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Kekulé structures are transformed into the subspace of
their double bonds to yield the corresponding factor graphs,
originally called submolecules (S. El-Basil, Internat. J.
Quantum Chem. 21 (1982) 771). A graph-theoretical analysis of
factor graphs is presented for certain classes of benzenoid
hydrocarbons. Such an analysis led to expressions for the con-
struction of sextet polynomials of some types of benzenoid
hydrocarbons containing as many as ten rings in a few seconds
without drawing any graphs!.

1. INTRODUCTION

Although Kekulé structures are mathematical states of no »realc exis-
tence, their impact on chemistry! and mathematical chemistry? is obvious.
Revival of interest in such VB structures arose in the early seventies?
when it was realized that they are hidden in the detailed complexity
of sophisticated MO calculations.?® There are a number of interesting
properties of Kekulé structures* such as their count,® usually given the
symbol K, for a particular hydrocarbon. Naturally, K, being an integer,
has many possible partitions. E.g. Gordon and Davidson® have demons-
trated that K for a nonbranched catacondensed all-benzenoid hydrocar-
bon (see later for definitions) is composed of a partition of numbers that
form a Fibonacci sequence. Recently Hosoya and Yamaguchi® partitioned
K into a sum of what they called resonant sextet numbers, r(G, K)’s,
defined as the number of ways in which k disconnected but mutually
resonant sextets are chosen from G, the molecular graph of the hydro-
carbon. Such numbers are used to construct sextet polynomials, B, (X)’s
given by:

m
B:(X) = 3 r(G, k) X*
k=0
where (G, O) is defined as unity and m is the maximum number of
disconnected sextets. The combinatorial and chemical implications of

* This paper is dedicated to Professor Nenad Trinajstié.
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the sextet polynomial led many people®® to interesting discoveries of the
topological properties of benzenoid hydrocarbons. This paper aims at
analyzing Kekulé structures of certain types of benzenoid hydrocarbons
for which novel identities of their sextet polynomials have recently been
observed.®

2. PRELIMINARIES AND DEFINITIONS

a) Factor-Graph, F(K), of a Kekulé Structure

When a Kekulé structure is transformed into the subspace of its
double bonds a factor-graph,® F(K) results. E.g. We consider K; and

F(K;)):
40 hyLs
A G o
I F(K)

b) Partition Sequence, S(P)

The set of F(K)’s of a particular benzenoid hydrocarbon are partitio-
ned according to the number of bivalent vertices,”* v,’s. Thus, e.g., picene
has thirteen F(K)’s shown in Figure 1. It turns out that just one of these
F(K)'s has seven v,’s, there are five F(K)’s each containing six v,’s, six
F(K)’s each possessing five v,’s and only one containing four v,’s. Thus
a partition sequence, S(P), might be defined for picene as given by eqn.
2, viz.,

S(P) = [7] + 5 [6] + 6 [5] + [4]
where, in general, [j] is a partition of the F(K)’s for which v, = j.

c) Factor-graph vector, v [F(K)]
Defined by
VIF(K)] = (fy f--o» Ta)

R, being the number of cycles in F(K) (= number of hexagons in the ben-
zenold hydrocarbon). The f’s are numbers of bivalent vertices in the in-
dividual cycles composing a particular F(K), so that:

R
3 /; = total number of bivalent
1=1 vertices in F(K) = v,

It turns out that the values and ordering of these f’s are rather delicate
functions of F(K)-topologies and lead to a graph-theoretical analysis of
the individual Kekulé structures.
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Figure 1. Factor graphs of picene grouped according to their vector degrees.

Numbers in [] are ve’s.
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d) L-A Sequence®

Gutman® distinguished two types of ring annellation modes for non-
terminal hexagons in the molecular graph of a cata-condensed benzenoid
hydrocarbon, viz.,

N
NN X
L-mode A-mode

Furthermore the additional convention will be adopted!? that a hexagon
which is fused simultaneously to three other hexagons (i.e. a branched
hexagon) will be assigned the symbol A, viz.

Terminal hexagons will be assigned the letter L. Therefore every polyhex
graph®® (i.e. the molecular graph of a benzenoid hydrocarbon) of a cata-
-condensed benzenoid hydrocarbon might be associated with an ordered
R-tuple of symbols L, A (R = number of hexagons), the so-called L, 4-
-sequence.t E.g. the following symbols are used to label the hexagons of
G, the polyhex graph corresponding to K,:

e) Induced Subgraphitis

Three types of induced subgraphs composed of strings of hexagons
might be partitioned out of the polyhex grapn of a cata-condensed system
viz.,

. .

<g,>=<L 4> 1)

<g>=<AL 'A> (2)
8.

<g>=<AL > 3)

8
where L ! e.g. means L repeated s, times. In eqns. 1—3 the powers of the
L symbols are maximum possible values corresponding to an induced sub-
graph of the maximum number of rings. The values of s, and s, # 0,
while s, may or may not be zero depending on the structure of the poly-
hex. As an illustration G, contains the following induced subgraphs:
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L g, >in L2 3 or < gy > < LA B7)

<g,> D <2,3> <3,45>, <5 6>;
(or <g,> O <A*>, <ALA >, <A*>)

<g;> D <6, T>0r <g,> > <AL > ).

where the numbers in »brackets« are numerical labels of hexagons as
shown in G,. The total number of induced subgraphs in G will be denoted
by L. E.g. L(Linear acene) = 1, L(G;) = 5 and so on.

f) Some Definitions Regarding Benzenoid Hydrocarbons

A molecular network which is entirely composed of hexagons is called
benzenoid. If all benzene rings in one of the Kekulé structures have an
aromatic sextet the hydrocarbon is called allbenzenoid. Therefore an all-
benzenoid hydrocarbon has cne F(K) which is composed of C, cycles only
(C, is a cycle composed of three vertices). An allbenzenoid hydrocarbon
containing R rings, therefore, has an L—A sequence given by LAR—2L.
Examples of allbenzenoids are given by the following polyhexes.

20NN e20 e
’ A ’ % ete.

Thus, in an allbenzenoid system all induced subgraphs have orders® of
two (i.e. composed of two rings). In the opposite sense to the above deii-
nition, a hydrocarbon is termed non-allbenzenoid. Examples are

A necessary and sufficient condition for a non-allbenzenoid cata-conden-

sed system is the existence of < g, > = LSI A wheres;, > 20r<g,>= AL
$;3> 2. If every hexagon of a cata-condensed system has at most two
neighboring hexagons it is said to be nonbranched.

We now state two theorems, illustrate them and prove them by graph
analysis of factor graphs and their vectors. )

3. THEOREM 1

Let @ ;_; be the number of F(K)'s containing (m-j) divalent verti-
ces, where m is the maximum possible number of v,’s in an F(K) in the
set. Then for an all-benzenoid nonbranched cata-condensed system the
following identity exists:

m— = (G, 7) (4)

) * The order of an induced subgraph is defined here as the number of its
rings.
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where (G, j) is a resonant sextet number corresponding to j disconnected
but mutually resonant sextets in G. i.e. (G, j) = number of selections of j
disconnected but mutually resonant sextets in G.

Table I illustrates the application of eqn. (4) to some allbenzenoid
nonbranched systems.

TABLE I

Partition Sequences, S(P)’s, (Above), and Sextet Polynomials, Bc(X)’s, (Below)
of the First Few Members of Allbenzenoid Nonbranched Cata-condensed

Hydrocarbons
R Examples of G m S(P), (above) and
Ba(X), (below)
O:? 5 [531+ 3041+ (3]
1 + 3X + x°
(IS:O (EISJ 6 [61+ 4051+ 3[4
1 + 4X + 3%
509:8) Q0 .- 7 U711+ 5061+ 61051 +(4]
1 + 5X +63X24+ %
Og%) 051833 8 [81+ 6I71+ 10061+ 4L5]

1 +6X+10 % + 4%

Proof of Theorem 1

First: We cite the characters of factor-graph-vectors of an allbenze-
noid nonbranched cata-condensed system: In a vector (f,, f, ... fr) wWe de-
note f, and f as terminal digits and digits f;, I < i < R as digits of internal
sequence. We state three rules: viz.,

Rule 1: The terminal digits may assume only values of 1 and 2. i.e.
there are four possible combinations. Furthermore, digit 1 corresponds to
C,, while digit 2 to C; or C,. Digits of internal sequence can assume values
0oril;

Rule 2: No two successive zeros are allowed; _

Rule 3: When a terminal number is adjacent to the zero then it has
to assume value 2 (the opposite, however, is not true).

E.g. R = 5 leads to five possibilities for internal sequence: (1, 1, 1),
(1, 1,0), (1,0,1), (0,1,1), (0,1, 0). Considering Rule 3, we have only 13
allowed combinations with the four combinations of terminal digits (not
20 as one might expect). These vectors are shown in Figure 1 for picene,

an allbenzenoid zigzag cata-condensed system.
Secnnd: Wa demnnctrata tha wvaliditv af ann 4 fAar P — R Qimilaw
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The maximum number of divalent vertices requires upper limits on

both terminal and internal digits of v [F(K)]. A partial vector structure
would then be (2, , , , 2).There are still three digits to be accounted
for, composed of zeros and/or ones and subject to rules 2 and 3. The upper
limit to this internal combination is obviously 1, 1, 1 leading to a

v [F(K)] = (2, 1, 1, 1, 2). There is no other configuration leading to a
higher value of v,. Thus ay = 1. But, by definition, (G, O) = 1 for any G.
Thus az = 7(G,0) (= a, in this case).

m : (minimum v,).

The lower limit on the terminal numbers leads to (1, , , , 1).
According to rule 3 we cannot have zeros adjacent to terminal ones, the-
refore vectors such as (1, 0, f, g, 1) or (1, g, f, 0, 1) are not allowed. This
reduces our choice to (1, 1, f, 1, 1). To have the lower limit on v, f must
be zero, whence m generates the vector (1, 1, 0, 1, 1) leading to v, (mmin.) =
m = 4. Therefore a, = az; = (G, 3) = 1. This result depends on the value
of R.

Now we establish the correspondence between a;.; and r(G,3): We
let F be an operator that transforms a Kekulé structure into the subspace
of its double bonds (to give a factor graph), hence we may write the follo-
wing identities:

F O =C3 =& ;
-%-‘. q = Gy =D ; (5)
E :@% =C5 =<>

Whence we have the following inverse relations:

2‘103 - © . 41 ¢, = @ y ..%;-:-"1.‘05 - j:;g (6)

Furthermore we have the following cyclic interpretations of the elements

—_—
of V [F(K)]: (these cyclic interpretations are functions of the particular
topology of an allbenzenoid nonbranched system)

i) Terminal digits:
C, (M
Ca: C4

3 (8)
C,, Cy; G

DN =

ii) Internal sequence:

-
Q

([l
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when we use (7) and (8) we get

F(1:1,0,:1, 1) =F!(C;1,Cy;1,.C)
The remaining ones might be C;; (j = 3, 4, 5).
It can be shown that an allbenzenoid nonbranched system requires the
inetrnal 1 to be C; when the terminal cycles and middle one are C,’s. Thus
we write, using (6) the following identity:
F=1 (0,,1Cy  Cy7Cq,y 7 Cy) F-1 F(Ky), (see Figure 1)
Ky

o ~ é‘@

o ©

K13 (Clar's formula)

But K,, contains three disjoint and mutually resonant hexagons. Hence
K, corresponds to r(G,; 3), but K, is derived from V F(K) = (1, 1,0,1,1),
and the latter is deduced from a3 . Therefore r(G,3) = a3 = 1.

Now we construct other vectors of this BH. Sincem = Tand m = 4,n
(number of partitions) = 7T—4 + 1 = 4. We have accounted for two of

them, viz., v, = m; m, therefore we have two more v, s:
v, =6 =m — 1:

The terminal digits cannot both be 1, as the maximal sum of internal
seguence cannot exceed 3. If one of them is 2 and the other 1, we have
the only possibility for internal sequence the only possibility being three
s, ie. (2,1, 1,1, 1) or (1, 1, 1, 1, 2). If both terminal digits are 2, we get
for internal sequence two 1’s and 0, and that gives three possibilities:
2 1,1,0,2); (2,1,0,1, 2) and (2, 0, 1, 1, 2). We observe that the zero
moves over three positions. From Egqn. (8) and (6) we conclude that these
zeros correspond to sextets existing in three intermal rings. The terminal
ones (1’s) also correspond to sextets on terminal hexagons.

Hence ag.; = @3 ——> five vectors corresponding to five Kekulé struc-
tures with at least one resonant sextet per structure such that it moves
successively from one ring to the other over the five structures. This is
illustrated pictorially as follows:

4 K Xk
(11191’192) 50(27091!]12) b (2,1,6,1;2) e==> (291’19092)
=> (2,1,1,1,1,).

The sextet is shown by an asterisk above its corresponding code. Whence
these vectors (which are derived from a;z; = @;) correspond to the num-
ber of ways in which one sextet is chosen from a nonbranched cata-con-
densed allbenzenoid hydrocarbon for which R = 5 i.e. to 7(G, 1).
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Therefore ag:; =7(G,1) =5
Vv, =8 = m—2

We may easily generate these vectors as done with v, = 6. These
vectors-are: (1, 1;.1, 1. 1): (1,.Y:0,.1, 2):.(2,:1, 0, 1, 1); (1,. 1, 1,- 0, 2);
2 01,1, 1); (2,0, 1,0, 2). Applying Eqn. (7) and (8) to these vectors,
they may be rewritten as (C;, 1,1, 1, C;); (C,;, 1,Cy, 1, 2); (2,1,C,, 1, Cy);
(Cs, 1, 1,:Cs, 2); (2, Cy, 1,.1,,C,) .and. (2,.Cy, 1, C,, 2).
These vectors, therefore correspond to Kekulé structures containing
pairs of disjoint but mutually resonant sextets, i.e. to (G, 2). There are
six such different pairs. One may apply (6), (7) and (8) to generate the
actual Kekulé structures. We may thus write a5, = (G, 2) = 6.

Similar enumerative proofs might be written for higher (or lower)
members).

Construction of Bs(X)’s of Allbenzenoid Nonbranched Cata-condensed
Systems

—

The graph-theoretical properties of V [F(K)]’s of this class of hydro-
carbons (c.f. rules 1—3) allow a systematic synthesis of sextet polynomials
of very large systems from the vectors of phenanthrene; the five vectors
of which are (2, 1, 2); (2,1, 1); (1, 1, 2); (2, 0, 2); and (1, 1). Higher
vectors are built up from smaller ones. Each time the terminal number
(arbitrarily to the right) is suppressed by one and then both a one and
a two are added. As a result of this operation vectors might result ending
(to the right) at one preceded by zero. These are excluded by virtue of
rule 3. E.g. a vector such as (2, 0, 1, 1, 1) might only be expanded into
2,01, 1,0, 2): the alternative; (2, 0, 1, 1, 0, 1) is not consistent with the
topological features of this class (allbenzenoid, nonbranched) of hydro-
carbons. This consideration can be formulated generally as follows: If

—_—

we have the vectors, V [F(K)]’s, for some value of R, let us denote by
R,(R) the number of vectors with the last digit 1 and R,(R) the number
of vectors with the last digit 2. Then we get for R + 1: R,(R + 1) = R,(R);
R,(R+1) = R,(R)+R,(R). E.g. if we have for R = 3, R,=2, R,=3, then
we get for R=4: R,(4)=3; R,(4)=5, for R=5: (5, 8), for R=6: (8, 13) etc.
Partition sequences and sextet polynomials are thus most easily construc-
ted. This result is outlined below:

R R, R,
3 2 3
4 3 5
5 5 8
6 8 13

We observe that both R, and R, define Fibonacci numbers.!®
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4- Theorem 2

Let an.; be the number of F(K)’s containing (m + j) divalent vertices,
where m is the minimum possible number of »,’s in an F(K) in the set.
Then for a nonallbenzenoid nonbranched cata-condensed system for which
L = 2, the following identity exists:

Am.y = T(G, j) = A3+ (9)

before proving eqn. (9) we illustrate it with some examples:

TABLE II

Partition Sequences, S(P)’s, (Above), and Sextet Polynomials, Bc(X)’s, (Below),
of a Few Members of Nonallbenzenoid Nonbranched Cata-condensed Systems
for which L =2

G S(P), (above) and Be(X), (below)

33+ 404) + 2 [5]
1l + 4X + 23%x2

[31 + 5041 + 4 [51]
1 + 5X + 4 X2

oecy
Se
%

+ T[4]% 8[5]
+ T X + 8 %2
3 + 7041+ 9(5]

1 + 7TX + 93X

First we consider some graph-theoretical characters of V [F(K)]’s of
this class of hydrocarbons which are essential for the proof. A general
representation of a nonallbenzenoid nonbranched hydrocarbon for which
L = 2 is shown below
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Thus the general form of the L, A-sequence would be L' AL’ where i and j
are 1, 2,.... Such a sequence is consistent with only two types of vectors
given by (10), (11), viz.

i) (fy, 0, 1, 07, fz) (10)
i) (7, 0", fz) (11)

where a zero raised to an integer, say 0™, means a zero repeated m times,
so instead of writing e.g., 0,0, 0 we write 0° and so on. For type i) vectors,
the terminal digits might have four combinations, viz.,

1) fi=fr=1 (2) =1, fp=2
3) k=1 fi= 4) i=lzr=2

For type ii) vectors only one value can be assumed, viz., f, = fr = 2. These
bounds are simply dictated from the nature of the Kekulé permutations?
(i.e. double-bond matchings) in such polyhex graphs. When eqns. (10)
and (11) are used together with the bounds of the numerical values of the
terminal digits only three values of v,’s become possible, viz., 3, 4 and 5
and whence the S(P)’s of these benzenoid systems have the general form:
(c.f. Table II).

S(P)r-2 = as[3] + as[4] + as[5] (12)

We need two more characters of such types of V [F(K)]'s

(a) Cyclic interpretations (codes) of vector elements:

a) An intermal zero = C,; C,

b) An intemmal 1 = C;; C,; C;

c¢) A terminal 1 = C,

d) A terminal 2 adjacent to 1 = C,

e) A terminal 2 adjacent to zero = C,; C,.

It must be observed that by a terminal digit is meant a number which
is located at either terminal of the vector. We now define a novel quan-
tity:

(b) Vector multiplicity, w

_—

The terminal cycles in V [F(K)]'s are either C, and/or C,. For the
topology of nonbranched nonallbenzenold graphs several F(K)’s might
generate the same vector. Table III outlines vector structures and their
multiplicities, w’s i.e. the number of F(K)’s consistent with one, vector
structure.
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TABLE III

Vectors and Their Multiplicities, w’s of Nonbranched Nonallbenzenoids

V [F(K)Ys w
(Cs, 04, 1, 04, C3) 1
(Cs, 04, 1, 03, Cy) j
(Cs, 04, 1, 03, C3) i
(Cy, 04, 1, 03, Ca) (i.7)
(Cs, 0%, Cs) 1

—
As an illustration we consider L*AL* and all its V [F(K)]’s whose configu-
ration is (2,0,0,1,0,0,0,2) = (2,07%1, 03 2). Using the cyclic codes (a—e)
we have the following structures:

V F(K) w
(Cy 0% 1, 0% Cj) 1
(Cy, 0% 1, 0% C,) 3.
(CA’ 02’ 1: 03’ C3) 2
(C-;v 02; 1v 03’ C4) 2 X 3 = 6

Total = 12 F(K)'s
Figure 2 contains these twelve factor graphs.

An Inductive Proof of eqn. 2

Consider an L'AL’ polyhex graph. The lower limit on its v, i.e. m
comes from the vector (1,07 1,07 1) which must have two terminal
Cy's (c.f. cyclic code, C), and whence a,, = a; = 1 = (G, 0), (by definition).
Now we consider the other two partions, viz.,

v, =4=m + 1
We make use of Table III and cyclic codes derived above for this to-
pology. We have the following vectors:
(21 OHj_l, 2) > W = 1

(c,,0%"1, 1,03-1 -
(2,04L,1,03-2 1y 2 S R Al
il o 4e
<C490 » l’oj o ’ c3 ) -—9 W= i1

i ’ 03) _e> w=1

,1, od-t

: (C,.0
(1,011, 1, o3t )~

i-1 f
(c370 ’ 17 oa 1904) -%> w= j-1
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1, 0% 2). (Table III).

5 i.e. whose configuration is given by (2, 0%,

The factor graphs are implanted into the polyhex graphs.

Figure 2. Factor graphs of L34L* which have v:
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We then have ¥ w =0, = ama =1 + j + 1 = R = n(G,1) where the

vo=4
—_
summation is taken over all V [F(K)]’s for which v, = 4.
V2 =5 = g+2

The following-vectors leading te vy =5 exist.
(03301-11 1, oj-la CB) —% w=1

i-1 =1
—(C4,0"77, 1, 0975, 05)  —» w=ia
Sﬂecyoi‘l, Lo ey = w=g

QD > w=(i-1)(3-1)

Therefore 3 w = @5 = Am,2 = 14+(i-1) 4+ (4-1) +i(i-1)(5-1)
v,=5 =1i.j = r(G,2).

(2,0471,1,0371,2)

i-1

(1, 50% =L,

, 1, 09

To demonstrate the last (and important) part of the equality (i.e.
r(G,2) = i. j), we examine all Kekulé structures of an L'AL’ graph. We
find that there is only one Kekulé structure for which only the angular ring
has a resonant sextet.

For the rest of the Kekulé structures the resonant sextet moves over
i and j rings of each of its two induced subgraphs, < g >’s, such that just
one sextet exists on each < g >. Therefore there will be i. j. pairs of
disjoint and mutually resonant sextets, which is the definition of r(G, 2).
This establishes eqn. 9.

The linear acenes:

This is a special case of the preceding class. Only three types of
vectors exist, outlined together with their multiplicities in table IV, for a
linear acene containing R rings.

TABLE IV

Linear Acene Vector-factor-graphs and Their Multiplicities, w’s

—_—

V [F(K)] w
(2, 082 2) R-1
(1, 0B-2 2) 1
(2, 082 2) 1

Two obvious results might be concluded for this simple topology, viz.,
1) For a linear acene: S(P)=(R-1)[4]+2[3] (13)
2) K=R-1+1+1=R+1 (14)
Eqn. (14) is a well-known fact.
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Such graph-theoretical analysis might be extended to other types of po-
lyhexes. However, we feel the above types considered are detailed enough
to make other analyses, at least in principle, straightforward.

5) Ezxpressions for Populations of Partitions: Restricted Disjoint
Interactions, RDI’s

To obtain expressions for the populations of the factor graph partiti-
ons and thus for the individual resonant sextet numbers we introduce the
concept of a restricted disjoint interaction among the rings of a polyhex.
A duplet of rings selected from the rings of the polyhex graph such that
no two rings in the duplet belong to the same induced subgraph is called a
restricted disjoint interaction, RDI, between the rings of such subset
duplet of rings. We let P define the set of all rings composing an arbitrary
polyhex graph i.e. P = {r; : 1 £i £ R} where r; is ith ring in P and R is
total number of rings in graph. We define:

N@O) =1, (15)

N(D) = P = R _ (16)
Furthermore pairs of RDI's, N(2)’s, are defined as all possibl‘e pairs of
rings such that no two of them in each pair belong to the same induced
subgraph; thus:

N@) ={(rr): 1, e<g;>, 15 € <g;>,

Tm ¢ <g,>forallm £ n} (17)
where < g; > is an induced subgraph (defined by eqns. 1, 2 and/or 3)
such that <g;> O r;, other symbols are similarly defined. Analogously
triplets of RDI’s, N(3)’s are defined as all possible subsets composed of
three rings such that no two rings in any subset belong to the same
< g >. Thus:

N@) ={(nrnry:r e <g>r1€ <g>,1. € <G>,
™m ¢ <g,> forall m+mn} (18)

Similarly Quartets, N(4)’s, Quintets, N(5)’s, etc. might be defined de-
pending on the size and topology of the polyhex graph. As an illustration
we consider G;(p) and write down the following RDI’s:

N@) =1 (By definition)
N = {1y aTuls Tl =1
A simplified notation might be written by dropping r and writing only
the numerical label of the ring thus:
N(1) ={1,2,3,4,56,7} =1,
Then, N(2) = {(1,3); (1,4); (1,5); (1,6); (1,T); (2,4); (2,5); (2,6);
(2,7); (3,6); (3,7); (4,6); 4,7); (5,7} = 14;
N@3) ={(1,3,6); (1,3,7); (1,4,6); (1,4,7); (1,57);
(2,4,6); (2,4,7); (2,5,71)} =8;
N(>4) =0
It is convenient to define an RDI polynomial, R(G, X), thus
m
R(G,X) = S N X (19)
=0
where m = maximal value of j. !
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Now we state the important fact that for any cata-condensed ben-
zenoid hydrocarbon there is exactly a 1:1 correspondence between R(G, X)
and the sextet polynomial, B;(X); i.e.

r(G,7) = N(j)
(20)

Eqn. (20) follows immediately from the definition of r(G, j) and the
fact that for any cata-condensed benzenoid hydrocarbon, there is only
one sextet in each <g>, defined by egns. 1—3 From eqgns. (2) and (4)
we write

Az = N(7)

Therefore to derive expressions for the population coefficients, a’s,
we derive expressions for N(j)’s. Consider, e.g. an all-benzenoid nonbranc-
hed cata-condensed hydrocarbon containing seven rings, viz.,

N(2) = {(1,3); (1,4); (1,5); (1,6); (1,T);
(2,4); (2,5); (2,6); (2,7);
3,5); (3,6); (3,7);
(4,6); (4,7);
(5,1} = 15

Each pair has two integers, say i and j, varying as follows: i from 1
to 5 and 4§ from 3 to 7. IL.e. for the above polyhex i and j have the closed
intervals [1,5] and [3,7] respectively or in general [1,(R—2,)] and
[3,R] for an all-benzenoid nonbranched cata-condensed hydrocarbon
containing R rings, thus:

R—2 R R—2
N2) =3 X 1= 3 R—(i+1) (22)
i=1 j=i+2 i=1

b
where we made use of the identity 3 1=b—a+1.
a

Thus,
R—2 R—2
N(@2) = 2 R —3i — 31
i=1 i=1 i=1
= R(R—2) — (R—2) (R—1) — (R—2)
2
Where we used the identity: 2 i =21 (R—2) (R—1)
Thus N(2) =27 (R—2) (R—1) (_ r (G, 2)) (23)
Derivation of N(3) is a little more involved but straight-foward, thus:
R—4 R—2 R R—4 R—2
N@B) =3 X Sl = S ¥ R—j—1
i=1 j=i+2 k=j+2 i=1 j=i+2

2 RER— 3 j— =1

R4 R2 R—2 R—2
2
i=1 {j=1+2 j=i+2 j=i+2
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Using known algebraic identities we write:

N(3) = 61(R—4) (R—3) (R—2) (=7(G, 3)) (24)
Analogus expressions might be derived for higher duplets, viz
N(4) = 247'(R—6) (R—5) (R—4) (R—3) (25)
N(5) = 1207*(R—8) (R—T) (R—6) (R—b5) (R—4) (26)
N(6) = 72071(R—10) (R—9) (R—8) (R—1T) (R—86) (R—5) 27)
A more compact from of the above factorials is
‘R+1—j\
NG) = ( o o (28)

E.g. N(3) for G, would be 67(3)(4)(5) = 10

These are (1,3,5); (1,3,6); (1,3,7); (2,4,6); (2,47); (257);
(3,5, 7); (1,4,6); (1,4,7); (1,5,7).
Eqn. (28) might be used to construct r(G, j)’s of the hydrocarbons shown
in Table I. Furthermore the partition sequences might be easily computed
from the eqn. (21) and the identity:

m=R+2
(29)
which might be induced from inspection of the results. (c.f. Table I).
For nonallbenzenoid nonbranched cata-condensed systems, the situation
is much simpler. The following relations might most easily be induced
for the case where a = 2:

a; = r(G,0) = N(0) =1 (30)
a,=r(G, 1) =N(1) =R (31)
a; = (G, 2) = N2) = e <g,> e <g,> (32)

where e <g> is the size of <g> i.e. the number of its rings less one.
As an iluultration eqns. 30—32 might be used to check the numbers in
Table II.
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SAZETAK

O graf-teorijskom pristupu Kekuléovim strukturama. Novi identiteti sekstetnih

polinoma i veza s Clarovom teorijom seksteta
S. El-Basil

Kekuléove strukture prevedene su u potprostor njihovih dvostrukih veza da-

juéi odgovarajuce faktor-grafove, izvorno nazvane submolekulama (S. E1-Basil,
Internat. J. Quantum Chem. 21 (1982) 771). Graf-teorijska analiza faktor-grafo-
va prikazana je za odredene Kklase benzenoidnih ugljikovodika. Takva analiza
dovela je do izraza koji omogucéuje konstrukciju sekstetnih polinoma nekih ti-
pova benzenoidnih ugljikovodika, koji sadrze i do deset prstenova, u nekoliko
sekundi bez crtanja ijednog grafa.





