3)
11 0.1156 2.0284 108 6
12 j 0.1241 2.0445 106 5
6 i 0.1294 2.0510 66 5
13 e 0.1300 2.0518 103 5
14 () 0.1300 (2.0557) 102 5
15 el 0.1385 2.0681 101 4
16 (<) 0.1385 (2.0869) 99 4
4 v 0.14107 2.0790 34 4
7 ' 0.1411 2.0823 62 4
8 () 0.1411 (2.0979) 61 4
18 et 0.1417 (2.0831) 98 4
19 Grgia™) 0.1417 (2.0870) 97 4
20 (LA 0.1417 2.0987 98 4
17 ':é 0.1418 2.0987 101 4
21 0.1459 2.0987 98 4
9 = 0.15127 2.1448 61 3

* Computed on the basis of number assignments shown in Figure 4 Cisoid
graphs are shown in parentheses.
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TABLE IV

RE/e, (ev) Together with the Corresponding Values of (L/2"), S(3) and Vmin.(3,
for the First Five Linear Acenes. Differences of Successive S(3)* are
Also Given, AS(3)*.

Number of rings RE/e (ev) L/2» S(3) AS(3) Vmin(3)
1 0.1448 1.9687 — — —
2 0.1323 2.0303 i5 — 5
3 0.1143 2.0235 40 25 6
4 0.1012 2.0137 75 35 7
5 0.0856 2.0073 120 45 8

defines the lowest stability, while the latter the highest value of RE/e.
One might compare S(3) values for isomeric BH’s only, thus for 4-ring
non-linear acenes we have the values: 66, 62, (61) corresponding to RE/e
values of 0.1294, 0.1411, 0.1411. Again S(3)-cisoid > S(3)-transoid. For
5-ring systems we have the following values of S(3)’s: 108, 106, 103, (102),
101, (99), 98, (97), (98), {101, 98}, where values in parentheses are those
of cisoid dualists while those in brackets are those of branched BH’s.
Graphs with highest values of S(3)’s among a set of isomeric BH’s possess
the lowest stabilities. Table IV lists the corresponding information for
the first five linear acenes. Except for the first member, benzene, RE/e
have an identical order of the corresponding (L/2") values. Differences
between successive S(3) values increase by a constant value; while

Vmin(3)’s shows a regularly increasing pattern. It is interesting to observe
that the partition of S(3) for a linear acene is related to the number of

its carbon atoms, thus for naphthalene, S(3)=(zﬁ)+n, for anthracene,
n n n
S(3) = (7) + (_2_._. 1) + (n) + (n—1); for tetracene, S(3) = (—2—) +
n n
+ (_5—— 1) + (—2———2) + (n) + (n—1) + (n—2) and for pentacene we

have $(3) = (%) + (—;‘-~1) + (%—2) + (»2——3) + () + (—1) +

+ (n—2) +(n—3).

In Table V we show how the polyhex graphs studied here might be
arranged in increasing order of their stabilities merely from the topology
of (and geometrical information implied by) their dualists. For this we
define the function M(g,,...0)—! where M is the number of pairs of inter-
secting induced subgraphs in the dualist, g,.. is the order of the longest
induced subgraph of degree £ 2 and i is the number of dualist vertices
(= number of hexagons in polyhex).

For triphenylene M=3, while ¢,..=1 (since the branched vertex is not
counted because it is trivalent). The three pairs of intersecting induced
subgraphs in triphenylene are shown below:
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il Sl

Other examples might be inferred from Table V. However the fumction
M(9.i)~ ! is independent of configuration and therefore does not dis-
tinguish cisoid from transoid dualists. Nevertheless the function is an
illustration of data reduction where the dualist replaces the molecular
graph of the hydrocarbon. Data reduction is getting to be quite essential
in complex data-analyses?. Table V also includes other molecular pro-
perties® including total pi-energies per electron, eigenvalues of lowest
vacant and lowest occupied MO’s, ionization potentials of the hydrocar-
bons, their heats of atomization and polarographic half-wave reduction
potentials. It also includes a structural property, the Wiener numbers®
of the topological matrices describing polyhex graphs. We observe from
Table V that the order of molecular properties follows the orders of the
functions L/2* of the hydrocarbon or M(g,..i)—! of dualists for a set of
isomeric polyhexes. We may conclude that, despite a few discrepancies,
our purely structural label, L, succeeds in predicting the order of mole-
cular and electrochemical properties of a set of isomeric cata-condensed
BH’s and that further work in this direction seems worth pursuing.

Acknowledgements. — I thank both referees for critical remarks.
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SAZETAK

Molekularna topologija i molekularna svojstva.
I. Sekvencijske oznake kata-kondenziranih benzenoidnih ugljikovodika
koji sadrZe do pet prstenova

S. El-Basil

Opisan je algoritam za sistematsko numeriranje benzenoidnih ugljikovodika.
Suma decimalnih doprinosa svih ¢évorova (ugljikovih atoma) u molekularnom
grafu naziva se oznakom ugljikovodika. Ove oznake, zasnovane isklju¢ivo na
strukturnim elementima, ureduju skup izomernih benzenoidnih ugljikovodika
prema njihovim svojstvima uklju¢ujuéi: rezonantne i ukupne pi-energije, ioni-
zacijske potencijale, topline atomiziranja, energije najniZze prazne i najnize
popunjene molekularne orbitale i polarografske poluvalne redukcijske potenci-
jale. Ove oznake ugljikovodika mogu se lako izrac¢unati bez upotrebe racunala.





